1
|
Sosiak C, Janovitz T, Perrichot V, Timonera JP, Barden P. Trait-Based Paleontological Niche Prediction Recovers Extinct Ecological Breadth of the Earliest Specialized Ant Predators. Am Nat 2023; 202:E147-E162. [PMID: 38033183 DOI: 10.1086/726739] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AbstractPaleoecological estimation is fundamental to the reconstruction of evolutionary and environmental histories. The ant fossil record preserves a range of species in three-dimensional fidelity and chronicles faunal turnover across the Cretaceous and Cenozoic; taxonomically rich and ecologically diverse, ants are an exemplar system to test new methods of paleoecological estimation in evaluating hypotheses. We apply a broad extant ecomorphological dataset to evaluate random forest machine learning classification in predicting the total ecological breadth of extinct and enigmatic hell ants. In contrast to previous hypotheses of extinction-prone arboreality, we find that hell ants were primarily leaf litter or ground-nesting and foraging predators, and by comparing ecospace occupations of hell ants and their extant analogs, we recover a signature of ecomorphological turnover across temporally and phylogenetically distinct lineages on opposing sides of the Cretaceous-Paleogene boundary. This paleoecological predictive framework is applicable across lineages and may provide new avenues for testing hypotheses over deep time.
Collapse
|
2
|
Horowitz J, Quattrini AM, Brugler MR, Miller DJ, Pahang K, Bridge TCL, Cowman PF. Bathymetric evolution of black corals through deep time. Proc Biol Sci 2023; 290:20231107. [PMID: 37788705 PMCID: PMC10547549 DOI: 10.1098/rspb.2023.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023] Open
Abstract
Deep-sea lineages are generally thought to arise from shallow-water ancestors, but this hypothesis is based on a relatively small number of taxonomic groups. Anthozoans, which include corals and sea anemones, are significant contributors to the faunal diversity of the deep sea, but the timing and mechanisms of their invasion into this biome remain elusive. Here, we reconstruct a fully resolved, time-calibrated phylogeny of 83 species in the order Antipatharia (black coral) to investigate their bathymetric evolutionary history. Our reconstruction indicates that extant black coral lineages first diversified in continental slope depths (∼250-3000 m) during the early Silurian (∼437 millions of years ago (Ma)) and subsequently radiated into, and diversified within, both continental shelf (less than 250 m) and abyssal (greater than 3000 m) habitats. Ancestral state reconstruction analysis suggests that the appearance of morphological features that enhanced the ability of black corals to acquire nutrients coincided with their invasion of novel depths. Our findings have important conservation implications for anthozoan lineages, as the loss of 'source' slope lineages could threaten millions of years of evolutionary history and confound future invasion events, thereby warranting protection.
Collapse
Affiliation(s)
- Jeremy Horowitz
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, 70-102 Flinders street, Townsville, Queensland 4810, Australia
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th street and Constitution avenue North West, Washington, DC 20560, USA
| | - Andrea M. Quattrini
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th street and Constitution avenue North West, Washington, DC 20560, USA
| | - Mercer R. Brugler
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th street and Constitution avenue North West, Washington, DC 20560, USA
- Department of Natural Sciences, University of South Carolina Beaufort, 1100 Boundary Street, Beaufort, SC 29902, USA
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - David J. Miller
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, Molecular and Cell Biology, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
| | - Kristina Pahang
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, 70-102 Flinders street, Townsville, Queensland 4810, Australia
| | - Tom C. L. Bridge
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, 70-102 Flinders street, Townsville, Queensland 4810, Australia
- College of Science and Engineering, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
| | - Peter F. Cowman
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
- Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, 70-102 Flinders street, Townsville, Queensland 4810, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, Molecular and Cell Biology, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
- College of Science and Engineering, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
| |
Collapse
|
3
|
Tyler J, Hocking DP, Younger JL. Intrinsic and extrinsic drivers of shape variation in the albatross compound bill. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230751. [PMID: 37593712 PMCID: PMC10427816 DOI: 10.1098/rsos.230751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Abstract
Albatross are the largest seabirds on Earth and have a suite of adaptations for their pelagic lifestyle. Rather than having a bill made of a single piece of keratin, Procellariiformes have a compound rhamphotheca, made of several joined plates. Drivers of the shape of the albatross bill have not been explored. Here we use three-dimensional scans of 61 upper bills from 12 species of albatross to understand whether intrinsic (species assignment & size) or extrinsic (diet) factors predict bill shape. Diet is a significant predictor of bill shape with coarse dietary categories providing higher R2 values than dietary proportion data. We also find that of the intrinsic factors, species assignment accounts for ten times more of the variation than size (72% versus 6.8%) and that there is a common allometric vector of shape change between all species. When considering species averages in a phylogenetic framework, there are significant Blomberg's K results for both shape and size (K = 0.29 & 1.10) with the first axis of variation having a much higher K value (K = 1.9), reflecting the split in shape at the root of the tree. The influence of size on bill shape is limited, with species assignment and diet predicting far more of the variation. The results show that both intrinsic and extrinsic factors are needed to understand morphological evolution.
Collapse
Affiliation(s)
- Joshua Tyler
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - David P. Hocking
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Zoology, Tasmanian Museum and Art Gallery, Hobart, Tasmania, Australia
| | - Jane L. Younger
- Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, Tasmania 7004, Australia
| |
Collapse
|
4
|
Hewes AE, Baldwin MW, Buttemer WA, Rico-Guevara A. How do honeyeaters drink nectar? Integr Comp Biol 2023; 63:48-58. [PMID: 37279913 DOI: 10.1093/icb/icad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/08/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
We investigated the kinematics and biomechanics of nectar feeding in five species of honeyeater (Phylidonyris novaehollandiae, Acanthagenys rufogularis, Ptilotula penicillata, Certhionyx variegatus, Manorina flavigula). There is abundant information on honeyeater foraging behaviors and ecological relationships with plants, but there has never been an examination of their nectar-feeding from kinematic and biomechanical perspectives. We analyzed high-speed video of feeding in captive individuals to describe the kinematics of their nectar feeding, with specific focus on describing tongue movements and bill-tongue coordination, and to characterize the mechanism of nectar uptake in the tongue. We found clear interspecific variation in kinematics and tongue filling mechanics. Species varied in lick frequency, tongue velocity, and protrusion and retraction duration, which, in some cases, are relevant for differences in tongue filling mechanisms. We found support for the use of capillary filling in Certhionyx variegatus only. By contrast, Phylidonyris novaehollandiae, Acanthagenys rufogularis, Ptilotula penicillata, and Manorina flavigula employed a modified version of the expansive filling mechanism seen in hummingbirds, as there was dorsoventral expansion of the tongue body, even the portions that remain outside the nectar, once the tongue tip entered the nectar. All species use fluid trapping in the distal fimbriated portion of the tongue, which supports previous hypotheses describing the honeyeater tongue as a "paintbrush."
