1
|
Balistrieri A, Makino A, Yuan JXJ. Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca 2+ signaling. Physiol Rev 2023; 103:1827-1897. [PMID: 36422993 PMCID: PMC10110735 DOI: 10.1152/physrev.00030.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca2+ signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- Harvard University, Cambridge, Massachusetts
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
2
|
Mechanism of Hypoxia-Mediated Smooth Muscle Cell Proliferation Leading to Vascular Remodeling. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3959845. [PMID: 36593773 PMCID: PMC9805398 DOI: 10.1155/2022/3959845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 12/25/2022]
Abstract
Vascular remodeling refers to changes in the size, contraction, distribution, and flow rate of blood vessels and even changes in vascular function. Vascular remodeling can cause cardiovascular and cerebrovascular diseases. It can also lead to other systemic diseases, such as pulmonary hypertension, pulmonary atherosclerosis, chronic obstructive pulmonary disease, stroke, and ascites of broilers. Hypoxia is one of the main causes of vascular remodeling. Prolonged hypoxia or intermittent hypoxia can lead to loss of lung ventilation, causing respiratory depression, irregular respiratory rhythms, and central respiratory failure. Animals that are unable to adapt to the highland environment are also prone to sustained constriction of the small pulmonary arteries, increased resistance to pulmonary circulation, and impaired blood circulation, leading to pulmonary hypertension and right heart failure if they live in a highland environment for long periods of time. However, limited studies have been found on the relationship between hypoxia and vascular remodeling. Therefore, this review will explore the relationship between hypoxia and vascular remodeling from the aspects of endoplasmic reticulum stress, mitochondrial dysfunction, abnormal calcium channel, disordered cellular metabolism, abnormal expression of miRNA, and other factors. This will help to understand the detailed mechanism of hypoxia-mediated smooth muscle cell proliferation and vascular remodeling for the better treatment and management of diseases due to vascular remodeling.
Collapse
|
3
|
Adams D, Choi CS, Sayner SL. Pulmonary endothelial cells from different vascular segments exhibit unique recovery from acidification and Na+/H+ exchanger isoform expression. PLoS One 2022; 17:e0266890. [PMID: 35503765 PMCID: PMC9064095 DOI: 10.1371/journal.pone.0266890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/29/2022] [Indexed: 12/29/2022] Open
Abstract
Sodium-hydrogen exchangers (NHEs) tightly regulate intracellular pH (pHi), proliferation, migration and cell volume. Heterogeneity exists between pulmonary endothelial cells derived from different vascular segments, yet the activity and isoform expression of NHEs between these vascular segments has not been fully examined. Utilizing the ammonium-prepulse and recovery from acidification technique in a buffer lacking bicarbonate, pulmonary microvascular and pulmonary artery endothelial cells exhibited unique recovery rates from the acid load dependent upon the concentration of the sodium transport inhibitor, amiloride; further, pulmonary artery endothelial cells required a higher dose of amiloride to inhibit sodium-dependent acid recovery compared to pulmonary microvascular endothelial cells, suggesting a unique complement of NHEs between the different endothelial cell types. While NHE1 has been described in pulmonary endothelial cells, all NHE isoforms have not been accounted for. To address NHE expression in endothelial cells, qPCR was performed. Using a two-gene normalization approach, Sdha and Ywhag were identified for qPCR normalization and analysis of NHE isoforms between pulmonary microvascular and pulmonary artery endothelial cells. NHE1 and NHE8 mRNA were equally expressed between the two cell types, but NHE5 expression was significantly higher in pulmonary microvascular versus pulmonary artery endothelial cells, which was confirmed at the protein level. Thus, pulmonary microvascular and pulmonary artery endothelial cells exhibit unique NHE isoform expression and have a unique response to acid load revealed through recovery from cellular acidification.
