1
|
Pedraza F, Liu H, Gawecka KA, Bascompte J. The Role of Indirect Effects in Coevolution along the Mutualism-Antagonism Continuum. Am Nat 2024; 203:28-42. [PMID: 38207144 DOI: 10.1086/727472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
AbstractThe web of interactions in a community drives the coevolution of species. Yet it is unclear how the outcome of species interactions influences the coevolutionary dynamics of communities. This is a pressing matter, as changes to the outcome of interactions may become more common with human-induced global change. Here, we combine network and evolutionary theory to explore coevolutionary outcomes in communities harboring mutualistic and antagonistic interactions. We show that as the ratio of mutualistic to antagonistic interactions decreases, selection imposed by direct partners outweighs that imposed by indirect partners. This weakening of indirect effects results in communities composed of species with dissimilar traits and fast rates of adaptation. These changes are more pronounced when specialist consumers are the first species to engage in antagonistic interactions. Hence, a shift in the outcome of species interactions may reverberate across communities and alter the direction and speed of coevolution.
Collapse
|
2
|
Govaert L, Gilarranz LJ, Altermatt F. Competition alters species' plastic and genetic response to environmental change. Sci Rep 2021; 11:23518. [PMID: 34876603 PMCID: PMC8651732 DOI: 10.1038/s41598-021-02841-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022] Open
Abstract
Species react to environmental change via plastic and evolutionary responses. While both of them determine species' survival, most studies quantify these responses individually. As species occur in communities, competing species may further influence their respective response to environmental change. Yet, how environmental change and competing species combined shape plastic and genetic responses to environmental change remains unclear. Quantifying how competition alters plastic and genetic responses of species to environmental change requires a trait-based, community and evolutionary ecological approach. We exposed unicellular aquatic organisms to long-term selection of increasing salinity-representing a common and relevant environmental change. We assessed plastic and genetic contributions to phenotypic change in biomass, cell shape, and dispersal ability along increasing levels of salinity in the presence and absence of competition. Trait changes in response to salinity were mainly due to mean trait evolution, and differed whether species evolved in the presence or absence of competition. Our results show that species' evolutionary and plastic responses to environmental change depended both on competition and the magnitude of environmental change, ultimately determining species persistence. Our results suggest that understanding plastic and genetic responses to environmental change within a community will improve predictions of species' persistence to environmental change.
Collapse
Affiliation(s)
- Lynn Govaert
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. .,Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland. .,URPP Global Change and Biodiversity, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. .,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany.
| | - Luis J. Gilarranz
- grid.418656.80000 0001 1551 0562Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Florian Altermatt
- grid.7400.30000 0004 1937 0650Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland ,grid.418656.80000 0001 1551 0562Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland ,grid.7400.30000 0004 1937 0650URPP Global Change and Biodiversity, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
3
|
Grainger TN, Levine JM. Rapid evolution of life-history traits in response to warming, predation and competition: A meta-analysis. Ecol Lett 2021; 25:541-554. [PMID: 34850533 DOI: 10.1111/ele.13934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022]
Abstract
Although studies quantifying evolutionary change in response to the selective pressures that organisms face in the wild have demonstrated that organisms can evolve rapidly, we lack a systematic assessment of the frequency, magnitude and direction of rapid evolutionary change across taxa. To address this gap, we conducted a meta-analysis of 58 studies that document the effects of warming, predation or competition on the evolution of body size, development rate or fecundity in natural or experimental animal populations. We tested whether there was a consistent effect of any selective agent on any trait, whether the direction of these effects align with theoretical predictions, and whether the three agents select in opposing directions on any trait. Overall, we found weak effects of all three selective agents on trait evolution: none of our nine traits by selective agent combinations had an overall effect that differed from zero, only 31% of studies had a significant within-study effect, and attributes of the included studies generally did not account for between-study variation in results. One notable exception was that predation targeting adults consistently resulted in the evolution of smaller prey body size. We discuss potential causes of these generally weak responses and consider how our results inform the ongoing development of eco-evolutionary research.
