1
|
Yan S, Sheak JR, Walker BR, Jernigan NL, Resta TC. Contribution of Mitochondrial Reactive Oxygen Species to Chronic Hypoxia-Induced Pulmonary Hypertension. Antioxidants (Basel) 2023; 12:2060. [PMID: 38136180 PMCID: PMC10741244 DOI: 10.3390/antiox12122060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Pulmonary hypertension (PH) resulting from chronic hypoxia (CH) occurs in patients with chronic obstructive pulmonary diseases, sleep apnea, and restrictive lung diseases, as well as in residents at high altitude. Previous studies from our group and others demonstrate a detrimental role of reactive oxygen species (ROS) in the pathogenesis of CH-induced PH, although the subcellular sources of ROS are not fully understood. We hypothesized that mitochondria-derived ROS (mtROS) contribute to enhanced vasoconstrictor reactivity and PH following CH. To test the hypothesis, we exposed rats to 4 weeks of hypobaric hypoxia (PB ≈ 380 mmHg), with control rats housed in ambient air (PB ≈ 630 mmHg). Chronic oral administration of the mitochondria-targeted antioxidant MitoQ attenuated CH-induced decreases in pulmonary artery (PA) acceleration time, increases in right ventricular systolic pressure, right ventricular hypertrophy, and pulmonary arterial remodeling. In addition, endothelium-intact PAs from CH rats exhibited a significantly greater basal tone compared to those from control animals, as was eliminated via MitoQ. CH also augmented the basal tone in endothelium-disrupted PAs, a response associated with increased mtROS production in primary PA smooth muscle cells (PASMCs) from CH rats. However, we further uncovered an effect of NO synthase inhibition with Nω-nitro-L-arginine (L-NNA) to unmask a potent endothelial vasoconstrictor influence that accentuates mtROS-dependent vasoconstriction following CH. This basal tone augmentation in the presence of L-NNA disappeared following combined endothelin A and B receptor blockade with BQ123 and BQ788. The effects of using CH to augment vasoconstriction and PASMC mtROS production in exogenous endothelin 1 (ET-1) were similarly prevented by MitoQ. We conclude that mtROS participate in the development of CH-induced PH. Furthermore, mtROS signaling in PASMCs is centrally involved in enhanced pulmonary arterial constriction following CH, a response potentiated by endogenous ET-1.
Collapse
Affiliation(s)
| | | | | | | | - Thomas C. Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA (J.R.S.); (B.R.W.); (N.L.J.)
| |
Collapse
|
2
|
Janaszak-Jasiecka A, Siekierzycka A, Płoska A, Dobrucki IT, Kalinowski L. Endothelial Dysfunction Driven by Hypoxia-The Influence of Oxygen Deficiency on NO Bioavailability. Biomolecules 2021; 11:biom11070982. [PMID: 34356605 PMCID: PMC8301841 DOI: 10.3390/biom11070982] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. The initial stage of CVDs is characterized by endothelial dysfunction, defined as the limited bioavailability of nitric oxide (NO). Thus, any factors that interfere with the synthesis or metabolism of NO in endothelial cells are involved in CVD pathogenesis. It is well established that hypoxia is both the triggering factor as well as the accompanying factor in cardiovascular disease, and diminished tissue oxygen levels have been reported to influence endothelial NO bioavailability. In endothelial cells, NO is produced by endothelial nitric oxide synthase (eNOS) from L-Arg, with tetrahydrobiopterin (BH4) as an essential cofactor. Here, we discuss the mechanisms by which hypoxia affects NO bioavailability, including regulation of eNOS expression and activity. What is particularly important is the fact that hypoxia contributes to the depletion of cofactor BH4 and deficiency of substrate L-Arg, and thus elicits eNOS uncoupling-a state in which the enzyme produces superoxide instead of NO. eNOS uncoupling and the resulting oxidative stress is the major driver of endothelial dysfunction and atherogenesis. Moreover, hypoxia induces impairment in mitochondrial respiration and endothelial cell activation; thus, oxidative stress and inflammation, along with the hypoxic response, contribute to the development of endothelial dysfunction.
Collapse
Affiliation(s)
- Anna Janaszak-Jasiecka
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.-J.); (A.S.); (A.P.)
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.pl), 80-211 Gdansk, Poland
| | - Anna Siekierzycka
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.-J.); (A.S.); (A.P.)
- Laboratory of Trace Elements Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.-J.); (A.S.); (A.P.)
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.pl), 80-211 Gdansk, Poland
| | - Iwona T. Dobrucki
- University of Illinois at Urbana-Champaign Beckman Institute for Advanced Science and Technology, 405 N Mathews Ave, MC-251, Urbana, IL 61801, USA;
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.-J.); (A.S.); (A.P.)