Collapse
Affiliation(s)
- Dylan Adams
- Department of Physiology and Cell Biology, University South Alabama, College of Medicine, Mobile, Alabama, United States of America
| | - Chung-Sik Choi
- Department of Physiology and Cell Biology, University South Alabama, College of Medicine, Mobile, Alabama, United States of America
| | - Sarah L. Sayner
- Department of Physiology and Cell Biology, University South Alabama, College of Medicine, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, College of Medicine, Mobile, Alabama, United States of America
| |
Collapse
|
4
|
Role of Ion Channel Remodeling in Endothelial Dysfunction Induced by Pulmonary Arterial Hypertension. Biomolecules 2022; 12:biom12040484. [PMID: 35454073 PMCID: PMC9031742 DOI: 10.3390/biom12040484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial dysfunction is a key player in advancing vascular pathology in pulmonary arterial hypertension (PAH), a disease essentially characterized by intense remodeling of the pulmonary vasculature, vasoconstriction, endothelial dysfunction, inflammation, oxidative stress, and thrombosis in situ. These vascular features culminate in an increase in pulmonary vascular resistance, subsequent right heart failure, and premature death. Over the past years, there has been a great development in our understanding of pulmonary endothelial biology related to the genetic and molecular mechanisms that modulate the endothelial response to direct or indirect injury and how their dysregulation can promote PAH pathogenesis. Ion channels are key regulators of vasoconstriction and proliferative/apoptotic phenotypes; however, they are poorly studied at the endothelial level. The current review will describe and categorize different expression, functions, regulation, and remodeling of endothelial ion channels (K+, Ca2+, Na+, and Cl− channels) in PAH. We will focus on the potential pathogenic role of ion channel deregulation in the onset and progression of endothelial dysfunction during the development of PAH and its potential therapeutic role.
Collapse
|
5
|
Hypotension in hereditary cardiomyopathy. Pflugers Arch 2022; 474:517-527. [PMID: 35141778 DOI: 10.1007/s00424-022-02669-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 12/25/2022]
Abstract
It is well accepted that hypertension may lead to the development of heart failure (HF). However, little is known about the development of hypotension that may contribute to the onset of hereditary cardiomyopathy (HCM), thus promoting heart failure and early death. The purpose of this study is to verify whether a decrease in blood pressure takes place during different phases of HCM (asymptomatic, necrosis, hypertrophy, and heart failure). Using the well-known animal model, the UM-X7.1 hamster strain of HCM (HCMH), our results showed the absence of a change in mean arterial pressure (MAP) during the asymptomatic phase preceding the development of necrosis in HCMHs when compared to age-matched normal hamster (NH). However, there was a progressive decrease in MAP that reached its lowest level during the heart failure phase. The MAP during the development of the necrosis phase of HCM was accompanied by a significant increase in the level of the sodium-hydrogen exchanger, NHE1. Treatments with the potent NHE1 inhibitor, EMD 87580 (rimeporide), did not affect MAP of NH. However, treatments with EMD 87580 during the three phases of the development of HCM significantly reversed the hypotension associated with HCM.Our results showed that the development of HCM is associated with hypotension. These results suggest that a decrease in blood pressure could be a biomarker signal for HCM leading to HF and early death. Since the blockade of NHE1 significantly but partially prevented the reduction in MAP, this suggests that other mechanisms can contribute to the development of hypotension in HCM.
Collapse
|
6
|
Liu G, Fu D, Tian H, Dai A. The mechanism of ions in pulmonary hypertension. Pulm Circ 2021; 11:2045894020987948. [PMID: 33614016 PMCID: PMC7869166 DOI: 10.1177/2045894020987948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary hypertension(PH)is a kind of hemodynamic and pathophysiological state, in which the pulmonary artery pressure (PAP) rises above a certain threshold. The main pathological manifestation is pulmonary vasoconstriction and remodelling progressively. More and more studies have found that ions play a major role in the pathogenesis of PH. Many vasoactive substances, inflammatory mediators, transcription-inducing factors, apoptosis mediators, redox substances and translation modifiers can control the concentration of ions inside and outside the cell by regulating the activity of ion channels, which can regulate vascular contraction, cell proliferation, migration, apoptosis, inflammation and other functions. We all know that there are no effective drugs to treat PH. Ions are involved in the occurrence and development of PH, so it is necessary to clarify the mechanism of ions in PH as a therapeutic target for PH. The main ions involved in PH are calcium ion (Ca2+), potassium ion (K+), sodium ion (Na+) and chloride ion (Cl-). Here, we mainly discuss the distribution of these ions and their channels in pulmonary arteries and their role in the pathogenesis of PH.
