1
|
Schou MF, Cornwallis CK. Adaptation to fluctuating temperatures across life stages in endotherms. Trends Ecol Evol 2024; 39:841-850. [PMID: 38902165 DOI: 10.1016/j.tree.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024]
Abstract
Accelerating rates of climate change have intensified research on thermal adaptation. Increasing temperature fluctuations, a prominent feature of climate change, means that the persistence of many species depends on both heat and cold tolerance across the entire life cycle. In endotherms, research has focused on specific life stages, with changes in thermoregulation across life rarely being examined. Consequently, there is a need to (i) analyse how heat and cold tolerance mechanisms coevolve, and (ii) test whether antagonistic effects between heat and cold tolerance across different life stages limit thermal adaptation. Information on genes influencing heat and cold tolerance and how they are expressed through life will enable more accurate modelling of species vulnerabilities to future climatic volatility.
Collapse
Affiliation(s)
- Mads F Schou
- Department of Biology, Aarhus University, 8000 Aarhus, Denmark.
| | | |
Collapse
|
2
|
Iwińska K, Wirowska M, Borowski Z, Boratyński Z, Solecki P, Ciesielski M, Boratyński JS. Energy allocation is revealed while behavioural performance persists after fire disturbance. J Exp Biol 2024; 227:jeb247114. [PMID: 38323432 DOI: 10.1242/jeb.247114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 02/08/2024]
Abstract
Metabolic physiology and animal behaviour are often considered to be linked, positively or negatively, according to either the performance or allocation models. Performance seems to predominate over allocation in natural systems, but the constraining environmental context may reveal allocation limitations to energetically expensive behaviours. Habitat disturbance, such as the large-scale fire that burnt wetlands of Biebrza National Park (NE Poland), degrades natural ecosystems. It arguably reduces food and shelter availability, modifies predator-prey interactions, and poses a direct threat for animal survival, such as that of the wetland specialist root vole Microtus oeconomus. We hypothesized that fire disturbance induces physiology-behaviour co-expression, as a consequence of changed environmental context. We repeatedly measured maintenance and exercise metabolism, and behavioural responses to the open field, in a root voles from post-fire and unburnt locations. Highly repeatable maintenance metabolism and distance moved during behavioural tests correlated positively, but relatively labile exercise metabolism did not covary with behaviour. At the same time, voles from a post-fire habitat had higher maintenance metabolism and moved shorter distances than voles from unburnt areas. We conclude there is a prevalence of the performance mechanism, but simultaneous manifestation of context-dependent allocation constraints of the physiology-behaviour covariation after disturbance. The last occurs at the within-individual level, indicating the significance of behavioural plasticity in the context of environmental disturbance.
Collapse
Affiliation(s)
- Karolina Iwińska
- University of Białystok Doctoral School in Exact and Natural Sciences, 15-245 Białystok, Poland
| | - Martyna Wirowska
- Adam Mickiewicz University, Department of Systematic Zoology, 61-614 Poznań, Poland
| | | | - Zbyszek Boratyński
- BIOPOLIS, CIBIO/InBio, Research Center in Biodiversity & Genetic Resources, University of Porto, 4485-661 Vairão, Portugal
| | - Paweł Solecki
- Faculty of Electronics and Information Technology, Warsaw University of Technology, 00-665 Warsaw, Poland
| | | | - Jan S Boratyński
- Mammal Research Institute, Polish Academy of Sciences, 17-230 Białowieża, Poland
| |
Collapse
|
3
|
Przybylska-Piech AS, Nowak A, Jefimow M. Warm spells in winter affect the equilibrium between winter phenotypes. J Therm Biol 2024; 120:103811. [PMID: 38382412 DOI: 10.1016/j.jtherbio.2024.103811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
Each phenotype is a product of the interaction of the genes and the environment. Although winter phenotype in seasonal mammals is heritable, its development may be modified by external conditions. In today's world, global climate change and increasing frequency of unpredictable weather events may affect the dynamic equilibrium between phenotypes. We tested the effect of changes in ambient temperature during acclimation to short photoperiod on the development of winter phenotypes in three generations of Siberian hamsters (Phodopus sungorus). Based on seasonal changes in fur colour, body mass, and expression of daily torpor we distinguished three different winter phenotypes: responding, non-responding, and partially-responding to short photoperiod. We found that warm spells in winter can increase the proportion of non-responding individuals in the population, while stable winter conditions can increase photoresponsiveness among the offspring of non-responders. We conclude that the polymorphism of winter phenotype is an inherent characteristic of the Siberian hamster population but the development of winter phenotype is not fixed but rather a plastic response to the environmental conditions.