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.pl), 80-211 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 80-233 Gdansk, Poland
- Correspondence:
| |
Collapse
|
3
|
Gorelova A, Berman M, Al Ghouleh I. Endothelial-to-Mesenchymal Transition in Pulmonary Arterial Hypertension. Antioxid Redox Signal 2021; 34:891-914. [PMID: 32746619 PMCID: PMC8035923 DOI: 10.1089/ars.2020.8169] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022]
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a process that encompasses extensive transcriptional reprogramming of activated endothelial cells leading to a shift toward mesenchymal cellular phenotypes and functional responses. Initially observed in the context of embryonic development, in the last few decades EndMT is increasingly recognized as a process that contributes to a variety of pathologies in the adult organism. Within the settings of cardiovascular biology, EndMT plays a role in various diseases, including atherosclerosis, heart valvular disease, cardiac fibrosis, and myocardial infarction. EndMT is also being progressively implicated in development and progression of pulmonary hypertension (PH) and pulmonary arterial hypertension (PAH). This review covers the current knowledge about EndMT in PH and PAH, and provides comprehensive overview of seminal discoveries. Topics covered include evidence linking EndMT to factors associated with PAH development, including hypoxia responses, inflammation, dysregulation of bone-morphogenetic protein receptor 2 (BMPR2), and redox signaling. This review amalgamates these discoveries into potential insights for the identification of underlying mechanisms driving EndMT in PH and PAH, and discusses future directions for EndMT-based therapeutic strategies in disease management.
Collapse
Affiliation(s)
- Anastasia Gorelova
- Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mariah Berman
- Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Imad Al Ghouleh
- Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Yan S, Resta TC, Jernigan NL. Vasoconstrictor Mechanisms in Chronic Hypoxia-Induced Pulmonary Hypertension: Role of Oxidant Signaling. Antioxidants (Basel) 2020; 9:E999. [PMID: 33076504 PMCID: PMC7602539 DOI: 10.3390/antiox9100999] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
Elevated resistance of pulmonary circulation after chronic hypoxia exposure leads to pulmonary hypertension. Contributing to this pathological process is enhanced pulmonary vasoconstriction through both calcium-dependent and calcium sensitization mechanisms. Reactive oxygen species (ROS), as a result of increased enzymatic production and/or decreased scavenging, participate in augmentation of pulmonary arterial constriction by potentiating calcium influx as well as activation of myofilament sensitization, therefore mediating the development of pulmonary hypertension. Here, we review the effects of chronic hypoxia on sources of ROS within the pulmonary vasculature including NADPH oxidases, mitochondria, uncoupled endothelial nitric oxide synthase, xanthine oxidase, monoamine oxidases and dysfunctional superoxide dismutases. We also summarize the ROS-induced functional alterations of various Ca2+ and K+ channels involved in regulating Ca2+ influx, and of Rho kinase that is responsible for myofilament Ca2+ sensitivity. A variety of antioxidants have been shown to have beneficial therapeutic effects in animal models of pulmonary hypertension, supporting the role of ROS in the development of pulmonary hypertension. A better understanding of the mechanisms by which ROS enhance vasoconstriction will be useful in evaluating the efficacy of antioxidants for the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
| | | | - Nikki L. Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (S.Y.); (T.C.R.)
| |
Collapse
|
5
|
Ally A, Powell I, Ally MM, Chaitoff K, Nauli SM. Role of neuronal nitric oxide synthase on cardiovascular functions in physiological and pathophysiological states. Nitric Oxide 2020; 102:52-73. [PMID: 32590118 DOI: 10.1016/j.niox.2020.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/15/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
Abstract
This review describes and summarizes the role of neuronal nitric oxide synthase (nNOS) on the central nervous system, particularly on brain regions such as the ventrolateral medulla (VLM) and the periaqueductal gray matter (PAG), and on blood vessels and the heart that are involved in the regulation and control of the cardiovascular system (CVS). Furthermore, we shall also review the functional aspects of nNOS during several physiological, pathophysiological, and clinical conditions such as exercise, pain, cerebral vascular accidents or stroke and hypertension. For example, during stroke, a cascade of molecular, neurochemical, and cellular changes occur that affect the nervous system as elicited by generation of free radicals and nitric oxide (NO) from vulnerable neurons, peroxide formation, superoxides, apoptosis, and the differential activation of three isoforms of nitric oxide synthases (NOSs), and can exert profound effects on the CVS. Neuronal NOS is one of the three isoforms of NOSs, the others being endothelial (eNOS) and inducible (iNOS) enzymes. Neuronal NOS is a critical homeostatic component of the CVS and plays an important role in regulation of different systems and disease process including nociception. The functional and physiological roles of NO and nNOS are described at the beginning of this review. We also elaborate the structure, gene, domain, and regulation of the nNOS protein. Both inhibitory and excitatory role of nNOS on the sympathetic autonomic nervous system (SANS) and parasympathetic autonomic nervous system (PANS) as mediated via different neurotransmitters/signal transduction processes will be explored, particularly its effects on the CVS. Because the VLM plays a crucial function in cardiovascular homeostatic mechanisms, the neuroanatomy and cardiovascular regulation of the VLM will be discussed in conjunction with the actions of nNOS. Thereafter, we shall discuss the up-to-date developments that are related to the interaction between nNOS and cardiovascular diseases such as hypertension and stroke. Finally, we shall focus on the role of nNOS, particularly within the PAG in cardiovascular regulation and neurotransmission during different types of pain stimulus. Overall, this review focuses on our current understanding of the nNOS protein, and provides further insights on how nNOS modulates, regulates, and controls cardiovascular function during both physiological activity such as exercise, and pathophysiological conditions such as stroke and hypertension.