Collapse
Affiliation(s)
- Amanda E Hewes
- Department of Biology, University of Washington, Life Sciences Building, Box 351800, Seattle, WA 98105, USA
- Burke Museum of Natural History and Culture, 4300 15th Ave NE, Seattle, WA 98105, USA
| | - Maude W Baldwin
- Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Straße, Seewiesen 82319, Germany
| | - William A Buttemer
- Centre for Integrative Ecology, Deakin University, Geelong, VIC 3125, Australia
| | - Alejandro Rico-Guevara
- Department of Biology, University of Washington, Life Sciences Building, Box 351800, Seattle, WA 98105, USA
- Burke Museum of Natural History and Culture, 4300 15th Ave NE, Seattle, WA 98105, USA
| |
Collapse
|
5
|
Imfeld TS, Barker FK. Songbirds of the Americas show uniform morphological evolution despite heterogeneous diversification. J Evol Biol 2022; 35:1335-1351. [PMID: 36057939 DOI: 10.1111/jeb.14084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 06/17/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022]
Abstract
Studying the relationship between diversification and functional trait evolution among broadly co-occurring clades can shed light on interactions between ecology and evolutionary history. However, evidence from many studies is compromised because of their focus on overly broad geographic or narrow phylogenetic scales. We addressed these limitations by studying 46 independent, biogeographically delimited clades of songbirds that dispersed from the Eastern Hemisphere into the Americas and assessed (1) whether diversification has varied through time and/or among clades within this assemblage, (2) the extent of heterogeneity in clade-specific morphological trait disparity and (3) whether morphological disparity among these clades is consistent with a uniform diversification model. We found equivalent support for constant rates birth-death and density-dependent speciation processes, with notable outliers having significantly fewer or more species than expected given their age. We also found substantial variation in morphological disparity among these clades, but that variation was broadly consistent with uniform evolutionary rates, despite the existence of diversification outliers. These findings indicate relatively continuous, ongoing morphological diversification, arguing against conceptual models of adaptive radiation in these continental clades. Additionally, they suggest surprisingly consistent diversification among the majority of these clades, despite tremendous variance in colonization history, habitat valences and trophic specializations that exist among continental clades of birds.
Collapse
Affiliation(s)
- Tyler S Imfeld
- Department of Biology, Regis University, Denver, Colorado, USA
| | - F Keith Barker
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA.,Bell Museum, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
6
|
Natale R, Slater GJ. The effects of foraging ecology and allometry on avian skull shape vary across levels of phylogeny. Am Nat 2022; 200:E174-E188. [DOI: 10.1086/720745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Hughes EC, Edwards DP, Bright JA, Capp EJR, Cooney CR, Varley ZK, Thomas GH. Global biogeographic patterns of avian morphological diversity. Ecol Lett 2022; 25:598-610. [PMID: 35199925 DOI: 10.1111/ele.13905] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/23/2021] [Accepted: 09/24/2021] [Indexed: 11/27/2022]
Abstract
Understanding the biogeographical patterns, and evolutionary and environmental drivers, underpinning morphological diversity are key for determining its origins and conservation. Using a comprehensive set of continuous morphological traits extracted from museum collections of 8353 bird species, including geometric morphometric beak shape data, we find that avian morphological diversity is unevenly distributed globally, even after controlling for species richness, with exceptionally dense packing of species in hyper-diverse tropical hotspots. At the regional level, these areas also have high morphological variance, with species exhibiting high phenotypic diversity. Evolutionary history likely plays a key role in shaping these patterns, with evolutionarily old species contributing to niche expansion, and young species contributing to niche packing. Taken together, these results imply that the tropics are both 'cradles' and 'museums' of phenotypic diversity.
Collapse
Affiliation(s)
- Emma C Hughes
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - David P Edwards
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Jen A Bright
- Department of Biological and Marine Sciences, University of Hull, Hull, UK
| | - Elliot J R Capp
- School of Biosciences, University of Sheffield, Sheffield, UK
| | | | - Zoë K Varley
- Bird Group, Department of Life Sciences, The Natural History Museum, Tring, UK
| | - Gavin H Thomas
- School of Biosciences, University of Sheffield, Sheffield, UK.,Bird Group, Department of Life Sciences, The Natural History Museum, Tring, UK
| |
Collapse
|
8
|
Tobias JA, Sheard C, Pigot AL, Devenish AJM, Yang J, Sayol F, Neate-Clegg MHC, Alioravainen N, Weeks TL, Barber RA, Walkden PA, MacGregor HEA, Jones SEI, Vincent C, Phillips AG, Marples NM, Montaño-Centellas FA, Leandro-Silva V, Claramunt S, Darski B, Freeman BG, Bregman TP, Cooney CR, Hughes EC, Capp EJR, Varley ZK, Friedman NR, Korntheuer H, Corrales-Vargas A, Trisos CH, Weeks BC, Hanz DM, Töpfer T, Bravo GA, Remeš V, Nowak L, Carneiro LS, Moncada R AJ, Matysioková B, Baldassarre DT, Martínez-Salinas A, Wolfe JD, Chapman PM, Daly BG, Sorensen MC, Neu A, Ford MA, Mayhew RJ, Fabio Silveira L, Kelly DJ, Annorbah NND, Pollock HS, Grabowska-Zhang AM, McEntee JP, Carlos T Gonzalez J, Meneses CG, Muñoz MC, Powell LL, Jamie GA, Matthews TJ, Johnson O, Brito GRR, Zyskowski K, Crates R, Harvey MG, Jurado Zevallos M, Hosner PA, Bradfer-Lawrence T, Maley JM, Stiles FG, Lima HS, Provost KL, Chibesa M, Mashao M, Howard JT, Mlamba E, Chua MAH, Li B, Gómez MI, García NC, Päckert M, Fuchs J, Ali JR, Derryberry EP, Carlson ML, Urriza RC, Brzeski KE, Prawiradilaga DM, Rayner MJ, Miller ET, Bowie RCK, Lafontaine RM, Scofield RP, Lou Y, Somarathna L, Lepage D, Illif M, Neuschulz EL, Templin M, Dehling DM, Cooper JC, Pauwels OSG, Analuddin K, Fjeldså J, Seddon N, Sweet PR, DeClerck FAJ, Naka LN, Brawn JD, Aleixo A, Böhning-Gaese K, Rahbek C, Fritz SA, Thomas GH, Schleuning M. AVONET: morphological, ecological and geographical data for all birds. Ecol Lett 2022; 25:581-597. [PMID: 35199922 DOI: 10.1111/ele.13898] [Citation(s) in RCA: 189] [Impact Index Per Article: 94.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/10/2021] [Accepted: 09/10/2021] [Indexed: 01/02/2023]
Abstract
Functional traits offer a rich quantitative framework for developing and testing theories in evolutionary biology, ecology and ecosystem science. However, the potential of functional traits to drive theoretical advances and refine models of global change can only be fully realised when species-level information is complete. Here we present the AVONET dataset containing comprehensive functional trait data for all birds, including six ecological variables, 11 continuous morphological traits, and information on range size and location. Raw morphological measurements are presented from 90,020 individuals of 11,009 extant bird species sampled from 181 countries. These data are also summarised as species averages in three taxonomic formats, allowing integration with a global phylogeny, geographical range maps, IUCN Red List data and the eBird citizen science database. The AVONET dataset provides the most detailed picture of continuous trait variation for any major radiation of organisms, offering a global template for testing hypotheses and exploring the evolutionary origins, structure and functioning of biodiversity.