Collapse
Affiliation(s)
| | - Anna Nowak
- Department of Vertebrate Zoology and Ecology, Nicolaus Copernicus University, Toruń, Poland
| | - Małgorzata Jefimow
- Department of Animal Physiology and Neurobiology, Nicolaus Copernicus University Toruń, Poland.
| |
Collapse
|
4
|
Swanson DL, Stager M, Vézina F, Liu JS, McKechnie AE, Amirkhiz RG. Evidence for a maintenance cost for birds maintaining highly flexible basal, but not summit, metabolic rates. Sci Rep 2023; 13:8968. [PMID: 37268715 DOI: 10.1038/s41598-023-36218-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023] Open
Abstract
Reversible phenotypic flexibility allows organisms to better match phenotypes to prevailing environmental conditions and may produce fitness benefits. Costs and constraints of phenotypic flexibility may limit the capacity for flexible responses but are not well understood nor documented. Costs could include expenses associated with maintaining the flexible system or with generating the flexible response. One potential cost of maintaining a flexible system is an energetic cost reflected in the basal metabolic rate (BMR), with elevated BMR in individuals with more flexible metabolic responses. We accessed data from thermal acclimation studies of birds where BMR and/or Msum (maximum cold-induced metabolic rate) were measured before and after acclimation, as a measure of metabolic flexibility, to test the hypothesis that flexibility in BMR (ΔBMR), Msum (ΔMsum), or metabolic scope (Msum - BMR; ΔScope) is positively correlated with BMR. When temperature treatments lasted at least three weeks, three of six species showed significant positive correlations between ΔBMR and BMR, one species showed a significant negative correlation, and two species showed no significant correlation. ΔMsum and BMR were not significantly correlated for any species and ΔScope and BMR were significantly positively correlated for only one species. These data suggest that support costs exist for maintaining high BMR flexibility for some bird species, but high flexibility in Msum or metabolic scope does not generally incur elevated maintenance costs.
Collapse
Affiliation(s)
- David L Swanson
- Department of Biology, University of South Dakota, Vermillion, SD, USA.
| | - Maria Stager
- Department of Biology, University of Massachusetts, Amherst, MA, USA
| | - François Vézina
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC, Canada
| | - Jin-Song Liu
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Andrew E McKechnie
- DST‑NRF Centre of Excellence at the Percy FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, South Africa
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
| | | |
Collapse
|
5
|
Noakes MJ, Przybylska-Piech AS, Wojciechowski MS, Jefimow M. Is torpor a water conservation strategy? Heterothermic responses to acute water and food deprivation are repeatable among individuals of Phodopus sungorus. J Therm Biol 2022; 109:103321. [DOI: 10.1016/j.jtherbio.2022.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/01/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
|
6
|
Zhu H, Zhong L, Li J, Wang S, Qu J. Differential Expression of Metabolism-Related Genes in Plateau Pika ( Ochotona curzoniae) at Different Altitudes on the Qinghai-Tibet Plateau. Front Genet 2022; 12:784811. [PMID: 35126457 PMCID: PMC8811202 DOI: 10.3389/fgene.2021.784811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022] Open
Abstract
According to life history theory, animals living in extreme environments have evolved specific behavioral and physiological strategies for survival. However, the genetic mechanisms underpinning these strategies are unclear. As the highest geographical unit on Earth, the Qinghai-Tibet Plateau is characterized by an extreme environment and climate. During long-term evolutionary processes, animals that inhabit the plateau have evolved specialized morphological and physiological traits. The plateau pika (Ochotona curzoniae), one of the native small mammals that evolved on the Qinghai-Tibet Plateau, has adapted well to this cold and hypoxic environment. To explore the genetic mechanisms underlying the physiological adaptations of plateau pika to extremely cold ambient temperatures, we measured the differences in resting metabolic rate (RMR) and metabolism-related gene expression in individuals inhabiting three distinct altitudes (i.e., 3,321, 3,663, and 4,194 m). Results showed that the body mass and RMR of plateau pika at high- and medium-altitudes were significantly higher than those at the low-altitude. The expression levels of peroxisome proliferator-activated receptor α (pparα), peroxisome proliferator-activated receptor-γ coactivator-1α (pgc-1α), and the PR domain-containing 16 (PRDM16) in white (WAT) and brown (BAT) adipose tissues of plateau pika from high- and medium-altitudes were significantly higher than in pika from the low-altitude region. The enhanced expression levels of pgc-1α and pparα genes in the WAT of pika at high-altitude showed that WAT underwent "browning" and increased thermogenic properties. An increase in the expression of uncoupling protein 1 (UCP1) in the BAT of pika at high altitude indicated that BAT increased their thermogenic properties. The gene expression levels of pparα and pgc-1α in skeletal muscles were significantly higher in high-altitude pika. Simultaneously, the expression of the sarcolipin (SLN) gene in skeletal muscles significantly increased in high-altitude pika. Our results suggest that plateau pika adapted to an extremely cold environment via browning WAT, thereby activating BAT and enhancing SLN expression to increase non-shivering thermogenesis. This study demonstrates that plateau pika can increase thermogenic gene expression and energy metabolism to adapt to the extreme environments on the plateau.