Collapse
Affiliation(s)
- Guogu Liu
- Department of Graduate School, University of South China,
Hengyang, China
- Department of Respiratory Medicine, Hunan Provincial People’s
Hospital, Changsha, China
| | - Daiyan Fu
- Department of Respiratory Medicine, Hunan Provincial People’s
Hospital, Changsha, China
| | - Heshen Tian
- Department of Graduate School, University of South China,
Hengyang, China
- Department of Respiratory Medicine, Hunan Provincial People’s
Hospital, Changsha, China
| | - Aiguo Dai
- Department of Respiratory Diseases, Hunan University of Chinese
Medicine, Changsha, China
| |
Collapse
|
7
|
Pal R, Bhadada SK. Reply to comment on "Should anti-diabetic medications be reconsidered amid COVID-19 pandemic?". Diabetes Res Clin Pract 2020; 164:108192. [PMID: 32387329 PMCID: PMC7202840 DOI: 10.1016/j.diabres.2020.108192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Rimesh Pal
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Sanjay K Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India.
| |
Collapse
|
8
|
Pedersen SF, Counillon L. The SLC9A-C Mammalian Na +/H + Exchanger Family: Molecules, Mechanisms, and Physiology. Physiol Rev 2019; 99:2015-2113. [PMID: 31507243 DOI: 10.1152/physrev.00028.2018] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers play pivotal roles in the control of cell and tissue pH by mediating the electroneutral exchange of Na+ and H+ across cellular membranes. They belong to an ancient family of highly evolutionarily conserved proteins, and they play essential physiological roles in all phyla. In this review, we focus on the mammalian Na+/H+ exchangers (NHEs), the solute carrier (SLC) 9 family. This family of electroneutral transporters constitutes three branches: SLC9A, -B, and -C. Within these, each isoform exhibits distinct tissue expression profiles, regulation, and physiological roles. Some of these transporters are highly studied, with hundreds of original articles, and some are still only rudimentarily understood. In this review, we present and discuss the pioneering original work as well as the current state-of-the-art research on mammalian NHEs. We aim to provide the reader with a comprehensive view of core knowledge and recent insights into each family member, from gene organization over protein structure and regulation to physiological and pathophysiological roles. Particular attention is given to the integrated physiology of NHEs in the main organ systems. We provide several novel analyses and useful overviews, and we pinpoint main remaining enigmas, which we hope will inspire novel research on these highly versatile proteins.
Collapse
Affiliation(s)
- S F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - L Counillon
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
9
|
Huetsch JC, Walker J, Undem C, Lade J, Yun X, Baksh S, Jiang H, Lai N, Shimoda LA. Rho kinase and Na + /H + exchanger mediate endothelin-1-induced pulmonary arterial smooth muscle cell proliferation and migration. Physiol Rep 2019; 6:e13698. [PMID: 29756391 PMCID: PMC5949284 DOI: 10.14814/phy2.13698] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/05/2018] [Accepted: 04/07/2018] [Indexed: 01/04/2023] Open
Abstract
Excessive production of endothelin‐1 (ET‐1) has been observed in almost all forms of pulmonary hypertension. ET‐1, a highly potent vasoconstrictor, can also potentiate pulmonary arterial smooth muscle cell (PASMC) growth and migration, both of which contribute to the vascular remodeling that occurs during the development of pulmonary hypertension. Increasing evidence indicates that alkalinization of intracellular pH (pHi), typically due to activation of Na+/H+ exchange (NHE), is associated with enhanced PASMC proliferation and migration. We recently demonstrated that application of exogenous ET‐1 increased NHE activity in murine PASMCs via a mechanism requiring Rho kinase (ROCK). However, whether ROCK and/or increased NHE activity mediate ET‐1‐induced migration and proliferation in PASMCs remains unknown. In this study, we used fluorescent microscopy in transiently cultured PASMCs from distal pulmonary arteries of the rat and the pH‐sensitive dye, BCECF‐AM, to measure changes in resting pHi and NHE activity induced by exposure to exogenous ET‐1 (10−8 mol/L) for 24 h. Cell migration and proliferation in response to ET‐1 were also measured using Transwell assays and BrdU incorporation, respectively. We found that application of exogenous ET‐1 had no effect on NHE1 expression, but increased pHi, NHE activity, migration, and proliferation in rat PASMCs. Pharmacologic inhibition of NHE or ROCK prevented the ET‐1‐induced changes in cell function (proliferation and migration). Our results indicate that ET‐1 modulates PASMC migration and proliferation via changes in pHi homeostasis through a pathway involving ROCK.