Collapse
Affiliation(s)
- Ahmmed Ally
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA.
| | - Isabella Powell
- All American Institute of Medical Sciences, Black River, Jamaica
| | | | - Kevin Chaitoff
- Interventional Rehabilitation of South Florida, West Palm Beach, FL, USA
| | - Surya M Nauli
- Chapman University and University of California, Irvine, CA, USA.
| |
Collapse
|
6
|
Dikalova A, Aschner JL, Kaplowitz MR, Cunningham G, Summar M, Fike CD. Combined l-citrulline and tetrahydrobiopterin therapy improves NO signaling and ameliorates chronic hypoxia-induced pulmonary hypertension in newborn pigs. Am J Physiol Lung Cell Mol Physiol 2020; 318:L762-L772. [PMID: 32073878 PMCID: PMC7191483 DOI: 10.1152/ajplung.00280.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 01/21/2023] Open
Abstract
Newborn pigs with chronic hypoxia-induced pulmonary hypertension (PH) have evidence of endothelial nitric oxide synthase (eNOS) uncoupling. In this model, we showed that therapies that promote eNOS coupling, either tetrahydrobiopterin (BH4), a NOS cofactor, or l-citrulline, a NO-l-arginine precursor, inhibit PH. We wanted to determine whether cotreatment with l-citrulline and a BH4 compound, sapropterin dihydrochloride, improves NO signaling and chronic hypoxia-induced PH more markedly than either alone. Normoxic (control) and hypoxic piglets were studied. Some hypoxic piglets received sole treatment with l-citrulline or BH4, or were cotreated with l-citrulline and BH4, from day 3 through day 10 of hypoxia. Catheters were placed for hemodynamic measurements, and pulmonary arteries were dissected to assess eNOS dimer-to-monomer ratios and NO production. In untreated hypoxic piglets, pulmonary vascular resistance (PVR) was higher and NO production and eNOS dimer-to-monomer ratios were lower than in normoxic piglets. Compared with the untreated hypoxic group, PVR was lower in hypoxic piglets cotreated with l-citrulline and BH4 and in those treated with l-citrulline alone but not for those treated solely with BH4. NO production and eNOS dimer-to-monomer ratios were greater for all three treated hypoxic groups compared with the untreated group. Notably, greater improvements in PVR, eNOS dimer-to-monomer ratios, and NO production were found in hypoxic piglets cotreated with l-citrulline and BH4 than in piglets treated with either alone. Cotreatment with l-citrulline and BH4 more effectively improves NO signaling and inhibits chronic hypoxia-induced PH than either treatment alone. Combination therapies may offer enhanced therapeutic capacity for challenging clinical conditions, such as chronic neonatal PH.
