1
|
Abreu JAFH, Astúa D. Ontogeny of the masticatory muscles in the opossum Didelphis albiventris (Marsupialia, Didelphimorphia, Didelphidae). J Anat 2024; 245:625-642. [PMID: 38994851 PMCID: PMC11424820 DOI: 10.1111/joa.14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/27/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
Opossums (marsupials of the Didelphidae family) retain a generalized masticatory apparatus and tribosphenic molars, often used as models to understand the evolution of mastication in early therian mammals. Like all marsupials, their growth goes through a stage when pups complete their development while permanently attached to the mother's teats before weaning and starting feeding on their own. Yet, while the masticatory muscles of adults are known, as is the ontogeny of the cranium and mandible, the ontogenetic changes in the masticatory muscles remain unknown. Here we describe for the first time the changes in the masticatory muscles observed in lactating pups, and weaned juveniles, subadults, and adults in the White-eared opossum, Didelphis albiventris, through dissection of 25 specimens and quantification of relative muscle masses, lines of actions and mechanical advantages whenever possible. We also assessed the scaling patterns of muscle masses and mechanical advantages through ontogeny. The main changes, as expected, were found between suckling and weaned specimens, although some changes still occurred from juveniles to adults. The adult adductor musculature is similar to the other Didelphis species already known, with a dominant m. temporalis that originates on the lateral wall of the skull, up to the sagittal and nuchal crests, and fills the zygomatic arch when inserting into the lateral and medial surfaces of the coronoid process, respectively through the pars superficialis and pars profunda. The m. masseter is also subdivided in superficial and deep bundles which originate posteriorly in the maxilla and zygomatic arch, and insert into the angular process and masseteric fossa in the mandible. The m. pterygoideus medialis originates from the palatine, the pterygoid bone and the alisphenoid, and it inserts on the angular process medially. Suckling pups showed muscles with more restricted attachments, reduced muscle lines of action, and less diversity in the fiber orientation. The absence of the postorbital constriction also resulted in a distinct morphology of the m. temporalis pars profunda, through two bundles, one anterior and one posterior, which insert more inferiorly into the mandible. These major changes can be related to the onset of mastication and to size-related changes in growing weaned age classes. In general, all adductor muscles grew with positive allometry, and increased their fixation areas through, in part, the development of specific regions of the cranium and mandible. Their lines of action also increase and diversify along ontogeny. These changes can be related to the functional requirements for fixation during lactation, which shift to adduction and mastication movements after weaning.
Collapse
Affiliation(s)
- Juann A F H Abreu
- Laboratório de Mastozoologia, Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Diego Astúa
- Laboratório de Mastozoologia, Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
2
|
Law CJ, Linden TJ, Flynn JJ. Skull evolution and lineage diversification in endemic Malagasy carnivorans. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240538. [PMID: 39445090 PMCID: PMC11496717 DOI: 10.1098/rsos.240538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/01/2024] [Accepted: 09/08/2024] [Indexed: 10/25/2024]
Abstract
Madagascar is one of the world's foremost biodiversity hotspots with more than 90% of its species endemic to the island. Malagasy carnivorans are one of only four extant terrestrial mammalian clades endemic to Madagascar. Although there are only eight extant species, these carnivorans exhibit remarkable phenotypic and ecological diversity that is often hypothesized to have diversified through an adaptive radiation. Here, we investigated the evolution of skull diversity in Malagasy carnivorans and tested if they exhibited characteristics of convergence and an adaptive radiation. We found that their skull disparity exceeds that of any other feliform family, as their skulls vary widely and strikingly capture a large amount of the morphological variation found across all feliforms. We also found evidence of shared adaptive zones in cranial shape between euplerid subclades and felids, herpestids and viverrids. Lastly, contrary to predictions of adaptive radiation, we found that Malagasy carnivorans do not exhibit rapid lineage diversification and only marginally faster rates of mandibular shape evolution and to a lesser extent cranial shape evolution, compared to other feliforms. These results reveal that exceptional diversification rates are not necessary to generate the striking phenotypic diversity that evolved in carnivorans after their dispersal to and isolation on Madagascar.