Collapse
Affiliation(s)
- John C Huetsch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Jasmine Walker
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Clark Undem
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Julie Lade
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Xin Yun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Syeda Baksh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Haiyang Jiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Ning Lai
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
10
|
Tang H, Zheng Q, Wang J. Pathogenic role of ion channels in pulmonary arterial hypertension. Exp Physiol 2017; 102:1075-1077. [PMID: 28856806 DOI: 10.1113/ep086426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Mansoori S, Moosavi SMS, Ketabchi F. The Interaction between Trolox and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic Acid on Hypoxic Pulmonary Vasoconstriction in the Isolated Rabbit Lung. IRANIAN JOURNAL OF MEDICAL SCIENCES 2017; 42:284-291. [PMID: 28533577 PMCID: PMC5429497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND The mechanism of hypoxic pulmonary vasoconstriction (HPV) is still debatable. It has been proposed that reactive oxygen species (ROS) might be involved in HPV. However, there is no special transporter for superoxide anion in the cell membrane and it may release from the cells via anion exchanger. Therefore, the aim of this study was to investigate the interaction of ROS and anion exchanger in acute HPV. METHODS The present study was performed in the isolated rabbit lung. After preparation, the lungs were divided into four hypoxic groups of control, Trolox (antioxidant)-treated, 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS, anion exchanger inhibitor)-treated, and Trolox+DIDS-treated. Pulmonary artery pressure, left atrial pressure, and lung weight were continuously registered and PVR was then calculated. PO2, PCO2, HCO3-, pH, and NO metabolites of the perfusate were measured during steady-state and at the end of experiments (30 minutes). All data were compared with ANOVA and t-test and significance was considered when P<0.05. RESULTS Ventilation of the lungs with hypoxic gas induced HPV in the control group. DIDS did not have a further effect on HPV compared with the control group. The combination of Trolox and DIDS decreased HPV rather than Trolox per se at 5 minutes. Furthermore, HPV was abolished in both the Trolox and Trolox+DIDS groups at 30 minutes. Concentrations of NO metabolites in the Trolox+DIDS group were more than other groups. CONCLUSION The present study indicates a possible interaction between ROS and anion exchanger in acute HPV. It also suggests the modulatory effect of NO at above condition.
Collapse
Affiliation(s)
- Somayh Mansoori
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Farzaneh Ketabchi
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran,Correspondence: Farzaneh Ketabchi, PhD; Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran Tel\Fax: +98 71 32302026
| |
Collapse
|
12
|
Human rotavirus strain Wa downregulates NHE1 and NHE6 expressions in rotavirus-infected Caco-2 cells. Virus Genes 2017; 53:367-376. [PMID: 28289928 DOI: 10.1007/s11262-017-1444-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/04/2017] [Indexed: 12/26/2022]
Abstract
Rotavirus (RV) is the most common cause of severe gastroenteritis and fatal dehydration in human infants and neonates of different species. However, the pathogenesis of rotavirus-induced diarrhea is poorly understood. Secretory diarrhea caused by rotavirus may lead to a combination of excessive secretion of fluid and electrolytes into the intestinal lumen. Fluid absorption in the small intestine is driven by Na+-coupled transport mechanisms at the luminal membrane, including Na+/H+ exchanger (NHE). Here, we performed qRT-PCR to detect the transcription of NHEs. Western blotting was employed for protein detection. Furthermore, immunocytochemistry was used to validate the NHE's protein expression. Finally, intracellular Ca2+ concentration was detected by confocal laser scanning microscopy. The results demonstrated that the NHE6 mRNA and protein expressed in the human colon adenocarcinoma cell line (Caco-2). Furthermore, RV-Wa induced decreased expression of the NHE1 and NHE6 in Caco-2 cell in a time-dependent manner. In addition, intracellular Ca2+ concentration in RV-Wa-infected Caco-2 cells was higher than that in the mock-infected cells. Furthermore, RV-Wa also can downregulate the expression of calmodulin (CaM) and calmodulin kinase II (CaMKII) in Caco-2 cells. These findings provides important insights into the mechanisms of rotavirus-induced diarrhea. Further studies on the underlying pathophysiological mechanisms that downregulate NHEs in RV-induced diarrhea are required.