Collapse
Affiliation(s)
- Anna Dikalova
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Judy L Aschner
- Department of Pediatrics, Albert Einstein College of Medicine, New York, New York
- Department of Pediatrics, Hackensack Meridian Health School of Medicine at Seton Hall University, Nutley, New Jersey
| | - Mark R Kaplowitz
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pediatrics, University of Utah Health, Salt Lake City, Utah
| | - Gary Cunningham
- Division of Genetics and Metabolism, Children's National Medical Center, Washington, District of Columbia
| | - Marshall Summar
- Division of Genetics and Metabolism, Children's National Medical Center, Washington, District of Columbia
| | - Candice D Fike
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pediatrics, University of Utah Health, Salt Lake City, Utah
| |
Collapse
|
7
|
Reyes RV, Díaz M, Ebensperger G, Herrera EA, Quezada SA, Hernandez I, Sanhueza EM, Parer JT, Giussani DA, Llanos AJ. The role of nitric oxide in the cardiopulmonary response to hypoxia in highland and lowland newborn llamas. J Physiol 2018; 596:5907-5923. [PMID: 29369354 PMCID: PMC6265547 DOI: 10.1113/jp274340] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/17/2018] [Indexed: 01/19/2023] Open
Abstract
KEY POINTS Perinatal hypoxia causes pulmonary hypertension in neonates, including humans. However, in species adapted to hypoxia, such as the llama, there is protection against pulmonary hypertension. Nitric oxide (NO) is a vasodilatator with an established role in the cardiopulmonary system of many species, but its function in the hypoxic pulmonary vasoconstrictor response in the newborn llama is unknown. Therefore, we studied the role of NO in the cardiopulmonary responses to acute hypoxia in high- and lowland newborn llamas. We show that high- compared to lowland newborn llamas have a reduced pulmonary vasoconstrictor response to acute hypoxia. Protection against excessive pulmonary vasoconstriction in the highland llama is mediated via enhancement of NO pathways, including increased MYPT1 and reduced ROCK expression as well as Ca2+ desensitization. Blunting of pulmonary hypertensive responses to hypoxia through enhanced NO pathways may be an adaptive mechanism to withstand life at high altitude in the newborn llama. ABSTRACT Llamas are born in the Alto Andino with protection against pulmonary hypertension. The physiology underlying protection against pulmonary vasoconstrictor responses to acute hypoxia in highland species is unknown. We determined the role of nitric oxide (NO) in the cardiopulmonary responses to acute hypoxia in high- and lowland newborn llamas. The cardiopulmonary function of newborn llamas born at low (580 m) or high altitude (3600 m) was studied under acute hypoxia, with and without NO blockade. In pulmonary arteries, we measured the reactivity to potassium and sodium nitroprusside (SNP), and in lung we determined the content of cGMP and the expression of the NO-related proteins: BKCa, PDE5, PSer92-PDE5, PKG-1, ROCK1 and 2, MYPT1, PSer695-MYPT1, PThr696-MYPT1, MLC20 and PSer19-MLC20. Pulmonary vascular remodelling was evaluated by morphometry and based on α-actin expression. High- compared to lowland newborn llamas showed lower in vivo pulmonary arterial pressor responses to acute hypoxia. This protection involved enhanced NO function, as NO blockade reverted the effect and the pulmonary arterial dilatator response to SNP was significantly enhanced in highland neonates. The pulmonary expression of ROCK2 and the phosphorylation of MLC20 were lower in high-altitude llamas. Conversely, MYPT1 was up-regulated whilst PSer695-MYPT1 and PThr695-MYPT1 did not change. Enhanced NO-dependent mechanisms were insufficient to prevent pulmonary arterial remodelling. Combined, the data strongly support that in the highland newborn llama reduced ROCK, increased MYPT1 expression and Ca2+ desensitization in pulmonary tissue allow an enhanced NO biology to limit hypoxic pulmonary constrictor responses. Blunting of hypoxic pulmonary hypertensive responses may be an adaptive mechanism to life at high altitude.
Collapse
Affiliation(s)
- Roberto V. Reyes
- Laboratorio de Bioquímica y Biología Molecular de la Hipoxia, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de MedicinaUniversidad de ChileSantiagoChile
- International Center for Andean Studies (INCAS)Universidad de ChileSantiagoChile
| | - Marcela Díaz
- Departamento de Promoción de la Salud de la Mujer y el Recién Nacido, Facultad de MedicinaUniversidad de ChileSantiagoChile
- Laboratorio de Mecanismos de Stress y Adaptación Vascular, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de MedicinaUniversidad de ChileSantiagoChile
| | - Germán Ebensperger
- Laboratorio de Mecanismos de Stress y Adaptación Vascular, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de MedicinaUniversidad de ChileSantiagoChile
| | - Emilio A. Herrera
- International Center for Andean Studies (INCAS)Universidad de ChileSantiagoChile
- Laboratorio de Función y Reactividad Vascular, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de MedicinaUniversidad de ChileSantiagoChile
| | - Sebastián A. Quezada
- Laboratorio de Bioquímica y Biología Molecular de la Hipoxia, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de MedicinaUniversidad de ChileSantiagoChile
| | - Ismael Hernandez
- Laboratorio de Bioquímica y Biología Molecular de la Hipoxia, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de MedicinaUniversidad de ChileSantiagoChile
| | - Emilia M. Sanhueza
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de MedicinaUniversidad de ChileSantiagoChile
| | - Julian T. Parer
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of California San FranciscoCaliforniaUSA
| | - Dino A. Giussani
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeUK
| | - Aníbal J. Llanos
- International Center for Andean Studies (INCAS)Universidad de ChileSantiagoChile