Collapse
Affiliation(s)
- Chris J. Law
- Burke Museum and Department of Biology, University of Washington, Seattle, WA, USA
- Division of Paleontology, American Museum of Natural History, New York, NY, USA
| | - Tate J. Linden
- Burke Museum and Department of Biology, University of Washington, Seattle, WA, USA
| | - John J. Flynn
- Division of Paleontology, American Museum of Natural History, New York, NY, USA
| |
Collapse
|
3
|
Law CJ, Tinker MT, Fujii JA, Nicholson T, Staedler M, Tomoleoni JA, Young C, Mehta RS. Tool use increases mechanical foraging success and tooth health in southern sea otters ( Enhydra lutris nereis). Science 2024; 384:798-802. [PMID: 38753790 DOI: 10.1126/science.adj6608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 04/01/2024] [Indexed: 05/18/2024]
Abstract
Although tool use may enhance resource utilization, its fitness benefits are difficult to measure. By examining longitudinal data from 196 radio-tagged southern sea otters (Enhydra lutris nereis), we found that tool-using individuals, particularly females, gained access to larger and/or harder-shelled prey. These mechanical advantages translated to reduced tooth damage during food processing. We also found that tool use diminishes trade-offs between access to different prey, tooth condition, and energy intake, all of which are dependent on the relative prey availability in the environment. Tool use allowed individuals to maintain energetic requirements through the processing of alternative prey that are typically inaccessible with biting alone, suggesting that this behavior is a necessity for the survival of some otters in environments where preferred prey are depleted.
Collapse
Affiliation(s)
- Chris J Law
- Department of Biology, University of Washington, Seattle, WA, USA
- Department of Integrative Biology, University of Texas, Austin, TX, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - M Tim Tinker
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- Nhydra Ecological Consulting, Halifax, Nova Scotia, Canada
- US Geological Survey, Western Ecological Research Center, Santa Cruz, CA, USA
| | | | | | | | - Joseph A Tomoleoni
- US Geological Survey, Western Ecological Research Center, Santa Cruz, CA, USA
| | - Colleen Young
- Marine Wildlife Veterinary Care and Research Center, California Department of Fish and Wildlife, Office of Spill Prevention and Response, Santa Cruz, CA, USA
| | - Rita S Mehta
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
4
|
Dickinson E, Hartstone-Rose A. Behavioral correlates of fascicular organization: The confluence of muscle architectural anatomy and function. Anat Rec (Hoboken) 2023. [PMID: 36880440 DOI: 10.1002/ar.25187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/20/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023]
Abstract
Muscle is a complex tissue that has been studied on numerous hierarchical levels: from gross descriptions of muscle organization to cellular analyses of fiber profiles. In the middle of this space between organismal and cellular biology lies muscle architecture, the level at which functional correlations between a muscle's internal fiber organization and contractile abilities are explored. In this review, we summarize this relationship, detail recent advances in our understanding of this form-function paradigm, and highlight the role played by The Anatomical Record in advancing our understanding of functional morphology within muscle over the past two decades. In so doing, we honor the legacy of Editor-in-Chief Kurt Albertine, whose stewardship of the journal from 2006 through 2020 oversaw the flourishing of myological research, including numerous special issues dedicated to exploring the behavioral correlates of myology across diverse taxa. This legacy has seen the The Anatomical Record establish itself as a preeminent source of myological research, and a true leader within the field of comparative anatomy and functional morphology.