Collapse
Affiliation(s)
- Tess Nahanni Grainger
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.,Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
4
|
Yamawo A, Suzuki N, Tagawa J. Species diversity and biological trait function: Effectiveness of ant–plant mutualism decreases as ant species diversity increases. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Akira Yamawo
- Department of Applied Biological Sciences Faculty of Agriculture Saga University Saga Japan
| | - Nobuhiko Suzuki
- Department of Applied Biological Sciences Faculty of Agriculture Saga University Saga Japan
| | - Jun Tagawa
- Department of Biosphere–Geosphere System Science Faculty of Informatics Okayama University of Science Okayama Japan
| |
Collapse
|
5
|
Iriart V, Baucom RS, Ashman TL. Herbicides as anthropogenic drivers of eco-evo feedbacks in plant communities at the agro-ecological interface. Mol Ecol 2020; 30:5406-5421. [PMID: 32542840 DOI: 10.1111/mec.15510] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 04/27/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022]
Abstract
Herbicides act as human-mediated novel selective agents and community disruptors, yet their full effects on eco-evolutionary dynamics in natural communities have only begun to be appreciated. Here, we synthesize how herbicide exposures can result in dramatic phenotypic and compositional shifts within communities at the agro-ecological interface and how these in turn affect species interactions and drive plant (and plant-associates') evolution in ways that can feedback to continue to affect the ecology and ecosystem functions of these assemblages. We advocate a holistic approach to understanding these dynamics that includes plastic changes and plant community transformations and also extends beyond this single trophic level targeted by herbicides to the effects on nontarget plant-associated organisms and their potential to evolve, thereby embracing the complexity of these real-world systems. We make explicit recommendations for future research to achieve this goal and specifically address impacts of ecology on evolution, evolution on ecology and their feedbacks so that we can gain a more predictive view of the fates of herbicide-impacted communities.
Collapse
Affiliation(s)
- Veronica Iriart
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Regina S Baucom
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Barbour MA, Greyson-Gaito CJ, Sotoodeh A, Locke B, Bascompte J. Loss of consumers constrains phenotypic evolution in the resulting food web. Evol Lett 2020; 4:266-277. [PMID: 32547786 PMCID: PMC7293086 DOI: 10.1002/evl3.170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/14/2020] [Accepted: 02/10/2020] [Indexed: 12/15/2022] Open
Abstract
The loss of biodiversity is altering the structure of ecological networks; however, we are currently in a poor position to predict how these altered communities will affect the evolution of remaining populations. Theory on fitness landscapes provides a framework for predicting how selection alters the evolutionary trajectory and adaptive potential of populations, but often treats the network of interacting populations as a “black box.” Here, we integrate ecological networks and fitness landscapes to examine how changes in food‐web structure shape phenotypic evolution. We conducted a field experiment that removed a guild of larval parasitoids that imposed direct and indirect selection pressures on an insect herbivore. We then measured herbivore survival as a function of three key phenotypic traits to estimate directional, quadratic, and correlational selection gradients in each treatment. We used these selection gradients to characterize the slope and curvature of the fitness landscape to understand the direct and indirect effects of consumer loss on phenotypic evolution. We found that the number of traits under directional selection increased with the removal of larval parasitoids, indicating evolution was more constrained toward a specific combination of traits. Similarly, we found that the removal of larval parasitoids altered the curvature of the fitness landscape in such a way that tended to decrease the evolvability of the traits we measured in the next generation. Our results suggest that the loss of trophic interactions can impose greater constraints on phenotypic evolution. This indicates that the simplification of ecological communities may constrain the adaptive potential of remaining populations to future environmental change.
Collapse
Affiliation(s)
- Matthew A Barbour
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich 8057 ZH Switzerland.,Department of Zoology University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Christopher J Greyson-Gaito
- Department of Zoology University of British Columbia Vancouver BC V6T 1Z4 Canada.,Department of Integrative Biology University of Guelph Guelph ON N1G 2W1 Canada
| | - Arezoo Sotoodeh
- Department of Zoology University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Brendan Locke
- Department of Biological Sciences Humboldt State University Arcata California 95521
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich 8057 ZH Switzerland
| |
Collapse
|
7
|
Miller TE, Buhler ML, Cuellar-Gempeler C. Species-specific differences determine responses to a resource pulse and predation. Oecologia 2019; 190:169-178. [PMID: 30941498 DOI: 10.1007/s00442-019-04393-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 03/25/2019] [Indexed: 11/30/2022]
Abstract
The effects of resource pulses on natural communities are known to vary with the type of pulse. However, less is known about mechanisms that determine the responses of different species to the same pulse. We hypothesized that these differences are related to the size of the species, as increasing size may be correlated with increasing competitive ability and decreasing tolerance to predation. A factorial experiment quantified the magnitude and timing of species' responses to a resource pulse using the aquatic communities found in the leaves of the carnivorous pitcher plant, Sarracenia purpurea. We added prey to leaves and followed the abundances of bacteria and bacterivores (protozoa and rotifers) in the presence and absence of a top predator, larvae of the mosquito Wyeomyia smithii. Resource pulses had significant positive effects on species abundances and diversity in this community; however, the magnitude and timing of responses varied among the bacterivore species and was not related to body size. Larger bacterivores were significantly suppressed by predators, while smaller bacterivores were not; predation also significantly reduced bacterivore species diversity. There were no interactions between the effects of the resource pulse and predation on protozoa abundances. Over 67 days, some species returned to pre-pulse abundances quickly, others did not or did so very slowly, resulting in new community states for extended periods of time. This study demonstrates that species-specific differences in responses to resource pulses and predation are complex and may not be related to simple life history trade-offs associated with size.