Collapse
|
13
|
Yan L, Gao H, Li C, Han X, Qi X. Effect of miR-23a on anoxia-induced phenotypic transformation of smooth muscle cells of rat pulmonary arteries and regulatory mechanism. Oncol Lett 2016; 13:89-98. [PMID: 28123527 PMCID: PMC5245139 DOI: 10.3892/ol.2016.5440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/15/2016] [Indexed: 12/21/2022] Open
Abstract
We investigated the possible implication of miR-23a in anoxia-induced phenotypic transformation of the pulmonary arterial smooth muscle and studied the mechanism of upregulation of miR-23a expression in anoxia. The collagenase digestion method was used for preparing rat primary pulmonary artery smooth muscle cell (PASMC) culture. SM-MHC, SM-α-actin, calponin-1 and SM22α protein expression levels were evaluated using western blot analysis after the ASMCs were subjected to anoxia treatment (3% O2). Transfection with miR-23a mimics were conducted when PASMCs were under normoxia and anoxia conditions. EdU staining was used to detect the proliferative activity of PASMCs. Cells were transfected with HIF-1α specific siRNA under anoxia condition. RT-qPCR was used to detect miR-23a expression in PASMCs. Chromatin immunoprecipitation method was employed to verify the binding sites of HIF-1α. The dual-luciferase reporter gene was used to study the role of HIF-1 and its binding sites. Rat hypoxic pulmonary hypertension models were established to study the expression of miR-23a using RT-qPCR method and to verify the expression of miR-23a in the arteriole of the rat pulmonary. Our results showed that compared with normoxia condition, under anoxia condition (3% O2), the expression levels of the contractile phenotype marker proteins decreased significantly after 24 and 48 h. The positive rate of the EdU staining increased significantly and the expression of miR-23a increased. Transfection with miR-23a-mimic downregulated the expression of contractile marker proteins and improved the positive rate of the EdU staining under normoxia. Anoxia and transfection with HIF-1α enhanced the activity of the wild-type Luc-miR-23a-1 (WT) reporter gene. We concluded that miR-23a participated in the anoxia-induced phenotypic transformation of PASMCs. Increased expression of miR-23a under anoxia may primarily be due to miR-23a-1 and miR-23a-3 upregulation. The anoxia-induced upregulation of miR-23a was regulated by HIF-1.
Collapse
Affiliation(s)
- Li Yan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China; Department of Respiratory Medicine, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Haixiang Gao
- Department of Respiratory Medicine, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Chunzhi Li
- Department of Infectious Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Xiaowen Han
- Department of Respiratory Medicine, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Xiaoyong Qi
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China; Department of Heart Disease Center, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
14
|
Walker J, Undem C, Yun X, Lade J, Jiang H, Shimoda LA. Role of Rho kinase and Na+/H+ exchange in hypoxia-induced pulmonary arterial smooth muscle cell proliferation and migration. Physiol Rep 2016; 4:4/6/e12702. [PMID: 27009277 PMCID: PMC4814889 DOI: 10.14814/phy2.12702] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/17/2016] [Indexed: 12/21/2022] Open
Abstract
Abnormal proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) are hallmark characteristics of vascular remodeling in pulmonary hypertension induced by chronic hypoxia. In this study, we investigated the role of the Na+/H+ exchanger (NHE) and alterations in intracellular pH (pHi) homeostasis in meditating increased proliferation and migration in PASMCs isolated from resistance‐sized pulmonary arteries from chronically hypoxic rats or from normoxic rats that were exposed to hypoxia ex vivo (1% or 4% O2, 24–96 h). We found that PASMCs exposed to either in vivo or ex vivo hypoxia exhibited greater proliferative and migratory capacity, elevated pHi, and enhanced NHE activity. The NHE inhibitor, ethyl isopropyl amiloride (EIPA), normalized pHi in hypoxic PASMCs and reduced migration by 73% and 45% in cells exposed to in vivo and in vitro hypoxia, respectively. Similarly, EIPA reduced proliferation by 97% and 78% in cells exposed to in vivo and in vitro hypoxia, respectively. We previously demonstrated that NHE isoform 1 (NHE1) is the predominant isoform expressed in PASMCs. The development of hypoxia‐induced pulmonary hypertension and alterations in PASMC pHi homeostasis were prevented in mice deficient for NHE1. We found that short‐term (24 h) ex vivo hypoxic exposure did not alter the expression of NHE1, so we tested the role of Rho kinase (ROCK) as a possible means of increasing NHE activity. In the presence of the ROCK inhibitor, Y‐27632, we found that pHi and NHE activity were normalized and migration and proliferation were reduced in PASMCs exposed to either in vivo (by 68% for migration and 22% for proliferation) or ex vivo (by 43% for migration and 17% for proliferation) hypoxia. From these results, we conclude that during hypoxia, activation of ROCK enhances NHE activity and promotes PASMC migration and proliferation.