- Laboratorio de Fisiología y Fisiopatología del Desarrollo, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de MedicinaUniversidad de ChileSantiagoChile
| |
Collapse
|
8
|
Francis BN, Salameh M, Khamisy-Farah R, Farah R. Tetrahydrobiopterin (BH 4 ): Targeting endothelial nitric oxide synthase as a potential therapy for pulmonary hypertension. Cardiovasc Ther 2018; 36. [PMID: 29151278 DOI: 10.1111/1755-5922.12312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/18/2017] [Accepted: 11/11/2017] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Pulmonary Hypertension (PH) is complex disease which is associated with endothelial and cardiac dysfunction. Tetrahydrobiopterin (BH4 ) regulates endothelial nitric oxide synthase (eNOS) to produce nitric oxide rather than superoxide which maintains normal endothelial and cardiac function. This study explores the therapeutic potential of BH4 in experimental PH. METHODS Monocrotaline-induced PH in rats and Hph-1 deficiency in mice were used for animal experiments. Hemodynamic measurements using pressure transducers were conducted for pulmonary and cardiac pressures, and Langendorff apparatus was used for isolated heart experiments; preventive as well as rescue treatment protocols were conducted; tissues were collected for histological and biochemical studies. RESULTS In vivo acute BH4 administration reduced pulmonary artery pressure (PAP) only in the MCT rat. In a Langendorff preparation, BH4 increased right ventricular systolic pressure (RVSP) in right ventricular hypertrophy (RVH) but not in control. In "prevention" therapy, BH4 (10 and 100 mg/kg) attenuated the development of PH in rat MCT model. eNOS protein levels in lung homogenates were maintained and cGMP levels were increased. In "rescue" therapy, BH4 (10 and 100 mg/kg) ameliorated pulmonary vascular muscularization in a dose-dependent manner. RVSP was reduced in RVH and pulmonary vascular muscularization was attenuated. BH4 at 10 mg/kg reduced RV myocyte diameter while BH4 at 100 mg/kg reversed it to control level. BH4 restored normal levels of eNOS protein and in a dose of 100 mg/kg enhanced lung tissue levels of BH4 , cGMP, and NO compared to placebo. CONCLUSION The current study provides scientific evidence for a therapeutic potential of BH4 in PH and invites further investigation.
Collapse
MESH Headings
- Animals
- Antihypertensive Agents/pharmacology
- Arterial Pressure/drug effects
- Biopterins/analogs & derivatives
- Biopterins/pharmacology
- Cyclic GMP/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- GTP Cyclohydrolase/deficiency
- GTP Cyclohydrolase/genetics
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/enzymology
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/prevention & control
- Isolated Heart Preparation
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Monocrotaline
- Myocardial Contraction/drug effects
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/antagonists & inhibitors
- Nitric Oxide Synthase Type III/metabolism
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Time Factors
- Ventricular Function, Right/drug effects
- Ventricular Pressure/drug effects
Collapse
Affiliation(s)
- Bahaa N Francis
- Experimental Medicine and Toxicology, Imperial College London, Hammersmith Hospital, London, UK
- Department of Internal Medicine B, Ziv Medical Center, Safad, Israel
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Maram Salameh
- Pharmacy Department, Carmel Medical Center, Haifa, Israel
| | | | - Raymond Farah
- Department of Internal Medicine B, Ziv Medical Center, Safad, Israel
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| |
Collapse
|
9
|
Joshi S, Kar S, Kavdia M. Computational analysis of interactions of oxidative stress and tetrahydrobiopterin reveals instability in eNOS coupling. Microvasc Res 2017; 114:114-128. [PMID: 28729163 DOI: 10.1016/j.mvr.2017.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 01/30/2023]
Abstract
In cardiovascular and neurovascular diseases, an increase in oxidative stress and endothelial dysfunction has been reported. There is a reduction in tetrahydrobiopterin (BH4), which is a cofactor for the endothelial nitric oxide synthase (eNOS), resulting in eNOS uncoupling. Studies of the enhancement of BH4 availability have reported mixed results for improvement in endothelial dysfunction. Our understanding of the complex interactions of eNOS uncoupling, oxidative stress and BH4 availability is not complete and a quantitative understanding of these interactions is required. In the present study, we developed a computational model for eNOS uncoupling that considers the temporal changes in biopterin ratio in the oxidative stress conditions. Using the model, we studied the effects of cellular oxidative stress (Qsupcell) representing the non-eNOS based oxidative stress sources and BH4 synthesis (QBH4) on eNOS NO production and biopterin ratio (BH4/total biopterins (TBP)). Model results showed that oxidative stress levels from 0.01 to 1nM·s-1 did not affect eNOS NO production and eNOS remained in coupled state. When the Qsupcell increased above 1nM·s-1, the eNOS coupling and NO production transitioned to an oscillatory state. Oxidative stress levels dynamically changed the biopterin ratio. When Qsupcell increased from 1 to 100nM·s-1, the endothelial cell NO production, TBP levels and biopterin ratio reduced significantly from 26.5 to 2nM·s-1, 3.75 to 0.002μM and 0.99 to 0.25, respectively. For an increase in BH4 synthesis, the improvement in NO production rate and BH4 levels were dependent on the extent of cellular oxidative stress. However, a 10-fold increase in QBH4 at higher oxidative stresses did not restore the NO-production rate and the biopterin ratio. Our mechanistic analysis reveals that a combination of enhancing tetrahydrobiopterin level with a reduction in cellular oxidative stress may result in significant improvement in endothelial dysfunction.