Collapse
Affiliation(s)
- Joseph A Tobias
- Department of Life Sciences, Imperial College London, Ascot, UK.,Department of Zoology, University of Oxford, Oxford, UK
| | - Catherine Sheard
- Department of Zoology, University of Oxford, Oxford, UK.,School of Earth Sciences, University of Bristol, Bristol, UK
| | - Alex L Pigot
- Department of Zoology, University of Oxford, Oxford, UK.,Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | | | - Jingyi Yang
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Ferran Sayol
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Montague H C Neate-Clegg
- Department of Zoology, University of Oxford, Oxford, UK.,School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Nico Alioravainen
- Department of Zoology, University of Oxford, Oxford, UK.,Natural Resources Institute Finland, Natural resources - Migratory fish and regulated rivers, Oulu, Finland
| | - Thomas L Weeks
- Department of Life Sciences, Imperial College London, Ascot, UK.,Department of Life Sciences, Natural History Museum, London, UK
| | - Robert A Barber
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Patrick A Walkden
- Department of Life Sciences, Imperial College London, Ascot, UK.,Department of Life Sciences, Natural History Museum, London, UK
| | - Hannah E A MacGregor
- Department of Zoology, University of Oxford, Oxford, UK.,School of Biological Sciences, University of Bristol, Bristol, UK
| | - Samuel E I Jones
- Department of Zoology, University of Oxford, Oxford, UK.,School of Biological Sciences, Royal Holloway, University of London, Egham, UK
| | - Claire Vincent
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UK
| | - Anna G Phillips
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Nicola M Marples
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Flavia A Montaño-Centellas
- Instituto de Ecología, Universidad Mayor de San Andres, La Paz, Bolivia.,Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| | - Victor Leandro-Silva
- Laboratório de Ecologia e Evolução de Aves, Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Santiago Claramunt
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Bianca Darski
- Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Benjamin G Freeman
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tom P Bregman
- Department of Zoology, University of Oxford, Oxford, UK.,Future-Fit Foundation, Spitalfields, London, UK
| | | | - Emma C Hughes
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Elliot J R Capp
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Zoë K Varley
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,Bird Group, Department of Life Sciences, The Natural History Museum, Tring, UK
| | - Nicholas R Friedman
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Heiko Korntheuer
- Department of Ecology, Institute of Zoology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andrea Corrales-Vargas
- Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional de Costa Rica, Heredia, Costa Rica
| | - Christopher H Trisos
- Department of Zoology, University of Oxford, Oxford, UK.,African Climate and Development Initiative, University of Cape Town, Cape Town, South Africa.,Centre for Statistics in Ecology, the Environment and Conservation, University of Cape Town, Cape Town, South Africa
| | - Brian C Weeks
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA.,Department of Ornithology, American Museum of Natural History, New York, New York, USA
| | - Dagmar M Hanz
- Biogeography and Biodiversity Lab, Institute of Physical Geography, Goethe University Frankfurt, , Frankfurt am Main, Germany
| | - Till Töpfer
- Ornithology Section, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Gustavo A Bravo
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Vladimír Remeš
- Department of Zoology, Palacký University, Olomouc, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Larissa Nowak
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany.,Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lincoln S Carneiro
- Coordenação de Zoologia, Museu Paraense Emílio Goeldi, Belém, Pará, Brazil
| | - Amilkar J Moncada R
- CATIE (Centro Agronómico Tropical de Investigación y Enseñanza), Cartago, Turrialba, Costa Rica
| | | | | | | | - Jared D Wolfe
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | | | | | - Marjorie C Sorensen
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Alexander Neu
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany.,Department of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Michael A Ford
- South African Ringing Unit, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Rebekah J Mayhew
- Biological and Environmental Sciences, University of Stirling, Stirling, UK
| | - Luis Fabio Silveira
- Museu de Zoologia da Universidade de Sao Paulo (MZUSP), São Paulo, SP, Brazil
| | - David J Kelly
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Nathaniel N D Annorbah
- Department of Biological, Physical and Mathematical Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Henry S Pollock
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | - Jay P McEntee
- Department of Biology, Missouri State University, Springfield, Missouri, USA
| | - Juan Carlos T Gonzalez
- Department of Zoology, University of Oxford, Oxford, UK.,Museum of Natural History, University of the Philippines Los, Baños, Los Baños, Laguna, Philippines.,Animal Biology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los, Baños, Los Baños, Laguna, Philippines
| | - Camila G Meneses
- Museum of Natural History, University of the Philippines Los, Baños, Los Baños, Laguna, Philippines
| | - Marcia C Muñoz
- Programa de Biología, Universidad de la Salle, Bogotá, Colombia
| | - Luke L Powell
- Institute of Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, UK.,Biodiversity Initiative, Houghton, Michigan, USA.,CIBIO-InBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Gabriel A Jamie
- Department of Zoology, University of Cambridge, Cambridge, UK.,FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Thomas J Matthews
- GEES (School of Geography, Earth and Environmental Sciences) and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK.,CE3C (Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group and Universidade, dos Açores), Depto de Ciências Agráriase Engenharia do Ambiente, Angra do Heroísmo, Açores, Portugal
| | - Oscar Johnson
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, Louisina, USA
| | - Guilherme R R Brito
- Depto. de Ecologia e Zoologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Kristof Zyskowski
- Peabody Museum of Natural History, Yale University, New Haven, Connecticut, USA
| | - Ross Crates
- Fenner School of Environment and Society, Australian National University, Canberra, Australia
| | - Michael G Harvey
- Department of Biological Sciences and Biodiversity Collections, The University of Texas at El Paso, El Paso, Texas, USA
| | | | - Peter A Hosner
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - James M Maley
- Moore Laboratory of Zoology, Occidental College, Los Angeles, California, USA
| | - F Gary Stiles
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Hevana S Lima
- Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Kaiya L Provost
- Department of Ornithology, American Museum of Natural History, New York, New York, USA.,Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, Ohio, USA
| | - Moses Chibesa
- Department of Zoology and Aquatic Sciences, Copperbelt University, Kitwe, Zambia
| | | | - Jeffrey T Howard
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, Louisina, USA.,Louisiana State University, Health Sciences Center Shreveport, Shreveport, Louisina, USA
| | - Edson Mlamba
- Department of Zoology, National Museums of Kenya, Nairobi, Kenya
| | - Marcus A H Chua
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore, Singapore.,Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, USA
| | - Bicheng Li
- Natural History Research Center, Shanghai Natural History Museum, Shanghai, China
| | - M Isabel Gómez
- Colección Boliviana de Fauna - Museo Nacional de Historia Natural, Ministerio de Medio Ambiente y Agua, La Paz, Bolivia
| | - Natalia C García
- División Ornitología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", CONICET, Buenos Aires, Argentina
| | - Martin Päckert
- Senckenberg Natural History Collections, Museum of Zoology, Dresden, Germany
| | - Jérôme Fuchs
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, SU, EPHE, UA, Paris, France
| | - Jarome R Ali
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Elizabeth P Derryberry