Collapse
Affiliation(s)
- Hongjuan Zhu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liang Zhong
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Province Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Jing Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Suqin Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiapeng Qu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Province Key Laboratory of Animal Ecological Genomics, Xining, China
| |
Collapse
|
7
|
Tapper S, Nocera JJ, Burness G. Body temperature is a repeatable trait in a free-ranging passerine bird. J Exp Biol 2021; 224:272129. [PMID: 34498672 DOI: 10.1242/jeb.243057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Body temperature (Tb) affects animal function through its influence on rates of biochemical and biophysical reactions, the molecular structures of proteins and tissues, and, ultimately, organismal performance. Despite its importance in driving physiological processes, there are few data on how much variation in Tb exists within populations of organisms, and whether this variation consistently differs among individuals over time (i.e. repeatability of a trait). Here, using thermal radio-frequency identification implants, we quantified the repeatability of Tb, both in the context of a fixed average environment (∼21°C) and across ambient temperatures (6-31°C), in a free-living population of tree swallows (Tachycineta bicolor, n=16). By experimentally trimming the ventral plumage of a subset of female swallows (n=8), we also asked whether the repeatability of Tb is influenced by the capacity to dissipate body heat. We found that both female and male tree swallow Tb was repeatable at 21°C (R=0.89-92), but female Tb was less repeatable than male Tb across ambient temperature (Rfemale=0.10, Rmale=0.58), which may be due to differences in parental investment. Trimmed birds had on average lower Tb than control birds (by ∼0.5°C), but the repeatability of female Tb did not differ as a function of heat dissipation capacity. This suggests that trimmed individuals adjusted their Tb to account for the effects of heat loss on Tb. Our study provides a first critical step toward understanding whether Tb is responsive to natural selection, and for predicting how animal populations will respond to climatic warming.
Collapse
Affiliation(s)
- Simon Tapper
- Environmental and Life Sciences Graduate Department, Trent University, 1600 West Bank Drive, Peterborough, ON, Canada, K9L 0G2
| | - Joseph J Nocera
- Faculty of Forestry and Environmental Management, University of New Brunswick, 28 Dineen Drive, Fredericton, NB, Canada, E3B 5A3
| | - Gary Burness
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, Canada, K9L 0G2
| |
Collapse
|
8
|
Przybylska-Piech AS, Wojciechowski MS, Jefimow M. Polymorphism of winter phenotype in Siberian hamster: consecutive litters do not differ in photoresponsiveness but prolonged acclimation to long photoperiod inhibits winter molt. Front Zool 2021; 18:11. [PMID: 33731152 PMCID: PMC7971963 DOI: 10.1186/s12983-021-00391-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/21/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The theory of delayed life history effects assumes that phenotype of adult individual results from environmental conditions experienced at birth and as juvenile. In seasonal environments, being born late in the reproductive season affects timing of puberty, body condition, longevity, and fitness. We hypothesized that late-born individuals are more prone to respond to short photoperiod (SP) than early born ones. We used Siberian hamsters Phodopus sungorus, a model species characterized by high polymorphism of winter phenotype. We experimentally distinguished the effect of litter order (first or third) from the effect of exposure to long photoperiod (LP) before winter (3 months or 5 months) by manipulating the duration of LP acclimation in both litters. We predicted that, irrespective of the litter order, individuals exposed to long photoperiod for a short time have less time to gather energy resources and consequently are more prone to developing energy-conserving phenotypes. To assess effect of litter order, duration of acclimation to long days, and phenotype on basal cost of living we measured basal metabolic rate (BMR) of hamsters. RESULTS Individuals born in third litters had faster growth rates and were bigger than individuals from first litters, but these differences vanished before transfer to SP. Litter order or duration of LP acclimation had no effects on torpor use or seasonal body mass changes, but prolonged acclimation to LP inhibited winter molting both in first and third litters. Moreover, individuals that did not molt had significantly higher BMR in SP than those which molted to white fur. Although one phenotype usually predominated within a litter, littermates were often heterogeneous. We also found that over 10% of individuals presented late response to short photoperiod. CONCLUSIONS Our data indicate that duration of postnatal exposure to LP may define propensity to photoresponsiveness, regardless of the litter in which animal was born. Existence of littermates presenting different phenotypes suggests a prudent reproductive strategy of investing into offspring of varied phenotypes, that might be favored depending on environmental conditions. This strategy could have evolved in response to living in stochastic environment.
Collapse
Affiliation(s)
- Anna S Przybylska-Piech
- Department of Vertebrate Zoology and Ecology, Nicolaus Copernicus University, Toruń, Poland.
| | - Michał S Wojciechowski
- Department of Vertebrate Zoology and Ecology, Nicolaus Copernicus University, Toruń, Poland
| | - Małgorzata Jefimow
- Department of Animal Physiology and Neurobiology, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
9
|
Winterová B, Gvoždík L. Individual variation in seasonal acclimation by sympatric amphibians: A climate change perspective. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Barbora Winterová
- Department of Botany and Zoology Masaryk University Brno Czech Republic
| | - Lumír Gvoždík
- Czech Academy of Sciences Institute of Vertebrate Biology Brno Czech Republic
| |
Collapse
|
10
|
Phenotypic flexibility in heat production and heat loss in response to thermal and hydric acclimation in the zebra finch, a small arid-zone passerine. J Comp Physiol B 2020; 191:225-239. [PMID: 33070274 PMCID: PMC7819915 DOI: 10.1007/s00360-020-01322-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 11/28/2022]
Abstract
To maintain constant body temperature (Tb) over a wide range of ambient temperatures (Ta) endothermic animals require large amounts of energy and water. In hot environments, the main threat to endothermic homeotherms is insufficient water to supply that necessary for thermoregulation. We investigated flexible adjustment of traits related to thermoregulation and water conservation during acclimation to hot conditions or restricted water availability, or both, in the zebra finch, Taeniopygia guttata a small arid-zone passerine. Using indirect calorimetry, we measured changes in whole animal metabolic rate (MR), evaporative heat loss (EHL) and Tb before and after acclimation to 23 or 40 °C, with different availability of water. Additionally, we quantified changes in partitioning of EHL into respiratory and cutaneous avenues in birds exposed to 25 and 40 °C. In response to heat and water restriction zebra finches decreased MR, which together with unchanged EHL resulted in increased efficiency of evaporative heat loss. This facilitated more precise Tb regulation in heat-acclimated birds. Acclimation temperature and water availability had no effect on the partitioning of EHL into cutaneous or respiratory avenues. At 25 °C, cutaneous EHL accounted for ~ 60% of total EHL, while at 40 °C, its contribution decreased to ~ 20%. Consistent among-individual differences in MR and EHL suggest that these traits, provided that they are heritable, may be a subject to natural selection. We conclude that phenotypic flexibility in metabolic heat production associated with acclimation to hot, water-scarce conditions is crucial in response to changing environmental conditions, especially in the face of current and predicted climate change.