Collapse
Affiliation(s)
- Thomas E Miller
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA.
| | - Maya L Buhler
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | | |
Collapse
|
8
|
Parmentier T, De Laender F, Wenseleers T, Bonte D. Contrasting indirect effects of an ant host on prey-predator interactions of symbiotic arthropods. Oecologia 2018; 188:1145-1153. [PMID: 30357527 DOI: 10.1007/s00442-018-4280-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/15/2018] [Indexed: 11/28/2022]
Abstract
Indirect interactions occur when a species affects another species by altering the density (density-mediated interactions) or influencing traits (trait-mediated interactions) of a third species. We studied variation in these two types of indirect interactions in a network of red wood ants and symbiotic arthropods living in their nests. We tested whether the ant workers indirectly affected survival of a symbiotic prey species (Cyphoderus albinus) by changing the density and/or traits of three symbiotic predators, i.e., Mastigusa arietina, Thyreosthenius biovatus and Stenus aterrimus, provoking, respectively, low, medium and high ant aggression. An ant nest is highly heterogeneous in ant worker density and the number of aggressive interactions towards symbionts increases with worker density. We, therefore, hypothesized that varying ant density could indirectly impact prey-predator interactions of the associated symbiont community. Ants caused trait-mediated indirect effects in all three prey-predator interactions, by affecting the prey capture rate of the symbiotic predators at different worker densities. Prey capture rate of the highly and moderately aggressed spider predators M. arietina and T. biovatus decreased with ant density, whereas the prey capture rate of the weakly aggressed beetle predator S. aterrimus increased. Ants also induced density-mediated indirect interactions as high worker densities decreased the survival rate of the two predatory spider species. These results demonstrate for the first time that a host can indirectly mediate the trophic interactions between associated symbionts. In addition, we show that a single host can induce opposing indirect effects depending on its degree of aggression towards the symbionts.
Collapse
Affiliation(s)
- T Parmentier
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium. .,Laboratory of Socioecology and Socioevolution, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium. .,Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium.
| | - F De Laender
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - T Wenseleers
- Laboratory of Socioecology and Socioevolution, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium
| | - D Bonte
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| |
Collapse
|
9
|
terHorst CP, Zee PC, Heath KD, Miller TE, Pastore AI, Patel S, Schreiber SJ, Wade MJ, Walsh MR. Evolution in a Community Context: Trait Responses to Multiple Species Interactions. Am Nat 2018. [DOI: 10.1086/695835] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Patel S, Cortez MH, Schreiber SJ. Partitioning the Effects of Eco-Evolutionary Feedbacks on Community Stability. Am Nat 2018. [DOI: 10.1086/695834] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
|
12
|
Wang X, Fan M, Hao L. Adaptive evolution of body size subject to indirect effect in trophic cascade system. Biosystems 2017; 159:23-35. [PMID: 28684284 DOI: 10.1016/j.biosystems.2017.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 03/21/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
Abstract
Trophic cascades represent a classic example of indirect effect and are wide-spread in nature. Their ecological impact are well established, but the evolutionary consequences have received even less theoretical attention. We theoretically and numerically investigate the trait (i.e., body size of consumer) evolution in response to indirect effect in a trophic cascade system. By applying the quantitative trait evolutionary theory and the adaptive dynamic theory, we formulate and explore two different types of eco-evolutionary resource-consumer-predator trophic cascade model. First, an eco-evolutionary model incorporating the rapid evolution is formulated to investigate the effect of rapid evolution of the consumer's body size, and to explore the impact of density-mediate indirect effect on the population dynamics and trait dynamics. Next, by employing the adaptive dynamic theory, a long-term evolutionary model of consumer body size is formulated to evaluate the effect of long-term evolution on the population dynamics and the effect of trait-mediate indirect effect. Those models admit rich dynamics that has not been observed yet in empirical studies. It is found that, both in the trait-mediated and density-mediated system, the body size of consumer in predator-consumer-resource interaction (indirect effect) evolves smaller than that in consumer-resource and predator-consumer interaction (direct effect). Moreover, in the density-mediated system, we found that the evolution of consumer body size contributes to avoiding consumer extinction (i.e., evolutionary rescue). The trait-mediate and density-mediate effects may produce opposite evolutionary response. This study suggests that the trophic cascade indirect effect affects consumer evolution, highlights a more comprehensive mechanistic understanding of the intricate interplay between ecological and evolutionary force. The modeling approaches provide avenue for study on indirect effects from an evolutionary perspective.