Collapse
Affiliation(s)
- Edwin Dickinson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, USA
| | - Adam Hartstone-Rose
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
5
|
Russo LF, Meloro C, De Silvestri M, Chadwick EA, Loy A. Better sturdy or slender? Eurasian otter skull plasticity in response to feeding ecology. PLoS One 2022; 17:e0274893. [PMID: 36174011 PMCID: PMC9521905 DOI: 10.1371/journal.pone.0274893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Otters are semi-aquatic mammals specialized in feeding on aquatic prey. The Eurasian otter Lutra lutra is the most widely distributed otter species. Despite a low degree of genetic variation across its European range, the population from Great Britain exhibits distinct genetic structuring. We examined 43 skulls of adult Eurasian otters belonging to 18 sampling localities and three genetic clusters (Shetlands, Wales and Scotland). For each sample location, information regarding climate was described using bioclimatic variables from WorldClim, and information on otter diet was extracted from the literature. By using photogrammetry, 3D models were obtained for each skull. To explore any evidence of adaptive divergence within these areas we used a three dimensional geometric morphometric approach to test differences in skull size and shape between areas with genetically distinct populations, as well as the influence of diet, isolation by distance and climate. Males were significantly larger in skull size than females across all the three genetic clusters. Skull shape, but not size, appeared to differ significantly among genetic clusters, with otters from Shetland exhibiting wider zygomatic arches and longer snouts compared to otters from Wales, whereas otters from Scotland displayed intermediate traits. A significant relationship could also be found between skull shape variation, diet as well as climate. Specifically, otters feeding on freshwater fish had more slender and short-snouted skulls compared to otters feeding mostly on marine fish. Individuals living along the coast are characterised by a mixed feeding regime based on marine fish and crustaceans and their skull showed an intermediate shape. Coastal and island otters also had larger orbits and eyes more oriented toward the ground, a larger nasal cavity, and a larger distance between postorbital processes and zygomatic arch. These functional traits could also represent an adaptation to favour the duration and depth of diving, while the slender skull of freshwater feeding otters could improve the hydrodynamics.
Collapse
Affiliation(s)
- Luca Francesco Russo
- EnvixLab, Department of Biosciences and Territory, Università degli Studi del Molise, Pesche, Italy
| | - Carlo Meloro
- Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool, United Kingdom
- * E-mail:
| | - Mara De Silvestri
- EnvixLab, Department of Biosciences and Territory, Università degli Studi del Molise, Pesche, Italy
| | - Elizabeth A. Chadwick
- Cardiff University, Biomedical Science Building, Museum Avenue, Cardiff, United Kingdom
| | - Anna Loy
- EnvixLab, Department of Biosciences and Territory, Università degli Studi del Molise, Pesche, Italy
| |
Collapse
|
6
|
Kienle SS, Cuthbertson RD, Reidenberg JS. Comparative examination of pinniped craniofacial musculature and its role in aquatic feeding. J Anat 2022; 240:226-252. [PMID: 34697793 PMCID: PMC8742965 DOI: 10.1111/joa.13557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/20/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Secondarily aquatic tetrapods have many unique morphologic adaptations for life underwater compared with their terrestrial counterparts. A key innovation during the land-to-water transition was feeding. Pinnipeds, a clade of air-breathing marine carnivorans that include seals, sea lions, and walruses, have evolved multiple strategies for aquatic feeding (e.g., biting, suction feeding). Numerous studies have examined the pinniped skull and dental specializations for underwater feeding. However, data on the pinniped craniofacial musculoskeletal system and its role in aquatic feeding are rare. Therefore, the objectives of this study were to conduct a comparative analysis of pinniped craniofacial musculature and examine the function of the craniofacial musculature in facilitating different aquatic feeding strategies. We performed anatomic dissections of 35 specimens across six pinniped species. We describe 32 pinniped craniofacial muscles-including facial expression, mastication, tongue, hyoid, and soft palate muscles. Pinnipeds broadly conform to mammalian patterns of craniofacial muscle morphology. Pinnipeds also exhibit unique musculoskeletal morphologies-in muscle position, attachments, and size-that likely represent adaptations for different aquatic feeding strategies. Suction feeding specialists (bearded and northern elephant seals) have a significantly larger masseter than biters. Further, northern elephant seals have large and unique tongue and hyoid muscle morphologies compared with other pinniped species. These morphologic changes likely help generate and withstand suction pressures necessary for drawing water and prey into the mouth. In contrast, biting taxa (California sea lions, harbor, ringed, and Weddell seals) do not exhibit consistent craniofacial musculoskeletal adaptations that differentiate them from suction feeders. Generally, we discover that all pinnipeds have well-developed and robust craniofacial musculature. Pinniped head musculature plays an important role in facilitating different aquatic feeding strategies. Together with behavioral and kinematic studies, our data suggest that pinnipeds' robust facial morphology allows animals to switch feeding strategies depending on the environmental context-a critical skill in a heterogeneous and rapidly changing underwater habitat.