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Monica L Carlson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Rolly C Urriza
- Ornithology Section, Zoology Division, Philippine National Museum, Rizal Park, Manila, Philippines
| | - Kristin E Brzeski
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, USA
| | - Dewi M Prawiradilaga
- Museum Zoologicum Bogoriense, Research Centre for Biology, Indonesian Institute of Sciences (LIPI), Bogor, Indonesia
| | - Matt J Rayner
- Auckland Museum, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Rauri C K Bowie
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, California, USA
| | - René-Marie Lafontaine
- Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences (RBINS), Brussels, Belgium
| | | | - Yingqiang Lou
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lankani Somarathna
- Natural History Section, Department of National Museum, Colombo, Sri Lanka
| | | | | | - Eike Lena Neuschulz
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Mathias Templin
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - D Matthias Dehling
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | | | - Olivier S G Pauwels
- Department of Recent Vertebrates, Royal Belgian Institute of Natural Sciences (RBINS), Brussels, Belgium
| | - Kangkuso Analuddin
- Department of Biotechnology, Halu Oleo University, Kendari, Sulawesi Tenggara, Indonesia
| | - Jon Fjeldså
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Nathalie Seddon
- Nature-based Solutions Initiative, Department of Zoology, University of Oxford, Oxford, UK
| | - Paul R Sweet
- Department of Ornithology, American Museum of Natural History, New York, New York, USA
| | - Fabrice A J DeClerck
- Bioversity International, CGIAR, Parc Scientifique Agropolis II, Montpellier, France
| | - Luciano N Naka
- Laboratório de Ecologia e Evolução de Aves, Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Jeffrey D Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Alexandre Aleixo
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Katrin Böhning-Gaese
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany.,Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Carsten Rahbek
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.,Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark.,Institute of Ecology, Peking University, Beijing, China
| | - Susanne A Fritz
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany.,Institut für Geowissenschaften, Goethe University, Frankfurt, Frankfurt am Main, Germany
| | - Gavin H Thomas
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,Bird Group, Department of Life Sciences, The Natural History Museum, Tring, UK
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| |
Collapse
|
9
|
Boehm MMA, Jankowski JE, Cronk QCB. Plant-Pollinator Specialization: Origin and Measurement of Curvature. Am Nat 2021; 199:206-222. [DOI: 10.1086/717677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Mannfred M. A. Boehm
- Department of Botany, University of British Columbia, 3156-6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada
- Biodiversity Research Centre, University of British Columbia, 2212 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jill E. Jankowski
- Biodiversity Research Centre, University of British Columbia, 2212 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, 4200-6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada
| | - Quentin C. B. Cronk
- Department of Botany, University of British Columbia, 3156-6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada
- Biodiversity Research Centre, University of British Columbia, 2212 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
10
|
García-Navas V, Tobias JA, Schweizer M, Wegmann D, Schodde R, Norman JA, Christidis L. Trophic niche shifts and phenotypic trait evolution are largely decoupled in Australasian parrots. BMC Ecol Evol 2021; 21:212. [PMID: 34837943 PMCID: PMC8626917 DOI: 10.1186/s12862-021-01940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Trophic shifts from one dietary niche to another have played major roles in reshaping the evolutionary trajectories of a wide range of vertebrate groups, yet their consequences for morphological disparity and species diversity differ among groups. METHODS Here, we use phylogenetic comparative methods to examine whether the evolution of nectarivory and other trophic shifts have driven predictable evolutionary pathways in Australasian psittaculid parrots in terms of ecological traits such as body size, beak shape, and dispersal capacity. RESULTS We found no evidence for an 'early-burst' scenario of lineage or morphological diversification. The best-fitting models indicate that trait evolution in this group is characterized by abrupt phenotypic shifts (evolutionary jumps), with no sign of multiple phenotypic optima correlating with different trophic strategies. Thus, our results point to the existence of weak directional selection and suggest that lineages may be evolving randomly or slowly toward adaptive peaks they have not yet reached. CONCLUSIONS This study adds to a growing body of evidence indicating that the relationship between avian morphology and feeding ecology may be more complex than usually assumed and highlights the importance of adding more flexible models to the macroevolutionary toolbox.
Collapse
Affiliation(s)
- Vicente García-Navas
- Department of Integrative Ecology, Doñana Biological Station EBD (CSIC), Seville, Spain.
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
- Centre for Ecology, Evolution and Environmental Changes (cE3c), University of Lisbon, Lisbon, Portugal.
| | - Joseph A Tobias
- Department of Life Sciences (Silwood Park), Faculty of Natural Sciences, Imperial College London, London, UK
| | | | - Daniel Wegmann
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Richard Schodde
- Australian National Wildlife Collection, CSIRO Sustainable Ecosystems, Canberra, Australia
| | | | - Les Christidis
- Southern Cross University, Coffs Harbour, NSW, Australia
| |
Collapse
|
11
|
Remeš V, Remešová E, Friedman NR, Matysioková B, Rubáčová L. Functional diversity of avian communities increases with canopy height: From individual behavior to continental-scale patterns. Ecol Evol 2021; 11:11839-11851. [PMID: 34522345 PMCID: PMC8427649 DOI: 10.1002/ece3.7952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 11/30/2022] Open
Abstract
Vegetation complexity is an important predictor of animal species diversity. Specifically, taller vegetation should provide more potential ecological niches and thus harbor communities with higher species richness and functional diversity (FD). Resource use behavior is an especially important functional trait because it links species to their resource base with direct relevance to niche partitioning. However, it is unclear how exactly the diversity of resource use behavior changes with vegetation complexity. To address this question, we studied avian FD in relation to vegetation complexity along a continental-scale vegetation gradient. We quantified foraging behavior of passerine birds in terms of foraging method and substrate use at 21 sites (63 transects) spanning 3,000 km of woodlands and forests in Australia. We also quantified vegetation structure on 630 sampling points at the same sites. Additionally, we measured morphological traits for all 111 observed species in museum collections. We calculated individual-based, abundance-weighted FD in morphology and foraging behavior and related it to species richness and vegetation complexity (indexed by canopy height) using structural equation modeling, rarefaction analyses, and distance-based metrics. FD of morphology and foraging methods was best predicted by species richness. However, FD of substrate use was best predicted by canopy height (ranging 10-30 m), but only when substrates were categorized with fine resolution (17 categories), not when categorized coarsely (8 categories). These results suggest that, first, FD might increase with vegetation complexity independently of species richness, but whether it does so depends on the studied functional trait. Second, patterns found might be shaped by how finely we categorize functional traits. More complex vegetation provided larger "ecological space" with more resources, allowing the coexistence of more species with disproportionately more diverse foraging substrate use. We suggest that the latter pattern was driven by nonrandom accumulation of functionally distinct species with increasing canopy height.