Collapse
Affiliation(s)
- Xin Wang
- School of Mathematics and Statistics, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, PR China; School of Mathematics and Information Science, Anshan Normal University, 43 Pingan Street, Anshan, Liaoning 114007, PR China
| | - Meng Fan
- School of Mathematics and Statistics, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin 130024, PR China.
| | - Lina Hao
- School of Basic Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130012, PR China
| |
Collapse
|
13
|
Predator trait evolution alters prey community composition. Ecosphere 2017. [DOI: 10.1002/ecs2.1803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
14
|
Bolstad GH. Quantifying nonadditive selection caused by indirect ecological effects: Comment. Ecology 2016; 98:278-282. [DOI: 10.1002/ecy.1584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 08/17/2016] [Accepted: 09/07/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Geir H. Bolstad
- Norwegian Institute for Nature Research (NINA); Trondheim NO-7485 Norway
| |
Collapse
|
15
|
Fiegna F, Scheuerl T, Moreno-Letelier A, Bell T, Barraclough TG. Saturating effects of species diversity on life-history evolution in bacteria. Proc Biol Sci 2016; 282:rspb.2015.1794. [PMID: 26378213 PMCID: PMC4614762 DOI: 10.1098/rspb.2015.1794] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Species interactions can play a major role in shaping evolution in new environments. In theory, species interactions can either stimulate evolution by promoting coevolution or inhibit evolution by constraining ecological opportunity. The relative strength of these effects should vary as species richness increases, and yet there has been little evidence for evolution of component species in communities. We evolved bacterial microcosms containing between 1 and 12 species in three different environments. Growth rates and yields of isolates that evolved in communities were lower than those that evolved in monocultures, consistent with recent theory that competition constrains species to specialize on narrower sets of resources. This effect saturated or reversed at higher levels of richness, consistent with theory that directional effects of species interactions should weaken in more diverse communities. Species varied considerably, however, in their responses to both environment and richness levels. Mechanistic models and experiments are now needed to understand and predict joint evolutionary dynamics of species in diverse communities.
Collapse
Affiliation(s)
- Francesca Fiegna
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - Thomas Scheuerl
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - Alejandra Moreno-Letelier
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - Thomas Bell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - Timothy G Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| |
Collapse
|
16
|
Functional ecology of aquatic phagotrophic protists – Concepts, limitations, and perspectives. Eur J Protistol 2016; 55:50-74. [DOI: 10.1016/j.ejop.2016.03.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/15/2016] [Accepted: 03/23/2016] [Indexed: 01/02/2023]
|
17
|
Parain EC, Gravel D, Rohr RP, Bersier LF, Gray SM. Mismatch in microbial food webs: predators but not prey perform better in their local biotic and abiotic conditions. Ecol Evol 2016; 6:4885-97. [PMID: 27547320 PMCID: PMC4979714 DOI: 10.1002/ece3.2236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 05/02/2016] [Accepted: 05/18/2016] [Indexed: 11/11/2022] Open
Abstract
Understanding how trophic levels respond to changes in abiotic and biotic conditions is key for predicting how food webs will react to environmental perturbations. Different trophic levels may respond disproportionately to change, with lower levels more likely to react faster, as they typically consist of smaller‐bodied species with higher reproductive rates. This response could cause a mismatch between trophic levels, in which predators and prey will respond differently to changing abiotic or biotic conditions. This mismatch between trophic levels could result in altered top‐down and bottom‐up control and changes in interaction strength. To determine the possibility of a mismatch, we conducted a reciprocal‐transplant experiment involving Sarracenia purpurea food webs consisting of bacterial communities as prey and a subset of six morphologically similar protozoans as predators. We used a factorial design with four temperatures, four bacteria and protozoan biogeographic origins, replicated four times. This design allowed us to determine how predator and prey dynamics were altered by abiotic (temperature) conditions and biotic (predators paired with prey from either their local or non‐local biogeographic origin) conditions. We found that prey reached higher densities in warmer temperature regardless of their temperature of origin. Conversely, predators achieved higher densities in the temperature condition and with the prey from their origin. These results confirm that predators perform better in abiotic and biotic conditions of their origin while their prey do not. This mismatch between trophic levels may be especially significant under climate change, potentially disrupting ecosystem functioning by disproportionately affecting top‐down and bottom‐up control.
