1
|
Sandmeier FC. Quantification of Thermal Acclimation in Immune Functions in Ectothermic Animals. BIOLOGY 2024; 13:179. [PMID: 38534449 DOI: 10.3390/biology13030179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
This short review focuses on current experimental designs to quantify immune acclimation in animals. Especially in the face of rapidly changing thermal regimes, thermal acclimation of immune function has the potential to impact host-pathogen relationships and the fitness of hosts. While much of the field of ecoimmunology has focused on vertebrates and insects, broad interest in how animals can acclimate to temperatures spans taxa. The literature shows a recent increase in thermal acclimation studies in the past six years. I categorized studies as focusing on (1) natural thermal variation in the environment (e.g., seasonal), (2) in vivo manipulation of animals in captive conditions, and (3) in vitro assays using biological samples taken from wild or captive animals. I detail the strengths and weaknesses of these approaches, with an emphasis on mechanisms of acclimation at different levels of organization (organismal and cellular). These two mechanisms are not mutually exclusive, and a greater combination of the three techniques listed above will increase our knowledge of the diversity of mechanisms used by animals to acclimate to changing thermal regimes. Finally, I suggest that functional assays of immune system cells (such as quantification of phagocytosis) are an accessible and non-taxa-specific way to tease apart the effects of animals upregulating quantities of immune effectors (cells) and changes in the function of immune effectors (cellular performance) due to structural changes in cells such as those of membranes and enzymes.
Collapse
|
2
|
Ding Z, Wang X, Zou T, Hao X, Zhang Q, Sun B, Du W. Climate warming has divergent physiological impacts on sympatric lizards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168992. [PMID: 38052387 DOI: 10.1016/j.scitotenv.2023.168992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Climate warming is expected to affect the vulnerability of sympatric species differentially due to their divergent traits, but the underlying physiological mechanisms of those impacts are poorly understood. We conducted field warming experiments (present climate vs. warm climate) using open-top chambers to determine the effects of climate warming on active body temperature, oxidative damage, immune competence, growth and survival in two sympatric desert-dwelling lizards, Eremias multiocellata and Eremias argus from May 2019 to September 2020. Our climate warming treatment did not affect survival of the two species, but it did increase active body temperatures and growth rate in E. multiocellata compared to E. argus. Climate warming also induced greater oxidative damage (higher malondialdehyde content and catalase activity) in E. multiocellata, but not in E. argus. Further, climate warming increased immune competence in E. multiocellata, but decreased immune competence in E. argus, with regards to white blood cell counts, bacteria killing ability and relative expression of immunoglobulin M. Our results suggest that climate warming enhances body temperature, and thereby oxidative stress, immune competence and growth in E. multiocellata, but decreases immune competence of E. argus, perhaps as a cost of thermoregulation to maintain body temperatures under climate warming. The divergent physiological effects of climate warming on sympatric species may have profound ecological consequences if it eventually leads to changes in reproductive activities, population dynamics and community structure. Our study highlights the importance of considering interspecific differences in physiological traits when we evaluate the impact of climate warming on organisms, even for those closely-related species coexisting within the same geographical area.
Collapse
Affiliation(s)
- Zihan Ding
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Xifeng Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingting Zou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Xin Hao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Qiong Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baojun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiguo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
3
|
Han X, Sun B, Zhang Q, Teng L, Zhang F, Liu Z. Metabolic regulation reduces the oxidative damage of arid lizards in response to moderate heat events. Integr Zool 2023. [PMID: 37897215 DOI: 10.1111/1749-4877.12784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Climate warming poses a significant threat to species worldwide, particularly those inhabiting arid and semi-arid regions where extreme temperatures are increasingly prevalent. However, empirical studies investigating how moderate heat events affect the physiological processes of arid and semi-arid animals are largely scarce. To address this knowledge gap, we used an arid and semi-arid lizard species (Phrynocephalus przewalskii) as a study system. We manipulated thermal environments to simulate moderate heat events (43.5 ± 0.3°C during the heating period) for lizards and examined physiological and biochemical traits related to survival, metabolism, locomotion, oxidative stress, and telomere length. We found that the body condition and survival of the lizards were not significantly affected by moderate heat events, despite an increase in body temperature and a decrease in locomotion at high test temperatures were detected. Mechanistically, we found that the lizards exhibited down-regulated metabolic rates and enhanced activities of antioxidative enzymes, resulting in reduced oxidative damage and stable telomere length under moderate heat events. Based on these findings, which indicated a beneficial regulation of fitness by physiological and biochemical processes, we inferred that moderate heat events did not have a detrimental effect on the toad-headed agama, P. przewalskii. Overall, our research contributes to understanding the impacts of moderate heat events on arid and semi-arid species and highlights the adaptive responses and resilience exhibited by the toad-headed agama in the face of climate warming.