Collapse
Affiliation(s)
| | - Roxanne D. Cuthbertson
- Department of Biology and Marine BiologyUniversity of North Carolina WilmingtonWilmingtonNorth CarolinaUSA
| | - Joy S. Reidenberg
- Icahn School of Medicine at Mount SinaiCenter for Anatomy and Functional MorphologyNew YorkNew YorkUSA
| |
Collapse
|
7
|
Law CJ. Sex-specific ontogenetic patterns of cranial morphology, theoretical bite force, and underlying jaw musculature in fishers and American martens. J Anat 2020; 237:727-740. [PMID: 32519772 DOI: 10.1111/joa.13231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/09/2020] [Accepted: 05/11/2020] [Indexed: 11/30/2022] Open
Abstract
The carnivoran cranium undergoes tremendous growth in size and development of shape to process prey as adults and, importantly, these ontogenetic processes can also differ between the sexes. How these ontogenetic changes in morphology actually relate to the underlying jaw musculature and overall bite performance has rarely been investigated. In this study, I examined sex-specific ontogenetic changes in cranial morphology, jaw adductor muscles, and theoretical bite force between subadults and adults in the fisher (Pekania pennanti) and American marten (Martes americana). I found evidence that cranial size alone does not completely explain ontogenetic increases in bite forces as found in other mammalian species. Instead, cranial shape development also drives ontogenetic increases in relative bite force by broadening the zygomatic arches and enlargement of the sagittal crest, both of which enable relatively larger jaw adductor muscles to attach. In contrast, examination of sexual dimorphism within each age-class revealed that cranial shape dimorphism did not translate to dimorphism in either size-corrected bite forces or size-corrected physiological cross-sectional area of the jaw adductor muscles. These results reveal that morphological size and shape variation can have different influences on bite performance depending on the level of intraspecific variation that is examined (i.e. ontogenetic versus sexual dimorphism).
Collapse
Affiliation(s)
- Chris J Law
- Department of Mammalogy and Division of Paleontology, American Museum of Natural History, New York, NY, USA
| |
Collapse
|
8
|
Martin ML, Travouillon KJ, Fleming PA, Warburton NM. Review of the methods used for calculating physiological cross-sectional area (PCSA) for ecological questions. J Morphol 2020; 281:778-789. [PMID: 32374505 DOI: 10.1002/jmor.21139] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/09/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022]
Abstract
This review examines literature that used physiological cross-sectional area (PCSA) as a representative measure of an individual muscle's maximal isometric force production. PCSA is used to understand the muscle architecture and how a trade-off between muscle force and muscle contractile velocity reflect adaptations of the musculoskeletal system as a reflection of functional demands. Over the decades, methods have been developed to measure muscle volume, fascicle lengths, and pennation angle to calculate PCSA. The advantages and limitations of these methods (especially the inclusion/elimination of pennation angle) are discussed frequently; however, these method descriptions are scattered throughout the literature. Here, we reviewed and summarised the different approaches to collecting and recording muscle architectural properties to subsequently calculate PCSA. By critically discussing the advantages and limitations of each methodology, we aim to provide readers with an overview of repeatable methods to assess muscle architecture. This review may serve as a guide to facilitate readers searching for the appropriate techniques to calculate PCSA and measure muscle architecture to be applied in ecomorphology research. RESEARCH HIGHLIGHTS: Discuss the theories behind PCSA in a synthesised review to inform researchers about PCSA methodology.