Collapse
|
11
|
Boratyński JS, Iwińska K, Szafrańska PA, Chibowski P, Bogdanowicz W. Continuous growth through winter correlates with increased resting metabolic rate but does not affect daily energy budgets due to torpor use. Curr Zool 2020; 67:131-145. [PMID: 33854531 PMCID: PMC8026158 DOI: 10.1093/cz/zoaa047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/26/2020] [Indexed: 11/20/2022] Open
Abstract
Small mammals that are specialists in homeothermic thermoregulation reduce their self-maintenance costs of normothermy to survive the winter. By contrast, heterothermic ones that are considered generalists in thermoregulation can lower energy expenditure by entering torpor. It is well known that different species vary the use of their strategies to cope with harsh winters in temperate zones; however, little is still known about the intraspecific variation within populations and the associated external and internal factors. We hypothesized that yellow-necked mice Apodemus flavicollis decrease their resting metabolic rate (RMR) from autumn to winter, and then increase it during spring. However, since the alternative for seasonal reduction of RMR could be the development of heterothermy, we also considered the use of this strategy. We measured body mass (mb), RMR, and body temperature (Tb) of mice during 2 consecutive years. In the 1st year, mice decreased whole animal RMR in winter, but did not do so in the 2nd year. All mice entered torpor during the 2nd winter, whereas only a few did so during the first one. Mice showed a continuous increase of mb, which was steepest during the 2nd year. The relationship between RMR and mb varied among seasons and years most likely due to different mouse development stages. The mb gain at the individual level was correlated positively with RMR and heterothermy. This indicates that high metabolism in winter supports the growth of smaller animals, which use torpor as a compensatory mechanism. Isotope composition of mice hair suggests that in the 1st year they fed mainly on seeds, while in the 2nd, they likely consumed significant amounts of less digestible herbs. The study suggests that the use of specialist or generalist thermoregulatory strategies can differ with environmental variation and associated differences in developmental processes.
Collapse
Affiliation(s)
- Jan S Boratyński
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland
| | - Karolina Iwińska
- Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland.,Faculty of Biology, University of Białystok, Białystok, Poland
| | | | - Piotr Chibowski
- Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warszawa, Poland
| | - Wiesław Bogdanowicz
- Museum and Institute of Zoology, Polish Academy of Sciences, Warszawa, Poland
| |
Collapse
|
12
|
Jefimow M, Przybylska-Piech AS, Wojciechowski MS. Predictive and reactive changes in antioxidant defence system in a heterothermic rodent. J Comp Physiol B 2020; 190:479-492. [PMID: 32435827 PMCID: PMC7311498 DOI: 10.1007/s00360-020-01280-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/03/2020] [Accepted: 04/27/2020] [Indexed: 11/26/2022]
Abstract
Living in a seasonal environment requires periodic changes in animal physiology, morphology and behaviour. Winter phenotype of small mammals living in Temperate and Boreal Zones may differ considerably from summer one in multiple traits that enhance energy conservation or diminish energy loss. However, there is a considerable variation in the development of winter phenotype among individuals in a population and some, representing the non-responding phenotype (non-responders), are insensitive to shortening days and maintain summer phenotype throughout a year. Differences in energy management associated with the development of different winter phenotypes should be accompanied by changes in antioxidant defence capacity, leading to effective protection against oxidative stress resulting from increased heat production in winter. To test it, we analysed correlation of winter phenotypes of Siberian hamsters (Phodopus sungorus) with facultative non-shivering thermogenesis capacity (NST) and oxidative status. We found that in both phenotypes acclimation to winter-like conditions increased NST capacity and improved antioxidant defence resulting in lower oxidative stress (OS) than in summer, and females had always lower OS than males. Although NST capacity did not correlate with the intensity of OS, shortly after NST induction responders had lower OS than non-responders suggesting more effective mechanisms protecting from detrimental effects of reactive oxygen metabolites generated during rewarming from torpor. We suggest that seasonal increase in antioxidant defence is programmed endogenously to predictively prevent oxidative stress in winter. At the same time reactive upregulation of antioxidant defence protects against reactive oxygen species generated during NST itself. It suggests that evolution of winter phenotype with potentially harmful characteristics was counterbalanced by the development of protective mechanisms allowing for the maintenance of phenotypic adjustments to seasonally changing environment.