Collapse
Affiliation(s)
- Vladimír Remeš
- Department of Zoology and Laboratory of OrnithologyFaculty of SciencePalacky UniversityOlomoucCzech Republic
- Department of EcologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Eva Remešová
- Department of Zoology and Laboratory of OrnithologyFaculty of SciencePalacky UniversityOlomoucCzech Republic
| | - Nicholas R. Friedman
- Department of Zoology and Laboratory of OrnithologyFaculty of SciencePalacky UniversityOlomoucCzech Republic
- Environmental Informatics SectionOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonJapan
| | - Beata Matysioková
- Department of Zoology and Laboratory of OrnithologyFaculty of SciencePalacky UniversityOlomoucCzech Republic
| | - Lucia Rubáčová
- Department of Zoology and Laboratory of OrnithologyFaculty of SciencePalacky UniversityOlomoucCzech Republic
- Department of ZoologyFaculty of Natural ScienceComenius UniversityBratislavaSlovakia
| |
Collapse
|
12
|
Skeels A, Dinnage R, Medina I, Cardillo M. Ecological interactions shape the evolution of flower color in communities across a temperate biodiversity hotspot. Evol Lett 2021; 5:277-289. [PMID: 34136275 PMCID: PMC8190448 DOI: 10.1002/evl3.225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 01/11/2023] Open
Abstract
Processes driving the divergence of floral traits may be integral to the extraordinary richness of flowering plants and the assembly of diverse plant communities. Several models of pollinator-mediated floral evolution have been proposed; floral divergence may (i) be directly involved in driving speciation or may occur after speciation driven by (ii) drift or local adaptation in allopatry or (iii) negative interactions between species in sympatry. Here, we generate predictions for patterns of trait divergence and community assembly expected under these three models, and test these predictions in Hakea (Proteaceae), a diverse genus in the Southwest Australian biodiversity hotspot. We quantified functional richness for two key floral traits (pistil length and flower color), as well as phylogenetic distances between species, across ecological communities, and compared these to patterns generated from null models of community assembly. We also estimated the statistical relationship between rates of trait evolution and lineage diversification across the phylogeny. Patterns of community assembly suggest that flower color, but not floral phenology or morphology, or phylogenetic relatedness, is more divergent in communities than expected. Rates of lineage diversification and flower color evolution were negatively correlated across the phylogeny and rates of flower colour evolution were positively related to branching times. These results support a role for diversity-dependent species interactions driving floral divergence during the Hakea radiation, contributing to the development of the extraordinary species richness of southwest Australia.
Collapse
Affiliation(s)
- Alexander Skeels
- Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraACT 0200Australia
- Landscape Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Systems ScienceETH ZürichZürichCH‐8092Switzerland
- Unit of Land Change Science, Swiss Federal Research Institute for ForestSnow and Landscape WSLBirmensdorfCH‐8903Switzerland
| | - Russell Dinnage
- Institute for Applied EcologyUniversity of CanberraCanberraACT 2617Australia
| | - Iliana Medina
- Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraACT 0200Australia
- School of BioSciencesUniversity of MelbourneMelbourneVIC 3010Australia
| | - Marcel Cardillo
- Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraACT 0200Australia
| |
Collapse
|
13
|
Eliason CM, McCullough JM, Andersen MJ, Hackett SJ. Accelerated Brain Shape Evolution Is Associated with Rapid Diversification in an Avian Radiation. Am Nat 2021; 197:576-591. [PMID: 33908824 DOI: 10.1086/713664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractNiche expansion is a critical step in the speciation process. Large brains linked to improved cognitive ability may enable species to expand their niches and forage in new ways, thereby promoting speciation. Despite considerable work on ecological divergence in brain size and its importance in speciation, relatively little is known about how brain shape relates to behavioral, ecological, and taxonomic diversity at macroevolutionary scales. This is due in part to inherent challenges with quantifying brain shape across many species. Here we present a novel, semiautomated approach for rapidly phenotyping brain shape using semilandmarks derived from X-ray computed microtomography scans. We then test its utility by parsing evolutionary trends within a diverse radiation of birds: kingfishers (Aves: Alcedinidae). Multivariate comparative analyses reveal that rates of brain shape evolution (but not beak shape) are positively correlated with lineage diversification rates. Distinct brain shapes are further associated with changes in body size and foraging behavior, suggesting both allometric and ecological constraints on brain shape evolution. These results are in line with the idea of brains acting as a "master regulator" of critical processes governing speciation, such as dispersal, foraging behavior, and dietary niche.
Collapse
|
14
|
Tobias JA, Ottenburghs J, Pigot AL. Avian Diversity: Speciation, Macroevolution, and Ecological Function. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-110218-025023] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The origin, distribution, and function of biological diversity are fundamental themes of ecology and evolutionary biology. Research on birds has played a major role in the history and development of these ideas, yet progress was for many decades limited by a focus on patterns of current diversity, often restricted to particular clades or regions. Deeper insight is now emerging from a recent wave of integrative studies combining comprehensive phylogenetic, environmental, and functional trait data at unprecedented scales. We review these empirical advances and describe how they are reshaping our understanding of global patterns of bird diversity and the processes by which it arises, with implications for avian biogeography and functional ecology. Further expansion and integration of data sets may help to resolve longstanding debates about the evolutionary origins of biodiversity and offer a framework for understanding and predicting the response of ecosystems to environmental change.
Collapse
Affiliation(s)
- Joseph A. Tobias
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, United Kingdom
| | - Jente Ottenburghs
- Department of Evolutionary Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Alex L. Pigot
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
15
|
Pinto‐Ledezma JN, Villalobos F, Reich PB, Catford JA, Larkin DJ, Cavender‐Bares J. Testing Darwin’s naturalization conundrum based on taxonomic, phylogenetic, and functional dimensions of vascular plants. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jesús N. Pinto‐Ledezma
- Department of Ecology, Evolution and Behavior University of Minnesota 1479 Gortner Avenue Saint Paul Minnesota 55108 USA
| | - Fabricio Villalobos
- Red de Biología Evolutiva Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya 91070Xalapa Veracruz México
| | - Peter B. Reich
- Department of Forest Resources University of Minnesota 1530 Cleveland Avenue Saint Paul Minnesota 55108 USA
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales 2753 Australia
| | - Jane A. Catford
- Department of Geography King’s College London Strand London WC2B 4BG UK
| | - Daniel J. Larkin
- Department of Fisheries, Wildlife, and Conservation Biology University of Minnesota 135 Skok Hall, 2003 Upper Buford Circle Saint Paul Minnesota 55108 USA
| | - Jeannine Cavender‐Bares
- Department of Ecology, Evolution and Behavior University of Minnesota 1479 Gortner Avenue Saint Paul Minnesota 55108 USA
| |
Collapse
|
16
|
Sottas C, Reif J, Kreisinger J, Schmiedová L, Sam K, Osiejuk TS, Reifová R. Tracing the early steps of competition-driven eco-morphological divergence in two sister species of passerines. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10050-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Grundler M, Rabosky DL. Complex Ecological Phenotypes on Phylogenetic Trees: A Markov Process Model for Comparative Analysis of Multivariate Count Data. Syst Biol 2020; 69:1200-1211. [DOI: 10.1093/sysbio/syaa031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 12/26/2022] Open
Abstract
AbstractThe evolutionary dynamics of complex ecological traits—including multistate representations of diet, habitat, and behavior—remain poorly understood. Reconstructing the tempo, mode, and historical sequence of transitions involving such traits poses many challenges for comparative biologists, owing to their multidimensional nature. Continuous-time Markov chains are commonly used to model ecological niche evolution on phylogenetic trees but are limited by the assumption that taxa are monomorphic and that states are univariate categorical variables. A necessary first step in the analysis of many complex traits is therefore to categorize species into a predetermined number of univariate ecological states, but this procedure can lead to distortion and loss of information. This approach also confounds interpretation of state assignments with effects of sampling variation because it does not directly incorporate empirical observations for individual species into the statistical inference model. In this study, we develop a Dirichlet-multinomial framework to model resource use evolution on phylogenetic trees. Our approach is expressly designed to model ecological traits that are multidimensional and to account for uncertainty in state assignments of terminal taxa arising from effects of sampling variation. The method uses multivariate count data across a set of discrete resource categories sampled for individual species to simultaneously infer the number of ecological states, the proportional utilization of different resources by different states, and the phylogenetic distribution of ecological states among living species and their ancestors. The method is general and may be applied to any data expressible as a set of observational counts from different categories. [Comparative methods; Dirichlet multinomial; ecological niche evolution; macroevolution; Markov model.]