Collapse
Affiliation(s)
- Xingzhi Han
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Baojun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qiong Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liwei Teng
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, China
- Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, China
| | - Fushun Zhang
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, Inner Mongolia, China
| | - Zhensheng Liu
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, China
- Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, China
| |
Collapse
|
4
|
Ton R, Boner W, Raveh S, Monaghan P, Griffith SC. Effects of heat waves on telomere dynamics and parental brooding effort in nestlings of the zebra finch (Taeniopygia castanotis) transitioning from ectothermy to endothermy. Mol Ecol 2023; 32:4911-4920. [PMID: 37395529 DOI: 10.1111/mec.17064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
Heat waves are predicted to be detrimental for organismal physiology with costs for survival that could be reflected in markers of biological state such as telomeres. Changes in early life telomere dynamics driven by thermal stress are of particular interest during the early post-natal stages of altricial birds because nestlings quickly shift from being ectothermic to endothermic after hatching. Telomeres of ectothermic and endothermic organisms respond differently to environmental temperature, but few investigations within species that transition from ectothermy to endothermy are available. Also, ambient temperature influences parental brooding behaviour, which will alter the temperature experienced by offspring and thereby, potentially, their telomeres. We exposed zebra finch nestlings to experimental heat waves and compared their telomere dynamics to that of a control group at 5, 12 and 80 days of age that encapsulate the transition from the ectothermic to the endothermic thermoregulatory stage; we also recorded parental brooding, offspring sex, mass, growth rates, brood size and hatch order. Nestling mass showed an inverse relationship with telomere length, and nestlings exposed to heat waves showed lower telomere attrition during their first 12 days of life (ectothermic stage) compared to controls. Additionally, parents of heated broods reduced the time they spent brooding offspring (at 5 days old) compared to controls. Our results indicate that the effect of heat waves on telomere dynamics likely varies depending on age and thermoregulatory stage of the offspring in combination with parental brooding behaviour during growth.
Collapse
Affiliation(s)
- Riccardo Ton
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Winnie Boner
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Shirley Raveh
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Pat Monaghan
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Simon C Griffith
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Dallas JW, Warne RW. Ranavirus infection does not reduce heat tolerance in a larval amphibian. J Therm Biol 2023; 114:103584. [PMID: 37209633 DOI: 10.1016/j.jtherbio.2023.103584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/22/2023]
Abstract
Extreme heat events and emerging infectious diseases negatively impact wildlife populations, but the interacting effects of infection and host heat tolerance remain understudied. The few studies covering this subject have demonstrated that pathogens lower the heat tolerance of their hosts, which places infected hosts at a greater risk experiencing lethal heat stress. Here, we studied how ranavirus infection influenced heat tolerance in larval wood frogs (Lithobates sylvaticus). In line with similar studies, we predicted the elevated costs of ranavirus infection would lower heat tolerance, measured as critical thermal maximum (CTmax), compared to uninfected controls. Ranavirus infection did not reduce CTmax and there was a positive relationship between CTmax and viral loads. Our results demonstrate that ranavirus-infected wood frog larvae had no loss in heat tolerance compared to uninfected larvae, even at viral loads associated with high mortality rates, which contradicts the common pattern for other pathogenic infections in ectotherms. Larval anurans may prioritize maintenance of their CTmax when infected with ranavirus to promote selection of warmer temperatures during behavioral fever that can improve pathogen clearance. Our study represents the first to examine the effect of ranavirus infection on host heat tolerance, and because no decline in CTmax was observed, this suggests that infected hosts would not be under greater risk of heat stress.