Collapse
Affiliation(s)
- Meg L Martin
- Environmental and Conservational Sciences, Murdoch University, Murdoch, Australia
| | - Kenny J Travouillon
- Department of Terrestrial Zoology, Western Australian Museum, Welshpool, Australia
| | - Patricia A Fleming
- Environmental and Conservational Sciences, Murdoch University, Murdoch, Australia
| | - Natalie M Warburton
- Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Australia
| |
Collapse
|
9
|
Law CJ, Mehta RS. Dry versus wet and gross: Comparisons between the dry skull method and gross dissection in estimations of jaw muscle cross-sectional area and bite forces in sea otters. J Morphol 2019; 280:1706-1713. [PMID: 31513299 DOI: 10.1002/jmor.21061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/24/2019] [Accepted: 08/13/2019] [Indexed: 02/05/2023]
Abstract
Bite force is a measure of feeding performance used to elucidate links between animal morphology, ecology, and fitness. Obtaining live individuals for in vivo bite-force measurements or freshly deceased specimens for bite force modeling is challenging for many species. Thomason's dry skull method for mammals relies solely on osteological specimens and, therefore, presents an advantageous approach that enables researchers to estimate and compare bite forces across extant and even extinct species. However, how accurately the dry skull method estimates physiological cross-sectional area (PCSA) of the jaw adductor muscles and theoretical bite force has rarely been tested. Here, we use an ontogenetic series of southern sea otters (Enhydra lutris nereis) to test the hypothesis that skeletomuscular traits estimated from the dry skull method accurately predicts test traits derived from dissection-based biomechanical modeling. Although variables from these two methods exhibited strong positive relationships across ontogeny, we found that the dry skull method overestimates PCSA of the masseter and underestimates PCSA of the temporalis. Jaw adductor in-levers for both jaw muscles and overall bite force are overestimated. Surprisingly, we reveal that sexual dimorphism in craniomandibular shape affects temporalis PCSA estimations; the dry skull method predicted female temporalis PCSA well but underestimates male temporalis PCSA across ontogeny. These results highlight the importance of accounting for sexual dimorphism and other intraspecific variation when using the dry skull method. Together, we found the dry skull method provides an underestimation of bite force over ontogeny and that the underlying anatomical components driving bite force may be misrepresented.
Collapse
Affiliation(s)
- Chris J Law
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California
| | - Rita S Mehta
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California
| |
Collapse
|
10
|
Hartstone‐Rose A, Hertzig I, Dickinson E. Bite Force and Masticatory Muscle Architecture Adaptations in the Dietarily Diverse Musteloidea (Carnivora). Anat Rec (Hoboken) 2019; 302:2287-2299. [DOI: 10.1002/ar.24233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Adam Hartstone‐Rose
- Department of Biological Sciences North Carolina State University Raleigh North Carolina
| | - Isabella Hertzig
- Department of Biological Sciences North Carolina State University Raleigh North Carolina
| | - Edwin Dickinson
- Department of Biological Sciences North Carolina State University Raleigh North Carolina
| |
Collapse
|
11
|
Law CJ, Duran E, Hung N, Richards E, Santillan I, Mehta RS. Effects of diet on cranial morphology and biting ability in musteloid mammals. J Evol Biol 2018; 31:1918-1931. [DOI: 10.1111/jeb.13385] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Chris J. Law
- Department of Ecology and Evolutionary Biology Coastal Biology Building University of California, Santa Cruz Santa Cruz CA USA
| | - Emma Duran
- Scotts Valley High School Scotts Valley CA USA
| | - Nancy Hung
- Massachusetts Institute of Technology Cambridge MA USA
| | - Ekai Richards
- Department of Ecology and Evolutionary Biology Coastal Biology Building University of California, Santa Cruz Santa Cruz CA USA
| | | | - Rita S. Mehta
- Department of Ecology and Evolutionary Biology Coastal Biology Building University of California, Santa Cruz Santa Cruz CA USA
| |
Collapse
|
12
|
Law CJ, Mehta RS. Carnivory maintains cranial dimorphism between males and females: Evidence for niche divergence in extant Musteloidea. Evolution 2018; 72:1950-1961. [DOI: 10.1111/evo.13514] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Chris J. Law