Collapse
Affiliation(s)
- Michael Grundler
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel L Rabosky
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Schumm M, White AE, Supriya K, Price TD. Ecological Limits as the Driver of Bird Species Richness Patterns along the East Himalayan Elevational Gradient. Am Nat 2020; 195:802-817. [PMID: 32364787 DOI: 10.1086/707665] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Variation in species richness across environmental gradients results from a combination of historical nonequilibrium processes (time, speciation, extinction) and present-day differences in environmental carrying capacities (i.e., ecological limits affected by species interactions and the abundance and diversity of resources). In a study of bird richness along the subtropical east Himalayan elevational gradient, we test the prediction that species richness patterns are consistent with ecological limits using data on morphology, phylogeny, elevational distribution, and arthropod resources. Species richness peaks at midelevations. Occupied morphological volume is roughly constant from low elevations to midelevations, implying that more species are packed into the same space at midelevations compared with low elevations. However, variance in beak length and differences in beak length between close relatives decline with elevation, which is a consequence of the addition of many small insectivores at midelevations. These patterns are predicted from resource distributions: arthropod size diversity declines from low elevations to midelevations, largely because many more small insects are present at midelevations. Weak correlations of species mean morphological traits with elevation also match predictions based on resources and habitats. Elevational transects in the tropical Andes, New Guinea, and Tanzania similarly show declines in mean arthropod size and mean beak length and, in these cases, likely contribute to declining numbers of insectivorous bird species richness along these gradients. The results imply that conditions for ecological limits are met, although historical nonequilibrium processes are likely to also contribute to the pattern of species richness.
Collapse
|
19
|
Sato E, Kusumoto B, Şekercioğlu ÇH, Kubota Y, Murakami M. The influence of ecological traits and environmental factors on the co‐occurrence patterns of birds on islands worldwide. Ecol Res 2020. [DOI: 10.1111/1440-1703.12103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eri Sato
- Faculty of Science Chiba University Chiba Japan
| | - Buntarou Kusumoto
- Biodiversity Informatics and Spatial Analysis Royal Botanic Gardens Kew Richmond UK
- Faculty of Science University of the Ryukyus Okinawa Japan
| | - Çağan H. Şekercioğlu
- Department of Biology University of Utah Salt Lake City Utah USA
- College of Sciences Koç University Istanbul Turkey
| | - Yasuhiro Kubota
- Faculty of Science University of the Ryukyus Okinawa Japan
- Marine and Terrestrial Field Ecology, Tropical Biosphere Research Center University of the Ryukyus Okinawa Japan
| | | |
Collapse
|
20
|
Felice RN, Tobias JA, Pigot AL, Goswami A. Dietary niche and the evolution of cranial morphology in birds. Proc Biol Sci 2020; 286:20182677. [PMID: 30963827 PMCID: PMC6408879 DOI: 10.1098/rspb.2018.2677] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cranial morphology in birds is thought to be shaped by adaptive evolution for foraging performance. This understanding of ecomorphological evolution is supported by observations of avian island radiations, such as Darwin's finches, which display rapid evolution of skull shape in response to food resource availability and a strong fit between cranial phenotype and trophic ecology. However, a recent analysis of larger clades has suggested that diet is not necessarily a primary driver of cranial shape and that phylogeny and allometry are more significant factors in skull evolution. We use phenome-scale morphometric data across the breadth of extant bird diversity to test the influence of diet and foraging behaviour in shaping cranial evolution. We demonstrate that these trophic characters are significant but very weak predictors of cranial form at this scale. However, dietary groups exhibit significantly different rates of morphological evolution across multiple cranial regions. Granivores and nectarivores exhibit the highest rates of evolution in the face and cranial vault, whereas terrestrial carnivores evolve the slowest. The basisphenoid, occipital, and jaw joint regions have less extreme differences among dietary groups. These patterns demonstrate that dietary niche shapes the tempo and mode of phenotypic evolution in deep time, despite a weaker than expected form–function relationship across large clades.
Collapse
Affiliation(s)
- Ryan N Felice
- 1 Department of Cell and Developmental Biology, University College London , London WC1E 6BT , UK.,3 Department of Life Sciences, The Natural History Museum , London SW7 5DB , UK
| | - Joseph A Tobias
- 4 Department of Life Sciences, Imperial College London , Ascot , UK
| | - Alex L Pigot
- 2 Centre for Biodiversity and Environment Research, Department of Genetics, Evolution, and Environment, University College London , London WC1E 6BT , UK
| | - Anjali Goswami
- 2 Centre for Biodiversity and Environment Research, Department of Genetics, Evolution, and Environment, University College London , London WC1E 6BT , UK.,3 Department of Life Sciences, The Natural History Museum , London SW7 5DB , UK
| |
Collapse
|
21
|
Macroevolutionary convergence connects morphological form to ecological function in birds. Nat Ecol Evol 2020; 4:230-239. [PMID: 31932703 DOI: 10.1038/s41559-019-1070-4] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/20/2019] [Indexed: 11/08/2022]
Abstract
Animals have diversified into a bewildering variety of morphological forms exploiting a complex configuration of trophic niches. Their morphological diversity is widely used as an index of ecosystem function, but the extent to which animal traits predict trophic niches and associated ecological processes is unclear. Here we use the measurements of nine key morphological traits for >99% bird species to show that avian trophic diversity is described by a trait space with four dimensions. The position of species within this space maps with 70-85% accuracy onto major niche axes, including trophic level, dietary resource type and finer-scale variation in foraging behaviour. Phylogenetic analyses reveal that these form-function associations reflect convergence towards predictable trait combinations, indicating that morphological variation is organized into a limited set of dimensions by evolutionary adaptation. Our results establish the minimum dimensionality required for avian functional traits to predict subtle variation in trophic niches and provide a global framework for exploring the origin, function and conservation of bird diversity.