Collapse
Affiliation(s)
- Małgorzata Jefimow
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, ul. Lwowska 1, 87-100, Toruń, Poland.
| | - Anna S Przybylska-Piech
- Department of Vertebrate Zoology and Ecology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, ul. Lwowska 1, 87-100, Toruń, Poland
| | - Michał S Wojciechowski
- Department of Vertebrate Zoology and Ecology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, ul. Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
13
|
Noakes MJ, McKechnie AE. Phenotypic flexibility of metabolic rate and evaporative water loss does not vary across a climatic gradient in an Afrotropical passerine bird. J Exp Biol 2020; 223:jeb220137. [PMID: 32165435 DOI: 10.1242/jeb.220137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/02/2020] [Indexed: 12/30/2022]
Abstract
Small birds inhabiting northern temperate and boreal latitudes typically increase metabolic rates during cold winters or acclimation to low air temperatures (Taccl). Recent studies suggest considerable variation in patterns of seasonal metabolic acclimatization in birds from subtropical and tropical regions with milder winters, but there remains a dearth of acclimation studies investigating metabolic flexibility among lower-latitude birds. We used short-term thermal acclimation experiments to investigate phenotypic flexibility in basal metabolic rate (BMR), thermoneutral evaporative water loss (EWL) and summit metabolism (Msum) in three populations of white-browed sparrow-weavers (Plocepasser mahali) along a climatic and aridity gradient. We allocated individuals to one of three Taccl treatments (5, 20 and 35°C; n=11 per population per Taccl) for 28 days, and measured post-acclimation BMR, EWL and Msum using flow-through respirometry. Our data reveal the expected pattern of lower BMR and EWL (∼12% and 25% lower, respectively) in birds at Taccl=35°C compared with cooler Taccl treatments, as observed in previous acclimation studies on subtropical birds. We found no variation in the reaction norms of BMR and EWL among populations in response to acclimation, suggesting previously documented differences in seasonal BMR acclimatization are the result of phenotypic flexibility. In contrast to higher-latitude species, Msum did not significantly vary in response to thermal acclimation. These findings support the idea that factors other than enhancing cold tolerance may be driving patterns of metabolic variation in subtropical birds.
Collapse
Affiliation(s)
- Matthew J Noakes
- DST-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0001, South Africa
| | - Andrew E McKechnie
- DST-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0001, South Africa
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria 0001, South Africa
| |
Collapse
|
14
|
Norin T, Metcalfe NB. Ecological and evolutionary consequences of metabolic rate plasticity in response to environmental change. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180180. [PMID: 30966964 DOI: 10.1098/rstb.2018.0180] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Basal or standard metabolic rate reflects the minimum amount of energy required to maintain body processes, while the maximum metabolic rate sets the ceiling for aerobic work. There is typically up to three-fold intraspecific variation in both minimal and maximal rates of metabolism, even after controlling for size, sex and age; these differences are consistent over time within a given context, but both minimal and maximal metabolic rates are plastic and can vary in response to changing environments. Here we explore the causes of intraspecific and phenotypic variation at the organ, tissue and mitochondrial levels. We highlight the growing evidence that individuals differ predictably in the flexibility of their metabolic rates and in the extent to which they can suppress minimal metabolism when food is limiting but increase the capacity for aerobic metabolism when a high work rate is beneficial. It is unclear why this intraspecific variation in metabolic flexibility persists-possibly because of trade-offs with the flexibility of other traits-but it has consequences for the ability of populations to respond to a changing world. It is clear that metabolic rates are targets of selection, but more research is needed on the fitness consequences of rates of metabolism and their plasticity at different life stages, especially in natural conditions. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Tommy Norin
- 1 Institute of Biodiversity, Animal Health and Comparative Medicine, MVLS, University of Glasgow , Graham Kerr Building, Glasgow G12 8QQ , UK.,2 DTU Aqua: National Institute of Aquatic Resources , Kemitorvet Building 202, 2800 Kgs. Lyngby , Denmark
| | - Neil B Metcalfe
- 1 Institute of Biodiversity, Animal Health and Comparative Medicine, MVLS, University of Glasgow , Graham Kerr Building, Glasgow G12 8QQ , UK
| |
Collapse
|
15
|
Réveillon T, Rota T, Chauvet É, Lecerf A, Sentis A. Repeatable inter‐individual variation in the thermal sensitivity of metabolic rate. OIKOS 2019. [DOI: 10.1111/oik.06392] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tom Réveillon