- Department of Ecology and Evolutionary Biology University of California, Santa Cruz Santa Cruz California 95060
| | - Rita S. Mehta
- Department of Ecology and Evolutionary Biology University of California, Santa Cruz Santa Cruz California 95060
| |
Collapse
|
13
|
Jones K, Law CJ. Differentiation of craniomandibular morphology in two sympatric Peromyscus mice (Cricetidae: Rodentia). MAMMAL RES 2018. [DOI: 10.1007/s13364-018-0364-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Zablocki Thomas PB, Karanewsky CJ, Pendleton JL, Aujard F, Pouydebat E, Herrel A. Drivers of in vivo
bite performance in wild brown mouse lemurs and a comparison with the grey mouse lemur. J Zool (1987) 2018. [DOI: 10.1111/jzo.12550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- P. B. Zablocki Thomas
- Département d'Ecologie et de Gestion de la Biodiversité; UMR 7179 C.N.R.S/M.N.H.N.; Paris France
| | - C. J. Karanewsky
- Department of Biochemistry; Stanford University; Stanford CA USA
| | - J. L. Pendleton
- Department of Biochemistry; Stanford University; Stanford CA USA
| | - F. Aujard
- Département d'Ecologie et de Gestion de la Biodiversité; UMR 7179 C.N.R.S/M.N.H.N.; Paris France
| | - E. Pouydebat
- Département d'Ecologie et de Gestion de la Biodiversité; UMR 7179 C.N.R.S/M.N.H.N.; Paris France
| | - A. Herrel
- Département d'Ecologie et de Gestion de la Biodiversité; UMR 7179 C.N.R.S/M.N.H.N.; Paris France
- Evolutionary Morphology of Vertebrates; Ghent University; Ghent Belgium
| |
Collapse
|
15
|
Campbell KM, Santana SE. Do differences in skull morphology and bite performance explain dietary specialization in sea otters? J Mammal 2017. [DOI: 10.1093/jmammal/gyx091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Law CJ, Baliga VB, Tinker MT, Mehta RS. Asynchrony in craniomandibular development and growth in Enhydra lutris nereis (Carnivora: Mustelidae): are southern sea otters born to bite? Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blw050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Timm-Davis LL, Davis RW, Marshall CD. Durophagous biting in sea otters (Enhydra lutris) differs kinematically from raptorial biting of other marine mammals. J Exp Biol 2017; 220:4703-4710. [DOI: 10.1242/jeb.162966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/24/2017] [Indexed: 01/07/2023]
Abstract
Sea otters represent an interesting model for studies of mammalian feeding evolution. Although they are marine mammals, sea otters returned to the sea relatively recently and feed at the surface. Therefore, they represent a transitional stage of aquatic adaptation. Currently no feeding performance studies of sea otters have been conducted. The main objective of this study was to characterize the feeding kinematic profile in sea otters. It was hypothesized that sea otters would exhibit a terrestrial feeding behavior and that they forcefully crush hard prey at large gapes. As a result, biting kinematics would be congruent with biting behavior reported for their terrestrial ancestors, thus providing additional evidence that raptorial biting is a conserved behavior even in recently aquatic mammals. Sea otters consistently used a durophagous raptorial biting mode characterized by large gapes, large gape angles, and lack of lateral gape occlusion. The shorter skulls and mandibles of sea otters, along with increased mechanical advantages of the masseter and increased bite force, form a repertoire of functional traits for durophagy. Here we consider durophagy to be a specialized raptorial biting feeding mode. A comparison of feeding kinematics of wild vs captive sea otters showed no significant differences in lateral kinematic profiles and only minor differences in three frontal kinematic profiles, which included a slower maximum opening gape velocity, a slower maximum gape opening velocity, and a slower maximum closing gape velocity in captive sea otters. Data indicate functional innovations for producing large bite forces at wide gape and gape angles.
Collapse
Affiliation(s)
- Lori L. Timm-Davis
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Marine Biology, Texas A&M University, 200 Seawolf Parkway, OCSB, Galveston, TX 77553, USA
| | - Randall W. Davis
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Marine Biology, Texas A&M University, 200 Seawolf Parkway, OCSB, Galveston, TX 77553, USA
| | - Christopher D. Marshall
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Marine Biology, Texas A&M University, 200 Seawolf Parkway, OCSB, Galveston, TX 77553, USA
| |
Collapse
|