Collapse
Affiliation(s)
- Sheetal Joshi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Saptarshi Kar
- Engineering Computational Biology Group, University of Western Australia, Crawley, WA 6009, Australia
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
10
|
Tang H, Vanderpool RR, Wang J, Yuan JXJ. Targeting L-arginine-nitric oxide-cGMP pathway in pulmonary arterial hypertension. Pulm Circ 2017; 7:569-571. [PMID: 28895506 PMCID: PMC5841892 DOI: 10.1177/2045893217728261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Haiyang Tang
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Rebecca R Vanderpool
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jian Wang
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jason X-J Yuan
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
11
|
Fulton DJR, Li X, Bordan Z, Haigh S, Bentley A, Chen F, Barman SA. Reactive Oxygen and Nitrogen Species in the Development of Pulmonary Hypertension. Antioxidants (Basel) 2017; 6:antiox6030054. [PMID: 28684719 PMCID: PMC5618082 DOI: 10.3390/antiox6030054] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/29/2017] [Accepted: 07/01/2017] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease of the lung vasculature that involves the loss of endothelial function together with inappropriate smooth muscle cell growth, inflammation, and fibrosis. These changes underlie a progressive remodeling of blood vessels that alters flow and increases pulmonary blood pressure. Elevated pressures in the pulmonary artery imparts a chronic stress on the right ventricle which undergoes compensatory hypertrophy but eventually fails. How PAH develops remains incompletely understood and evidence for the altered production of reactive oxygen and nitrogen species (ROS, RNS respectively) in the pulmonary circulation has been well documented. There are many different types of ROS and RNS, multiple sources, and collective actions and interactions. This review summarizes past and current knowledge of the sources of ROS and RNS and how they may contribute to the loss of endothelial function and changes in smooth muscle proliferation in the pulmonary circulation.
Collapse
Affiliation(s)
- David J R Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Xueyi Li
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Zsuzsanna Bordan
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Stephen Haigh
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Austin Bentley
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, China.
| | - Scott A Barman
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
12
|
Schreiber C, Eilenberg MS, Panzenboeck A, Winter MP, Bergmeister H, Herzog R, Mascherbauer J, Lang IM, Bonderman D. Combined oral administration of L-arginine and tetrahydrobiopterin in a rat model of pulmonary arterial hypertension. Pulm Circ 2017; 7:89-97. [PMID: 28680568 PMCID: PMC5448548 DOI: 10.1086/689289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/12/2016] [Indexed: 11/26/2022] Open
Abstract
Alterations in the nitric oxide (NO) pathway play a major role in pulmonary arterial hypertension (PAH). L-arginine (LA) and tetrahydrobiopterin (BH4) are main substrates in the production of NO, which mediates pulmonary vasodilation. Administration of either LA or BH4 decrease pulmonary artery pressure (PAP). A combined administration of both may have synergistic effects in the therapy of PAH. In a telemetrically monitored model of unilateral pneumonectomy and monocrotaline-induced PAH, male Sprague-Dawley rats received either LA (300 mg/kg; n = 15), BH4 (20 mg/kg; n = 15), the combination of LA and BH4 (300 mg/kg, 20 mg/kg; n = 15), or vehicle (control group; n = 10) from day 28 after monocrotaline induction. Therapy was orally administered once daily over consecutive 14 days. LA, BH4, or both equally lowered PAP, increased pulmonary vascular elasticity, restored spontaneous locomotoric activity, prevented body weight loss and palliated small vessel disease of severely pulmonary hypertensive rats. BH4 substitution lowered asymmetric dimethylarginine levels sustainably at 60 min after administration and downregulated endothelial NO synthase mRNA expression. No significant survival, macro- and histomorphologic or hemodynamic differences were found between therapy groups at the end of the study period. Administration of LA and BH4 both mediated a decrease of mean PAP, attenuated right ventricular hypertrophy and small vessel disease in monocrotaline-induced pulmonary hypertensive rats, though a combined administration of both substances did not reveal any synergistic therapy effects in our animal model.