Collapse
Affiliation(s)
- Elodie C Parain
- Department of Biology - Ecology and EvolutionUniversity of Fribourg Chemin du Musée 101700 Fribourg Switzerland; Department of Ecology and Evolutionary Ecology Yale University 165 Prospect Street New Haven Connecticut 06520
| | - Dominique Gravel
- Département de Biologie, Chimie et Géographie Université du Québec à Rimouski 300 Allée des Ursulines Rimouski Quebec G5L 3A1 Canada; Département de Biologie - Ecologie Terrestre Université de Sherbrooke 2500, boulevard de l'Université Sherbrooke Quebec J1K 2R1 Canada
| | - Rudolf P Rohr
- Department of Biology - Ecology and Evolution University of Fribourg Chemin du Musée 10 1700 Fribourg Switzerland
| | - Louis-Félix Bersier
- Department of Biology - Ecology and Evolution University of Fribourg Chemin du Musée 10 1700 Fribourg Switzerland
| | - Sarah M Gray
- Department of Biology - Ecology and Evolution University of Fribourg Chemin du Musée 10 1700 Fribourg Switzerland
| |
Collapse
|
18
|
Barraclough TG. How Do Species Interactions Affect Evolutionary Dynamics Across Whole Communities? ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2015. [DOI: 10.1146/annurev-ecolsys-112414-054030] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Theories of how species evolve in changing environments mostly consider single species in isolation or pairs of interacting species. Yet all organisms live in diverse communities containing many hundreds of species. This review discusses how species interactions influence the evolution of constituent species across whole communities. When species interactions are weak or inconsistent, evolutionary dynamics should be predictable by factors identified by single-species theory. Stronger species interactions, however, can alter evolutionary outcomes and either dampen or promote evolution of constituent species depending on the number of species and the distribution of interaction strengths across the interaction network. Genetic interactions, such as horizontal gene transfer, might also affect evolutionary outcomes. These evolutionary mechanisms in turn affect whole-community properties, such as the level of ecosystem functioning. Successful management of both ecosystems and focal species requires new understanding of evolutionary interactions across whole communities.
Collapse
Affiliation(s)
- Timothy G. Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, United Kingdom
| |
Collapse
|
19
|
terHorst CP, Lau JA, Cooper IA, Keller KR, Rosa RJL, Royer AM, Schultheis EH, Suwa T, Conner JK. Quantifying nonadditive selection caused by indirect ecological effects. Ecology 2015; 96:2360-9. [DOI: 10.1890/14-0619.1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Lau JA, terHorst CP. Causes and consequences of failed adaptation to biological invasions: the role of ecological constraints. Mol Ecol 2015; 24:1987-98. [PMID: 25677573 DOI: 10.1111/mec.13084] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/29/2014] [Accepted: 01/02/2015] [Indexed: 01/17/2023]
Abstract
Biological invasions are a major challenge to native communities and have the potential to exert strong selection on native populations. As a result, native taxa may adapt to the presence of invaders through increased competitive ability, increased antipredator defences or altered morphologies that may limit encounters with toxic prey. Yet, in some cases, species may fail to adapt to biological invasions. Many challenges to adaptation arise because biological invasions occur in complex species-rich communities in spatially and temporally variable environments. Here, we review these 'ecological' constraints on adaptation, focusing on the complications that arise from the need to simultaneously adapt to multiple biotic agents and from temporal and spatial variation in both selection and demography. Throughout, we illustrate cases where these constraints might be especially important in native populations faced with biological invasions. Our goal was to highlight additional complexities empiricists should consider when studying adaptation to biological invasions and to begin to identify conditions when adaptation may fail to be an effective response to invasion.