- EcoLab, Univ. de Toulouse, CNRS, INP, UPS Toulouse France
| | - Thibaut Rota
- EcoLab, Univ. de Toulouse, CNRS, INP, UPS Toulouse France
| | - Éric Chauvet
- EcoLab, Univ. de Toulouse, CNRS, INP, UPS Toulouse France
| | - Antoine Lecerf
- EcoLab, Univ. de Toulouse, CNRS, INP, UPS Toulouse France
| | - Arnaud Sentis
- IRSTEA, Aix Marseille Univ., UMR RECOVER, 3275 route Cézanne FR‐13182 Aix‐en‐Provence France
| |
Collapse
|
16
|
Noakes MJ, McKechnie AE. Reaction norms for heat tolerance and evaporative cooling capacity do not vary across a climatic gradient in a passerine bird. Comp Biochem Physiol A Mol Integr Physiol 2019; 236:110522. [PMID: 31278988 DOI: 10.1016/j.cbpa.2019.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/02/2019] [Accepted: 06/27/2019] [Indexed: 11/25/2022]
Abstract
There is increasing evidence for considerable phenotypic flexibility in endotherm thermal physiology, a phenomenon with far-reaching implications for the evolution of traits related to heat tolerance. Numerous studies have documented intraspecific variation in avian thermoregulatory traits, but few have revealed the shapes of thermoregulatory reaction norms or how these might vary among populations. We investigated phenotypic flexibility in the ability of a model Afrotropical passerine bird (the white-browed sparrow-weaver, Plocepasser mahali) to handle high air temperatures (Ta). We allocated birds from three sites varying by ~ 11 °C in mean daily summer maximum Ta to three acclimation temperature (Taccl) treatments (daytime Taccl ≈ 30 °C, 36 °C or 42 °C respectively; n ≈ 10 per site per Taccl). After an acclimation period of 30 days, heat tolerance and evaporative cooling capacity was quantified by exposing birds to progressively higher Ta until they approached severe hyperthermia (body temperature [Tb] = 44.5 °C; Ta range: 38-54 °C). We measured metabolic rate and evaporative water loss using open flow-through respirometry, and Tb using temperature-sensitive passive-integrated transponder tags. Hyperthermia threshold Ta (Ta,HT) was significantly higher and Tb significantly lower in birds acclimated to the hottest Taccl compared to those from milder acclimation treatments. Population (i.e., site of capture) was not a significant predictor of any thermoregulatory variables or hyperthermia threshold Ta (Ta,HT) after acclimation, revealing that the shape of reaction norms for heat tolerance and evaporative cooling capacity does not vary among these three populations.
Collapse
Affiliation(s)
- Matthew J Noakes
- DST-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa
| | - Andrew E McKechnie
- DST-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa; South African Research Chair in Conservation Physiology, National Zoological Garden, South African National Biodiversity Institute, Pretoria, South Africa.
| |
Collapse
|
17
|
Boratyński JS, Iwińska K, Bogdanowicz W. An intra-population heterothermy continuum: notable repeatability of body temperature variation in food-deprived yellow-necked mice. ACTA ACUST UNITED AC 2019; 222:222/6/jeb197152. [PMID: 30877147 DOI: 10.1242/jeb.197152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/11/2019] [Indexed: 11/20/2022]
Abstract
Theoretical modelling predicts that the thermoregulatory strategies of endothermic animals range from those represented by thermal generalists to those characteristic for thermal specialists. While the generalists tolerate wide variations in body temperature (T b), the specialists maintain T b at a more constant level. The model has gained support from inter-specific comparisons relating to species and population levels. However, little is known about consistent among-individual variation within populations that could be shaped by natural selection. We studied the consistency of individual heterothermic responses to environmental challenges in a single population of yellow-necked mice (Apodemus flavicollis), by verifying the hypothesis that T b variation is a repeatable trait. To induce the heterothermic response, the same individuals were repeatedly food deprived for 24 h. We measured T b with implanted miniaturised data loggers. Before each fasting experiment, we measured basal metabolic rate (BMR). Thus, we also tested whether individual variation of heterothermy correlates with individual self-maintenance costs, and the potential benefits arising from heterothermic responses that should correlate with body size/mass. We found that some individuals clearly entered torpor while others kept T b stable, and that there were also individuals that showed intermediate thermoregulatory patterns. Heterothermy was found to correlate negatively with body mass and slightly positively with the BMR achieved 1-2 days before fasting. Nonetheless, heterothermy was shown to be highly repeatable, irrespective of whether we controlled for self-maintenance costs and body size. Our results indicate that specialist and generalist thermoregulatory phenotypes can co-exist in a single population, creating a heterothermy continuum.