Collapse
Affiliation(s)
- Jasmine Walker
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Clark Undem
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Xin Yun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Julie Lade
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Haiyang Jiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
15
|
Huetsch JC, Jiang H, Larrain C, Shimoda LA. The Na+/H+ exchanger contributes to increased smooth muscle proliferation and migration in a rat model of pulmonary arterial hypertension. Physiol Rep 2016; 4:4/5/e12729. [PMID: 26997630 PMCID: PMC4823603 DOI: 10.14814/phy2.12729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Increased muscularity of small pulmonary vessels, involving enhanced proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), is a key component of the vascular remodeling underlying the development of pulmonary hypertension (PH). Stimuli such as growth factors and hypoxia induce PASMC alkalinization, proliferation, and migration through upregulation of the Na+/H+ exchanger (NHE), inhibition of which prevents the development of hypoxia‐induced vascular remodeling and PH. We wanted to explore whether NHE was also necessary for pathologic PASMC proliferation and migration in a model of pulmonary arterial hypertension (PAH), a severe form of PH not associated with persistent hypoxia. PASMCs were isolated from rats exposed to SU5416‐hypoxia (SuHx) followed by return to normoxia and from vehicle controls. We measured resting intracellular pH (pHi) and NHE activity using the pH‐sensitive fluorescent dye BCECF‐AM. PASMC proliferation and migration were assessed using BrdU incorporation and transwell filters, respectively. NHE activity was increased in SuHx PASMCs, although resting pHi was unchanged. SuHx PASMCs also exhibited increased proliferation and migration relative to controls, which was attenuated in the setting of pharmacologic inhibition of NHE. Our findings suggest that increased NHE activity contributes to pathologic PASMC function in the SuHx model of PAH, although this effect does not appear to be mediated by global changes in pHi homeostasis.
Collapse
Affiliation(s)
- John C Huetsch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Haiyang Jiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Carolina Larrain
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
16
|
Boedtkjer E, Bentzon JF, Dam VS, Aalkjaer C. Na+, HCO3--cotransporter NBCn1 increases pHi gradients, filopodia, and migration of smooth muscle cells and promotes arterial remodelling. Cardiovasc Res 2016; 111:227-39. [PMID: 27076468 DOI: 10.1093/cvr/cvw079] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 03/17/2016] [Indexed: 12/19/2022] Open
Abstract
AIMS Arterial remodelling can cause luminal narrowing and obstruct blood flow. We tested the hypothesis that cellular acid-base transport facilitates proliferation and migration of vascular smooth muscle cells (VSMCs) and enhances remodelling of conduit arteries. METHODS AND RESULTS [Formula: see text]-cotransport via NBCn1 (Slc4a7) mediates net acid extrusion and controls steady-state intracellular pH (pHi) in VSMCs of mouse carotid arteries and primary aortic explants. Carotid arteries undergo hypertrophic inward remodelling in response to partial or complete ligation in vivo, but the increase in media area and thickness and reduction in lumen diameter are attenuated in arteries from NBCn1 knock-out compared with wild-type mice. With [Formula: see text] present, gradients for pHi (∼0.2 units magnitude) exist along the axis of VSMC migration in primary explants from wild-type but not NBCn1 knock-out mice. Knock-out or pharmacological inhibition of NBCn1 also reduces filopodia and lowers initial rates of VSMC migration after scratch-wound infliction. Interventions to reduce H(+)-buffer mobility (omission of [Formula: see text] or inhibition of carbonic anhydrases) re-establish axial pHi gradients, filopodia, and migration rates in explants from NBCn1 knock-out mice. The omission of [Formula: see text] also lowers global pHi and inhibits proliferation in primary explants. CONCLUSION Under physiological conditions (i.e. with [Formula: see text] present), NBCn1-mediated [Formula: see text] uptake raises VSMC pHi and promotes filopodia, VSMC migration, and hypertrophic inward remodelling. We propose that axial pHi gradients enhance VSMC migration whereas global acidification inhibits VSMC proliferation and media hypertrophy after carotid artery ligation. These findings support a key role of acid-base transport, particularly via NBCn1, for development of occlusive artery disease.
Collapse
Affiliation(s)
- Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Building 1170, DK-8000 Aarhus C, Denmark
| | - Jacob F Bentzon
- Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Vibeke S Dam
- Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Building 1170, DK-8000 Aarhus C, Denmark
| | - Christian Aalkjaer
- Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Building 1170, DK-8000 Aarhus C, Denmark
| |
Collapse
|