Collapse
|
22
|
Friedman NR, Miller ET, Ball JR, Kasuga H, Remeš V, Economo EP. Evolution of a multifunctional trait: shared effects of foraging ecology and thermoregulation on beak morphology, with consequences for song evolution. Proc Biol Sci 2019; 286:20192474. [PMID: 31847778 PMCID: PMC6939928 DOI: 10.1098/rspb.2019.2474] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While morphological traits are often associated with multiple functions, it remains unclear how evolution balances the selective effects of different functions. Birds' beaks function not only in foraging but also in thermoregulating and singing, among other behaviours. Studies of beak evolution abound, however, most focus on a single function. Hence, we quantified relative contributions of different functions over an evolutionary timescale. We measured beak shape using geometric morphometrics and compared this trait with foraging behaviour, climatic variables and song characteristics in a phylogenetic comparative study of an Australasian radiation of songbirds (Meliphagidae). We found that both climate and foraging behaviour were significantly correlated with the beak shape and size. However, foraging ecology had a greater effect on shape, and climate had a nearly equal effect on size. We also found that evolutionary changes in beak morphology had significant consequences for vocal performance: species with elongate-shaped beaks sang at higher frequencies, while species with large beaks sang at a slower pace. The evolution of the avian beak exemplifies how morphological traits can be an evolutionary compromise among functions, and suggests that specialization along any functional axis may increase ecological divergence or reproductive isolation along others.
Collapse
Affiliation(s)
- Nicholas R Friedman
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan.,Department of Zoology and Laboratory of Ornithology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Eliot T Miller
- Cornell Laboratory of Ornithology, Cornell University, Ithaca, NY, USA
| | - Jason R Ball
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Haruka Kasuga
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan.,Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Vladimír Remeš
- Department of Zoology and Laboratory of Ornithology, Faculty of Science, Palacký University, Olomouc, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| |
Collapse
|
23
|
Marki PZ, Kennedy JD, Cooney CR, Rahbek C, Fjeldså J. Adaptive radiation and the evolution of nectarivory in a large songbird clade. Evolution 2019; 73:1226-1240. [DOI: 10.1111/evo.13734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 03/14/2019] [Accepted: 03/22/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Petter Z. Marki
- Center for Macroecology, Evolution and Climate, Natural History Museum of DenmarkUniversity of Copenhagen Copenhagen DK‐2100 Denmark
- Natural History MuseumUniversity of Oslo Oslo 0318 Norway
| | - Jonathan D. Kennedy
- Center for Macroecology, Evolution and Climate, Natural History Museum of DenmarkUniversity of Copenhagen Copenhagen DK‐2100 Denmark
- Department of Animal and Plant SciencesUniversity of Sheffield Sheffield S10 2TN United Kingdom
| | - Christopher R. Cooney
- Department of Animal and Plant SciencesUniversity of Sheffield Sheffield S10 2TN United Kingdom
| | - Carsten Rahbek
- Center for Macroecology, Evolution and Climate, Natural History Museum of DenmarkUniversity of Copenhagen Copenhagen DK‐2100 Denmark
- Department of Life SciencesImperial College London Ascot SL5 7PY United Kingdom
| | - Jon Fjeldså
- Center for Macroecology, Evolution and Climate, Natural History Museum of DenmarkUniversity of Copenhagen Copenhagen DK‐2100 Denmark
| |
Collapse
|
24
|
Miller ET, Leighton GM, Freeman BG, Lees AC, Ligon RA. Ecological and geographical overlap drive plumage evolution and mimicry in woodpeckers. Nat Commun 2019; 10:1602. [PMID: 30962513 PMCID: PMC6453948 DOI: 10.1038/s41467-019-09721-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/22/2019] [Indexed: 01/07/2023] Open
Abstract
Organismal appearances are shaped by selection from both biotic and abiotic drivers. For example, Gloger's rule describes the pervasive pattern that more pigmented populations are found in more humid areas. However, species may also converge on nearly identical colours and patterns in sympatry, often to avoid predation by mimicking noxious species. Here we leverage a massive global citizen-science database to determine how biotic and abiotic factors act in concert to shape plumage in the world's 230 species of woodpeckers. We find that habitat and climate profoundly influence woodpecker plumage, and we recover support for the generality of Gloger's rule. However, many species exhibit remarkable convergence explained neither by these factors nor by shared ancestry. Instead, this convergence is associated with geographic overlap between species, suggesting occasional strong selection for interspecific mimicry.
Collapse
Affiliation(s)
- Eliot T Miller
- Cornell Lab of Ornithology, 159 Sapsucker Woods Rd., Ithaca, NY, 14850, USA.
| | - Gavin M Leighton
- Cornell Lab of Ornithology, 159 Sapsucker Woods Rd., Ithaca, NY, 14850, USA
- Department of Biology, SUNY Buffalo State College, Buffalo, NY, 14213, USA
| | - Benjamin G Freeman
- Department of Zoology, University of British Columbia, #4200-6270 University Blvd, Vancouver, BC, V6T1Z4, Canada
| | - Alexander C Lees
- Cornell Lab of Ornithology, 159 Sapsucker Woods Rd., Ithaca, NY, 14850, USA
- School of Science and the Environment, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Russell A Ligon
- Cornell Lab of Ornithology, 159 Sapsucker Woods Rd., Ithaca, NY, 14850, USA
| |
Collapse
|
25
|
Pinto-Ledezma JN, Jahn AE, Cueto VR, Diniz-Filho JAF, Villalobos F. Drivers of Phylogenetic Assemblage Structure of the Furnariides, a Widespread Clade of Lowland Neotropical Birds. Am Nat 2018; 193:E41-E56. [PMID: 30720362 DOI: 10.1086/700696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Species co-occurrence in local assemblages is shaped by distinct processes at different spatial and temporal scales. Here we focus on historical explanations and examine the phylogenetic structure of local assemblages of the Furnariides clade (Aves: Passeriformes), assessing the influence of diversification rates on the assembly and species co-occurrence within those assemblages. Using 120 local assemblages across Bolivia and Argentina and a nearly complete phylogeny for the clade, we analyzed assemblage phylogenetic structure, applying a recently developed model (DAMOCLES, or dynamic assembly model of colonization, local extinction, and speciation) accounting for the historical processes of speciation, colonization, and local extinction. We also evaluated how diversification rates determine species co-occurrence. We found that the assembly of Furnariides assemblages can be explained largely by speciation, colonization, and local extinction without invoking current local species interactions. Phylogenetic structure of open habitat assemblages mainly showed clustering, characterized by faster rates of colonization and local extinction than in forest habitats, whereas forest habitat assemblages were congruent with the model's equal rates expectation, thus highlighting the influence of habitat preferences on assembly and co-occurrence patterns. Our results suggest that historical processes are sufficient to explain local assemblage phylogenetic structure, while there is little evidence for species ecological interactions in avian assemblage diversity and composition.