Collapse
Affiliation(s)
- Jan S Boratyński
- Mammal Research Institute, Polish Academy of Sciences, 17-230 Białowieża, Poland .,Museum and Institute of Zoology, Polish Academy of Sciences, 00-679 Warszawa, Poland
| | - Karolina Iwińska
- Institute of Biology, University of Białystok, 15-328 Białystok, Poland
| | - Wiesław Bogdanowicz
- Museum and Institute of Zoology, Polish Academy of Sciences, 00-679 Warszawa, Poland
| |
Collapse
|
18
|
Przybylska AS, Wojciechowski MS, Jefimow M. Physiological differences between winter phenotypes of Siberian hamsters do not correlate with their behaviour. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2018.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Rimbach R, Jäger J, Pillay N, Schradin C. Food Availability Is the Main Driver of Seasonal Changes in Resting Metabolic Rate in African Striped Mice (Rhabdomys pumilio). Physiol Biochem Zool 2018; 91:826-833. [PMID: 29381108 DOI: 10.1086/696828] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Resting metabolic rate (RMR) influences energy allocation to survival, growth, and reproduction, and significant seasonal changes in RMR have been reported. According to one hypothesis, seasonal changes in RMR are mainly attributable to seasonal changes in ambient temperature (Ta) and food availability. Studies on species from the temperate zone indicated that food availability is the main driver. However, whether this is generally true is unknown, because studies from the tropics and subtropics, where most species live, are rare. We studied the African striped mouse (Rhabdomys pumilio) inhabiting a seasonal environment with hot dry seasons with low food availability and cold moist seasons with high food availability. Using 603 RMR measurements of 277 individuals, we investigated the relative importance of food availability and Ta on RMR during selected periods, in which one extrinsic factor varied while the other factor was relatively constant. At similar Ta, residual RMR increased with increasing levels of food availability. In contrast, different Ta did not influence residual RMR at similar levels of food availability. Thus, our study on a subtropical species gives support to the hypothesis, derived from temperate zone species, that food availability mainly drives seasonal changes in RMR.
Collapse
|
20
|
McFarlane SE, Ålund M, Sirkiä PM, Qvarnström A. Difference in plasticity of resting metabolic rate - the proximate explanation to different niche breadth in sympatric Ficedula flycatchers. Ecol Evol 2018; 8:4575-4586. [PMID: 29760898 PMCID: PMC5938467 DOI: 10.1002/ece3.3987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/24/2018] [Accepted: 02/09/2018] [Indexed: 12/11/2022] Open
Abstract
Variation in relative fitness of competing recently formed species across heterogeneous environments promotes coexistence. However, the physiological traits mediating such variation in relative fitness have rarely been identified. Resting metabolic rate (RMR) is tightly associated with life history strategies, thermoregulation, diet use, and inhabited latitude and could therefore moderate differences in fitness responses to fluctuations in local environments, particularly when species have adapted to different climates in allopatry. We work in a long‐term study of collared (Ficedula albicollis) and pied flycatchers (Ficedula hypoleuca) in a recent hybrid zone located on the Swedish island of Öland in the Baltic Sea. Here, we explore whether differences in RMR match changes in relative performance of growing flycatcher nestlings across environmental conditions using an experimental approach. The fitness of pied flycatchers has previously been shown to be less sensitive to the mismatch between the peak in food abundance and nestling growth among late breeders. Here, we find that pied flycatcher nestlings have lower RMR in response to higher ambient temperatures (associated with low food availability). We also find that experimentally relaxed nestling competition is associated with an increased RMR in this species. In contrast, collared flycatcher nestlings did not vary their RMR in response to these environmental factors. Our results suggest that a more flexible nestling RMR in pied flycatchers is responsible for the better adaptation of pied flycatchers to the typical seasonal changes in food availability experienced in this hybrid zone. Generally, subtle physiological differences that have evolved when species were in allopatry may play an important role to patterns of competition, coexistence, or displacements between closely related species in secondary contact.
Collapse
Affiliation(s)
- S Eryn McFarlane
- Animal Ecology/Ecology and Genetics Evolutionary Biology Centre Uppsala University Uppsala Sweden.,Present address: Institute of Evolutionary Biology University of Edinburgh Edinburgh UK
| | - Murielle Ålund
- Animal Ecology/Ecology and Genetics Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | - Päivi M Sirkiä
- Finnish Museum of Natural History Zoology Unit University of Helsinki Helsinki Finland.,Section of Ecology Department of Biology University of Turku Turku Finland
| | - Anna Qvarnström
- Animal Ecology/Ecology and Genetics Evolutionary Biology Centre Uppsala University Uppsala Sweden
| |
Collapse
|
21
|
Seebacher F, Little AG. Plasticity of Performance Curves Can Buffer Reaction Rates from Body Temperature Variation in Active Endotherms. Front Physiol 2017; 8:575. [PMID: 28824463 PMCID: PMC5543086 DOI: 10.3389/fphys.2017.00575] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022] Open
Abstract