Collapse
Affiliation(s)
- C Schreiber
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - M S Eilenberg
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - A Panzenboeck
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - M P Winter
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - H Bergmeister
- Institute of Biomedical Research, Medical University of Vienna, Austria
| | - R Herzog
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | - J Mascherbauer
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - I M Lang
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - D Bonderman
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| |
Collapse
|
13
|
Schreiber C, Eilenberg M, Panzenboeck A, Winter M, Bergmeister H, Herzog R, Mascherbauer J, Lang I, Bonderman D. Combined oral administration of L-arginine and tetrahydrobiopterin in a rat model of pulmonary arterial hypertension. Pulm Circ 2017. [DOI: 10.1177/2045893216677519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- C. Schreiber
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - M.S. Eilenberg
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - A. Panzenboeck
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - M.P. Winter
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - H. Bergmeister
- Institute of Biomedical Research, Medical University of Vienna, Austria
| | - R. Herzog
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | - J. Mascherbauer
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - I.M. Lang
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - D. Bonderman
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| |
Collapse
|
14
|
Dikalova A, Aschner JL, Kaplowitz MR, Summar M, Fike CD. Tetrahydrobiopterin oral therapy recouples eNOS and ameliorates chronic hypoxia-induced pulmonary hypertension in newborn pigs. Am J Physiol Lung Cell Mol Physiol 2016; 311:L743-L753. [PMID: 27542807 PMCID: PMC5142125 DOI: 10.1152/ajplung.00238.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/14/2016] [Indexed: 01/21/2023] Open
Abstract
We previously showed that newborn piglets who develop pulmonary hypertension during exposure to chronic hypoxia have diminished pulmonary vascular nitric oxide (NO) production and evidence of endothelial NO synthase (eNOS) uncoupling (Fike CD, Dikalova A, Kaplowitz MR, Cunningham G, Summar M, Aschner JL. Am J Respir Cell Mol Biol 53: 255-264, 2015). Tetrahydrobiopterin (BH4) is a cofactor that promotes eNOS coupling. Current clinical strategies typically invoke initiating treatment after the diagnosis of pulmonary hypertension, rather than prophylactically. The major purpose of this study was to determine whether starting treatment with an oral BH4 compound, sapropterin dihydrochloride (sapropterin), after the onset of pulmonary hypertension would recouple eNOS in the pulmonary vasculature and ameliorate disease progression in chronically hypoxic piglets. Normoxic (control) and hypoxic piglets were studied. Some hypoxic piglets received oral sapropterin starting on day 3 of hypoxia and continued throughout an additional 7 days of hypoxic exposure. Catheters were placed for hemodynamic measurements, and pulmonary arteries were dissected to assess eNOS dimer-to-monomer ratios (a measure of eNOS coupling), NO production, and superoxide (O2·-) generation. Although higher than in normoxic controls, pulmonary vascular resistance was lower in sapropterin-treated hypoxic piglets than in untreated hypoxic piglets. Consistent with eNOS recoupling, eNOS dimer-to-monomer ratios and NO production were greater and O2·- generation was less in pulmonary arteries from sapropterin-treated than untreated hypoxic animals. When started after disease onset, oral sapropterin treatment inhibits chronic hypoxia-induced pulmonary hypertension at least in part by recoupling eNOS in the pulmonary vasculature of newborn piglets. Rescue treatment with sapropterin may be an effective strategy to inhibit further development of pulmonary hypertension in newborn infants suffering from chronic cardiopulmonary conditions associated with episodes of prolonged hypoxia.