Collapse
Affiliation(s)
- Jennifer A Lau
- Kellogg Biological Station & Department of Plant Biology, Michigan State University, 3700 E Gull Lake Dr., Hickory Corners, MI, 49060, USA
| | | |
Collapse
|
21
|
Evolution of species interactions determines microbial community productivity in new environments. ISME JOURNAL 2014; 9:1235-45. [PMID: 25387206 PMCID: PMC4409166 DOI: 10.1038/ismej.2014.215] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 11/08/2022]
Abstract
Diversity generally increases ecosystem productivity over short timescales. Over longer timescales, both ecological and evolutionary responses to new environments could alter productivity and diversity–productivity relationships. In turn, diversity might affect how component species adapt to new conditions. We tested these ideas by culturing artificial microbial communities containing between 1 and 12 species in three different environments for ∼60 generations. The relationship between community yields and diversity became steeper over time in one environment. This occurred despite a general tendency for the separate yields of isolates of constituent species to be lower at the end if they had evolved in a more diverse community. Statistical comparisons of community and species yields showed that species interactions had evolved to be less negative over time, especially in more diverse communities. Diversity and evolution therefore interacted to enhance community productivity in a new environment.
Collapse
|
22
|
Gray SM, Dykhuizen DE, Padilla DK. The effects of species properties and community context on establishment success. OIKOS 2014. [DOI: 10.1111/oik.01550] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sarah M. Gray
- Dept of Ecology and Evolution; Stony Brook Univ.; Stony Brook NY 11794-5245 USA
| | - Daniel E. Dykhuizen
- Dept of Ecology and Evolution; Stony Brook Univ.; Stony Brook NY 11794-5245 USA
| | - Dianna K. Padilla
- Dept of Ecology and Evolution; Stony Brook Univ.; Stony Brook NY 11794-5245 USA
| |
Collapse
|
23
|
Genetic variation in invasive species response to direct and indirect species interactions. Biol Invasions 2014. [DOI: 10.1007/s10530-014-0756-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Rowntree JK, Zytynska SE, Frantz L, Hurst B, Johnson A, Preziosi RF. The genetics of indirect ecological effects-plant parasites and aphid herbivores. Front Genet 2014; 5:72. [PMID: 24782886 PMCID: PMC3986559 DOI: 10.3389/fgene.2014.00072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 03/20/2014] [Indexed: 12/26/2022] Open
Abstract
When parasitic plants and aphid herbivores share a host, both direct and indirect ecological effects (IEEs) can influence evolutionary processes. We used a hemiparasitic plant (Rhinanthus minor), a grass host (Hordeum vulgare) and a cereal aphid (Sitobion avenae) to investigate the genetics of IEEs between the aphid and the parasitic plant, and looked to see how these might affect or be influenced by the genetic diversity of the host plants. Survival of R. minor depended on the parasite's population of origin, the genotypes of the aphids sharing the host and the genetic diversity in the host plant community. Hence the indirect effects of the aphids on the parasitic plants depended on the genetic environment of the system. Here, we show that genetic variation can be important in determining the outcome of IEEs. Therefore, IEEs have the potential to influence evolutionary processes and the continuity of species interactions over time.