Endotherms regulate their core body temperature by adjusting metabolic heat production and insulation. Endothermic body temperatures are therefore relatively stable compared to external temperatures. The thermal sensitivity of biochemical reaction rates is thought to have co-evolved with body temperature regulation so that optimal reaction rates occur at the regulated body temperature. However, recent data show that core body temperatures even of non-torpid endotherms fluctuate considerably. Additionally, peripheral temperatures can be considerably lower and more variable than core body temperatures. Here we discuss whether published data support the hypothesis that thermal performance curves of physiological reaction rates are plastic so that performance is maintained despite variable body temperatures within active (non-torpid) endotherms, and we explore mechanisms that confer plasticity. There is evidence that thermal performance curves in tissues that experience thermal fluctuations can be plastic, although this question remains relatively unexplored for endotherms. Mechanisms that alter thermal responses locally at the tissue level include transient potential receptor ion channels (TRPV and TRPM) and the AMP-activated protein kinase (AMPK) both of which can influence metabolism and energy expenditure. Additionally, the thermal sensitivity of processes that cause post-transcriptional RNA degradation can promote the relative expression of cold-responsive genes. Endotherms can respond to environmental fluctuations similarly to ectotherms, and thermal plasticity complements core body temperature regulation to increase whole-organism performance. Thermal plasticity is ancestral to endothermic thermoregulation, but it has not lost its selective advantage so that modern endotherms are a physiological composite of ancestral ectothermic and derived endothermic traits.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences, University of SydneySydney, NSW, Australia
| | - Alexander G Little
- Rosenstiel School of Marine and Atmospheric Science, The University of MiamiMiami, FL, United States
| |
Collapse
|
22
|
Boratyński JS, Jefimow M, Wojciechowski MS. Melatonin attenuates phenotypic flexibility of energy metabolism in a photoresponsive mammal, the Siberian hamster. ACTA ACUST UNITED AC 2017; 220:3154-3161. [PMID: 28606897 DOI: 10.1242/jeb.159517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/07/2017] [Indexed: 01/27/2023]
Abstract
The duration of melatonin (MEL) secretion conveys information about day length and initiates a cascade of seasonal phenotypic adjustments in photoresponsive mammals. With shortening days, animals cease reproduction, minimize energy expenditure, enhance thermoregulatory capacity and adjust functioning of the hypothalamic-pituitary-adrenal (HPA) axis to match the winter increase in energy demands. Within each season, stress plays an important role in the flexible adjustments of a phenotype to environmental perturbations. Recent studies have shown that thermal reaction norms of energy metabolism were narrower in winter-acclimated Siberian hamsters, Phodopus sungorus We tested the hypothesis that physiological changes occurring in response to prolonged MEL signals, including changes in the secretion of stress hormones, are responsible for the seasonal decrease in phenotypic flexibility of energy metabolism in photoresponsive mammals. To quantify reaction norms for basal metabolic rate (BMR) and cortisol (CORT) secretion, male Siberian hamsters maintained at a long (16 h:8 h light:dark) photoperiod were acclimated repeatedly for 12 days to 10 and 28°C. As predicted, the phenotypic flexibility of BMR decreased when animals were supplemented with MEL. However, at the same time, mean CORT concentration and the reaction norm for its secretion in response to changes in acclimation temperature increased. These results suggest that decreased sensitivity of HPA axis to CORT signal, rather than changes in CORT level itself, is responsible for the decreased phenotypic flexibility in photoresponsive species. Our results suggest that decreased phenotypic flexibility in winter, together with increased stress hormone secretion, make photosensitive species more vulnerable to climate change.
Collapse
Affiliation(s)
- Jan S Boratyński
- Department of Animal Physiology, Nicolaus Copernicus University, ul. Lwowska 1, 87-100 Toruń, Poland
| | - Małgorzata Jefimow
- Department of Animal Physiology, Nicolaus Copernicus University, ul. Lwowska 1, 87-100 Toruń, Poland
| | - Michał S Wojciechowski
- Department of Vertebrate Zoology, Nicolaus Copernicus University, ul. Lwowska 1, 87-100 Toruń, Poland
| |
Collapse
|
23
|
Rimbach R, Pillay N, Schradin C. Both thyroid hormone levels and resting metabolic rate decrease in African striped mice when food availability decreases. ACTA ACUST UNITED AC 2016; 220:837-843. [PMID: 27994044 DOI: 10.1242/jeb.151449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/12/2016] [Indexed: 01/13/2023]
Abstract
In response to variation in food availability and ambient temperature (Ta), many animals show seasonal adaptations in their physiology. Laboratory studies showed that thyroid hormones are involved in the regulation of metabolism, and their regulatory function is especially important when the energy balance of an individual is compromised. However, little is known about the relationship between thyroid hormones and metabolism in free-living animals and animals inhabiting seasonal environments. Here, we studied seasonal changes in triiodothyronine (T3) levels, resting metabolic rate (RMR) and two physiological markers of energy balance (blood glucose and ketone bodies) in 61 free-living African striped mice (Rhabdomys pumilio) that live in an semi-arid environment with food shortage during the dry season. We predicted a positive relationship between T3 levels and RMR. Further, we predicted higher T3 levels, blood glucose levels and RMR, but lower ketone body concentrations, during the moist season when food availability is high compared with summer when food availability is low. RMR and T3 levels were negatively related in the moist season but not in the dry season. Both RMR and T3 levels were higher in the moist than in the dry season, and T3 levels increased with increasing food availability. In the dry season, blood glucose levels were lower but ketone body concentrations were higher, indicating a change in substrate use. Seasonal adjustments in RMR and T3 levels permit a reduction of energy expenditure when food is scarce, and reflect an adaptive response to reduced food availability in the dry season.
Collapse
Affiliation(s)
- Rebecca Rimbach
- University of the Witwatersrand, School of Animal, Plant & Environmental Sciences, Private Bag 3, WITS 2050, Johannesburg, South Africa
| | - Neville Pillay
- University of the Witwatersrand, School of Animal, Plant & Environmental Sciences, Private Bag 3, WITS 2050, Johannesburg, South Africa
| | - Carsten Schradin
- University of the Witwatersrand, School of Animal, Plant & Environmental Sciences, Private Bag 3, WITS 2050, Johannesburg, South Africa.,IPHC, UNISTRA, CNRS, 23 rue du Loess, Strasbourg 67200, France
| |
Collapse
|