Collapse
Affiliation(s)
- Anna Dikalova
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Judy L Aschner
- Department of Pediatrics, Albert Einstein College of Medicine and the Children's Hospital at Montefiore, New York, New York
| | - Mark R Kaplowitz
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pediatrics, the University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Marshall Summar
- Division of Genetics and Metabolism, Children's National Medical Center, Washington, District of Columbia
| | - Candice D Fike
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pediatrics, the University of Utah School of Medicine, Salt Lake City, Utah; and
| |
Collapse
|
15
|
Chen YJ, Wang L, Zhou GY, Yu XL, Zhang YH, Hu N, Li QQ, Chen C, Qing C, Liu YT, Yang WM. Scutellarin attenuates endothelium-dependent aasodilation impairment induced by hypoxia reoxygenation, through regulating the PKG signaling pathway in rat coronary artery. Chin J Nat Med 2016; 13:264-73. [PMID: 25908623 DOI: 10.1016/s1875-5364(15)30013-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Indexed: 11/19/2022]
Abstract
Scutellarin (SCU), a flavonoid from a traditional Chinese medicinal plant. Our previous study has demonstrated that SCU relaxes mouse aortic arteries mainly in an endothelium-depend-ent manner. In the present study, we investigated the vasoprotective effects of SCU against HR-induced endothelial dysfunction (ED) in isolated rat CA and the possible mechanisms involving cyclic guanosine monophosphate (cGMP) dependent protein kinase (PKG). The isolated endothelium-intact and endothelium-denuded rat CA rings were treated with HR injury. Evaluation of endothelium-dependent and -independent vasodilation relaxation of the CA rings were performed using wire myography and the protein expressions were assayed by Western blotting. SCU (10-1 000 μmol·L(-1)) could relax the endothelium-intact CA rings but not endothelium-denuded ones. In the intact CA rings, the PKG inhibitor, Rp-8-Br-cGMPS (PKGI-rp, 4 μmol·L(-1)), significantly blocked SCU (10-1 000 μmol·L(-1))-induced relaxation. The NO synthase (NOS) inhibitor, NO-nitro-L-arginine methylester (L-NAME, 100 μmol·L(-1)), did not significantly change the effects of SCU (10-1 000 μmol·L(-1)). HR treatment significantly impaired ACh-induced relaxation, which was reversed by pre-incubation with SCU (500 μmol·L(-1)), while HR treatment did not altered NTG-induced vasodilation. PKGI-rp (4 μmol·L(-1)) blocked the protective effects of SCU in HR-treated CA rings. Additionally, HR treatment reduced phosphorylated vasodilator-stimulated phosphoprotein (p-VASP, phosphorylated product of PKG), which was reversed by SCU pre-incubation, suggesting that SCU activated PKG phosphorylation against HR injury. SCU induces CA vasodilation in an endothelium-dependent manner to and repairs HR-induced impairment via activation of PKG signaling pathway.
Collapse
Affiliation(s)
- Ya-Juan Chen
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Lei Wang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Guang-Yu Zhou
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Xian-Lun Yu
- Zhaotong Institute of Tianma, Zhaotong 657000, China
| | - Yong-Hui Zhang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Na Hu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Qing-Qing Li
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Chen Chen
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Chen Qing
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Ying-Ting Liu
- Department of Periodontology and Implant Dentistry, The First People's Hospital of Yun-Nan Province, Kunhua Hospital Affiliated to Kunming University of Science and Technology, Kunming 650032, China.
| | - Wei-Min Yang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
16
|
Chalupsky K, Kračun D, Kanchev I, Bertram K, Görlach A. Folic Acid Promotes Recycling of Tetrahydrobiopterin and Protects Against Hypoxia-Induced Pulmonary Hypertension by Recoupling Endothelial Nitric Oxide Synthase. Antioxid Redox Signal 2015; 23:1076-91. [PMID: 26414244 PMCID: PMC4657514 DOI: 10.1089/ars.2015.6329] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 09/21/2015] [Accepted: 09/21/2015] [Indexed: 01/29/2023]
Abstract
AIMS Nitric oxide (NO) derived from endothelial NO synthase (eNOS) has been implicated in the adaptive response to hypoxia. An imbalance between 5,6,7,8-tetrahydrobiopterin (BH4) and 7,8-dihydrobiopterin (BH2) can result in eNOS uncoupling and the generation of superoxide instead of NO. Dihydrofolate reductase (DHFR) can recycle BH2 to BH4, leading to eNOS recoupling. However, the role of DHFR and eNOS recoupling in the response to hypoxia is not well understood. We hypothesized that increasing the capacity to recycle BH4 from BH2 would improve NO bioavailability as well as pulmonary vascular remodeling (PVR) and right ventricular hypertrophy (RVH) as indicators of pulmonary hypertension (PH) under hypoxic conditions. RESULTS In human pulmonary artery endothelial cells and murine pulmonary arteries exposed to hypoxia, eNOS was uncoupled as indicated by reduced superoxide production in the presence of the nitric oxide synthase inhibitor, L-(G)-nitro-L-arginine methyl ester (L-NAME). Concomitantly, NO levels, BH4 availability, and expression of DHFR were diminished under hypoxia. Application of folic acid (FA) restored DHFR levels, NO bioavailability, and BH4 levels under hypoxia. Importantly, FA prevented the development of hypoxia-induced PVR, right ventricular pressure increase, and RVH. INNOVATION FA-induced upregulation of DHFR recouples eNOS under hypoxia by improving BH4 recycling, thus preventing hypoxia-induced PH. CONCLUSION FA might serve as a novel therapeutic option combating PH.
Collapse
Affiliation(s)
- Karel Chalupsky
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Damir Kračun
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Ivan Kanchev
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Katharina Bertram
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
17
|
Sightings edited by Erik Swenson and Peter Bärtsch. High Alt Med Biol 2015. [DOI: 10.1089/ham.2015.29000.stg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|