Collapse
Affiliation(s)
- Jennifer K. Rowntree
- Environment and Ecology Research Group, Faculty of Life Sciences, University of ManchesterManchester, UK
| | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Utsumi S. Evolutionary community ecology of plant-associated arthropods in terrestrial ecosystems. Ecol Res 2013. [DOI: 10.1007/s11284-013-1042-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Walsh MR. The evolutionary consequences of indirect effects. Trends Ecol Evol 2013; 28:23-9. [DOI: 10.1016/j.tree.2012.08.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 08/03/2012] [Accepted: 08/09/2012] [Indexed: 11/29/2022]
|
28
|
Utsumi S, Ando Y, Roininen H, Takahashi JI, Ohgushi T. Herbivore community promotes trait evolution in a leaf beetle via induced plant response. Ecol Lett 2012; 16:362-70. [DOI: 10.1111/ele.12051] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 11/09/2012] [Accepted: 11/13/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Shunsuke Utsumi
- Uryu Experimental Forest; Field Science Center for Northern Biosphere; Hokkaido University; Horokanai; Japan
| | - Yoshino Ando
- Center for Ecological Research; Kyoto University; Otsu; Japan
| | - Heikki Roininen
- Department of Biology; University of Eastern Finland; Joensuu; Finland
| | | | | |
Collapse
|
29
|
|
30
|
Bassar RD, Ferriere R, López-Sepulcre A, Marshall MC, Travis J, Pringle CM, Reznick DN. Direct and Indirect Ecosystem Effects of Evolutionary Adaptation in the Trinidadian Guppy (Poecilia reticulata). Am Nat 2012; 180:167-85. [DOI: 10.1086/666611] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Abstract
Understanding how natural selection drives evolution is a key challenge in evolutionary biology. Most studies of adaptation focus on how a single environmental factor, such as increased temperature, affects evolution within a single species. The biological relevance of these experiments is limited because nature is infinitely more complex. Most species are embedded within communities containing many species that interact with one another and the physical environment. To understand the evolutionary significance of such ecological complexity, experiments must test the evolutionary impact of interactions among multiple species during adaptation. Here we highlight an experiment that manipulates species composition and tracks evolutionary responses within each species, while testing for the mechanisms by which species interact and adapt to their environment. We also discuss limitations of previous studies of adaptive evolution and emphasize how an experimental evolution approach can circumvent such shortcomings. Understanding how community composition acts as a selective force will improve our ability to predict how species adapt to natural and human-induced environmental change.
Collapse
Affiliation(s)
- Martin M Turcotte
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada.
| | | | | |
Collapse
|
32
|
Lau JA. Evolutionary indirect effects of biological invasions. Oecologia 2012; 170:171-81. [DOI: 10.1007/s00442-012-2288-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 02/19/2012] [Indexed: 11/25/2022]
|
33
|
|
34
|
Montagnes D, Roberts E, Lukeš J, Lowe C. The rise of model protozoa. Trends Microbiol 2012; 20:184-91. [PMID: 22342867 DOI: 10.1016/j.tim.2012.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/05/2012] [Accepted: 01/17/2012] [Indexed: 12/23/2022]
Abstract
It is timely to evaluate the role of protozoa as model organisms given their diversity, abundance and versatility as well as the economic and ethical pressures placed on animal-based experimentation. We first define the term model organism and then examine through examples why protozoa make good models. Our examples reflect major issues including evolution, ecology, population and community biology, disease, the role of organelles, ageing, space travel, toxicity and teaching. We conclude by recognising that although protozoa may in some cases not completely mimic tissue- or whole-animal-level processes, they are extremely flexible and their use should be embraced. Finally, we offer advice on obtaining emergent model protozoa.
Collapse
Affiliation(s)
- David Montagnes
- Institute of Integrative Biology, University of Liverpool, BioScience Building, Crown Street, Liverpool L69 7ZB, UK.
| | | | | | | |
Collapse
|
35
|
Liow LH, Van Valen L, Stenseth NC. Red Queen: from populations to taxa and communities. Trends Ecol Evol 2011; 26:349-58. [PMID: 21511358 DOI: 10.1016/j.tree.2011.03.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/18/2011] [Accepted: 03/20/2011] [Indexed: 11/28/2022]
Abstract
Biotic interactions via the struggle for control of energy and the interactive effects of biota with their physical environment characterize Van Valen's Red Queen (VRQ). Here, we review new evidence for and against a VRQ view of the world from studies of increasing temporal and spatial scales. Interactions among biota and with the physical environment are important for generating and maintaining diversity on diverse timescales, but detailed mechanisms remain poorly understood. We recommend directly estimating the effect of biota and the physical environment on ecological and evolutionary processes. Promising approaches for elucidating VRQ include using mathematical modelling, controlled experimental systems, sampling and processes-oriented approaches for analysing data from natural systems, while paying extra attention to biotic interactions discernable from the fossil record.
Collapse
Affiliation(s)
- Lee Hsiang Liow
- Centre for Ecological and Evolutionary Synthesis, Department of Biology, University of Oslo, PO Box 1066, Blindern, N-0316 Oslo, Norway.
| | | | | |
Collapse
|