Collapse
|
26
|
Remeš V, Harmáčková L. Disentangling direct and indirect effects of water availability, vegetation, and topography on avian diversity. Sci Rep 2018; 8:15475. [PMID: 30341321 PMCID: PMC6195560 DOI: 10.1038/s41598-018-33671-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/21/2018] [Indexed: 12/24/2022] Open
Abstract
Climate is a major driver of species diversity. However, its effect can be either direct due to species physiological tolerances or indirect, whereby wetter climates facilitate more complex vegetation and consequently higher diversity due to greater resource availability. Yet, studies quantifying both direct and indirect effects of climate on multiple dimensions of diversity are rare. We used extensive data on species distributions, morphological and ecological traits, and vegetation across Australia to quantify both direct (water availability) and indirect (habitat diversity and canopy height) effects of climate on the species richness (SR), phylogenetic diversity (PD), and functional diversity (FD) of 536 species of birds. Path analyses revealed that SR increased with wetter climates through both direct and indirect effects, lending support for the influence of both physiological tolerance and vegetation complexity. However, residual PD and residual FD (adjusted for SR by null models) were poorly predicted by environmental conditions. Thus, the FD and PD of Australian birds mostly evolved in concert with SR, with the possible exception of the higher-than-expected accumulation of avian lineages in wetter and more productive areas in northern and eastern Australia (with high residual PD), permitted probably by older biome age.
Collapse
Affiliation(s)
- Vladimír Remeš
- Department of Zoology and Laboratory of Ornithology, Faculty of Science, Palacky University, 17. listopadu 50, 77146, Olomouc, Czech Republic.
| | - Lenka Harmáčková
- Department of Zoology and Laboratory of Ornithology, Faculty of Science, Palacky University, 17. listopadu 50, 77146, Olomouc, Czech Republic.
| |
Collapse
|
27
|
Rabosky DL. Phylogenetic tests for evolutionary innovation: the problematic link between key innovations and exceptional diversification. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0417. [PMID: 29061890 DOI: 10.1098/rstb.2016.0417] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2017] [Indexed: 11/12/2022] Open
Abstract
Evolutionary innovation contributes to the spectacular diversity of species and phenotypes across the tree of life. 'Key innovations' are widely operationalized within evolutionary biology as traits that facilitate increased diversification rates, such that lineages bearing the traits ultimately contain more species than closely related lineages lacking the focal trait. In this article, I briefly review the inference, analysis and interpretation of evolutionary innovation on phylogenetic trees. I argue that differential rates of lineage diversification should not be used as the basis for key innovation tests, despite the statistical tractability of such approaches. Under traditional interpretations of the macroevolutionary 'adaptive zone', we should not necessarily expect key innovations to confer faster diversification rates upon lineages that possess them relative to their extant sister clades. I suggest that a key innovation is a trait that allows a lineage to interact with the environment in a fundamentally different way and which, as a result, increases the total diversification-but not necessarily the diversification rate-of the parent clade. Considered alone, branching patterns in phylogenetic trees are poorly suited to the inference of evolutionary innovation due to their inherently low information content with respect to the processes that produce them. However, phylogenies may be important for identifying transformational shifts in ecological and morphological space that are characteristic of innovation at the macroevolutionary scale.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'.
Collapse
Affiliation(s)
- Daniel L Rabosky
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1079, USA
| |
Collapse
|
28
|
García-Navas V, Rodríguez-Rey M, Marki PZ, Christidis L. Environmental determinism, and not interspecific competition, drives morphological variability in Australasian warblers (Acanthizidae). Ecol Evol 2018; 8:3871-3882. [PMID: 29721264 PMCID: PMC5916309 DOI: 10.1002/ece3.3925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 01/12/2018] [Accepted: 01/23/2018] [Indexed: 01/11/2023] Open
Abstract
Interspecific competition is thought to play a key role in determining the coexistence of closely related species within adaptive radiations. Competition for ecological resources can lead to different outcomes from character displacement to, ultimately, competitive exclusion. Accordingly, divergent natural selection should disfavor those species that are the most similar to their competitor in resource use, thereby increasing morphological disparity. Here, we examined ecomorphological variability within an Australo‐Papuan bird radiation, the Acanthizidae, which include both allopatric and sympatric complexes. In addition, we investigated whether morphological similarities between species are related to environmental factors at fine scale (foraging niche) and/or large scale (climate). Contrary to that predicted by the competition hypothesis, we did not find a significant correlation between the morphological similarities found between species and their degree of range overlap. Comparative modeling based on both a priori and data‐driven identification of selective regimes suggested that foraging niche is a poor predictor of morphological variability in acanthizids. By contrast, our results indicate that climatic conditions were an important factor in the formation of morphological variation. We found a significant negative correlation between species scores for PC1 (positively associated to tarsus length and tail length) and both temperature and precipitation, whereas PC2 (positively associated to bill length and wing length) correlated positively with precipitation. In addition, we found that species inhabiting the same region are closer to each other in morphospace than to species outside that region regardless of genus to which they belong or its foraging strategy. Our results indicate that the conservative body form of acanthizids is one that can work under a wide variety of environments (an all‐purpose morphology), and the observed interspecific similarity is probably driven by the common response to environment.
Collapse
Affiliation(s)
- Vicente García-Navas
- Department of Integrative Ecology Estación Biológica de Doñana (EBD-CSIC) Seville Spain
| | | | - Petter Z Marki
- Center for Macroecology, Evolution and Climate Natural History Museum of Denmark University of Copenhagen Copenhagen Denmark.,Natural History Museum University of Oslo Oslo Norway
| | - Les Christidis
- National Marine Science Centre Southern Cross University Lismore NSW Australia.,School of BioSciences University of Melbourne Parkville Vic. Australia
| |
Collapse
|
29
|
Leighton GM, Lees AC, Miller ET. The hairy–downy game revisited: an empirical test of the interspecific social dominance mimicry hypothesis. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Miller ET, Bonter DN, Eldermire C, Freeman BG, Greig EI, Harmon LJ, Lisle C, Hochachka WM. Fighting over food unites the birds of North America in a continental dominance hierarchy. Behav Ecol 2017. [DOI: 10.1093/beheco/arx108] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
31
|
Friedman NR, Harmáčková L, Economo EP, Remeš V. Smaller beaks for colder winters: Thermoregulation drives beak size evolution in Australasian songbirds. Evolution 2017; 71:2120-2129. [DOI: 10.1111/evo.13274] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 04/30/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Nicholas R. Friedman
- Department of Zoology and Laboratory of Ornithology; Palacký University; Tř. 17 listopadu 50 Olomouc 77900 Czech Republic
- Okinawa Institute of Science and Technology Graduate University; 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - Lenka Harmáčková
- Department of Zoology and Laboratory of Ornithology; Palacký University; Tř. 17 listopadu 50 Olomouc 77900 Czech Republic
| | - Evan P. Economo
- Okinawa Institute of Science and Technology Graduate University; 1919-1 Tancha Onna-son 904-0495 Okinawa Japan
| | - Vladimír Remeš
- Department of Zoology and Laboratory of Ornithology; Palacký University; Tř. 17 listopadu 50 Olomouc 77900 Czech Republic
| |
Collapse
|