Collapse
Affiliation(s)
- Jason W Dallas
- School of Biological Sciences, Southern Illinois University Carbondale, 1125 Lincoln Street, Carbondale, IL, 62901, USA.
| | - Robin W Warne
- School of Biological Sciences, Southern Illinois University Carbondale, 1125 Lincoln Street, Carbondale, IL, 62901, USA
| |
Collapse
|
6
|
Messina S, Costantini D, Eens M. Impacts of rising temperatures and water acidification on the oxidative status and immune system of aquatic ectothermic vertebrates: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161580. [PMID: 36646226 DOI: 10.1016/j.scitotenv.2023.161580] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Species persistence in the Anthropocene is dramatically threatened by global climate change. Large emissions of carbon dioxide (CO2) from human activities are driving increases in mean temperature, intensity of heatwaves, and acidification of oceans and freshwater bodies. Ectotherms are particularly sensitive to CO2-induced stressors, because the rate of their metabolic reactions, as well as their immunological performance, are affected by environmental temperatures and water pH. We reviewed and performed a meta-analysis of 56 studies, involving 1259 effect sizes, that compared oxidative status or immune function metrics between 42 species of ectothermic vertebrates exposed to long-term increased temperatures or water acidification (≥48 h), and those exposed to control parameters resembling natural conditions. We found that CO2-induced stressors enhance levels of molecular oxidative damages in ectotherms, while the activity of antioxidant enzymes was upregulated only at higher temperatures, possibly due to an increased rate of biochemical reactions dependent on the higher ambient temperature. Differently, both temperature and water acidification showed weak impacts on immune function, indicating different direction (increase or decrease) of responses among immune traits. Further, we found that the intensity of temperature treatments (Δ°C) and their duration, enhance the physiological response of ectotherms, pointing to stronger effects of prolonged extreme warming events (i.e., heatwaves) on the oxidative status. Finally, adult individuals showed weaker antioxidant enzymatic responses to an increase in water temperature compared to early life stages, suggesting lower acclimation capacity. Antarctic species showed weaker antioxidant response compared to temperate and tropical species, but level of uncertainty in the antioxidant enzymatic response of Antarctic species was high, thus pairwise comparisons were statistically non-significant. Overall, the results of this meta-analysis indicate that the regulation of oxidative status might be one key mechanism underlying thermal plasticity in aquatic ectothermic vertebrates.
Collapse
Affiliation(s)
- Simone Messina
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Ecological and Biological Sciences, Tuscia University, Largo dell'Università s.n.c., 01100 Viterbo, Italy.
| | - David Costantini
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell'Università s.n.c., 01100 Viterbo, Italy; Unité Physiologie Moléculaire et Adaptation, UMR 7221, Muséum National d'Histoire Naturelle, CNRS - 7 rue Cuvier, 75005 Paris, France
| | - Marcel Eens
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
7
|
Lima AS, de Figueredo AC, Floreste FR, Garcia Neto PG, Gomes FR, Titon SCM. Temperature Extreme Events Decrease Endocrine and Immune Reactive Scope in Bullfrogs (Lithobates catesbeianus). Integr Comp Biol 2022; 62:1671-1682. [PMID: 35771987 DOI: 10.1093/icb/icac105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/05/2023] Open
Abstract
Currently, effects of increased atmospheric temperature, in the context of ongoing climate change, have been investigated in multiple organisms and levels of biological organization. While there has been a focus on the impacts of increased mean temperature, an emergent and equally important point is the consequences of recurrent exposure to extreme temperature events, simulating heat waves. This study investigated the effects of serial exposure to high temperatures on immune and endocrine variables before and after exposure to an acute secondary stressor in bullfrogs (Lithobates catesbeianus). Adult males were divided into three groups and subjected to three thermal regimes: control (c; constant 22°C); experimental 1 (E1; kept at 22°C and exposed to 4 days of 30°C every 16 days); and experimental 2 (E2; kept at 22°C and exposed to 4 days of 30°C every 6 days). Blood samples were collected on the last day of key extreme heat events. Two weeks after the last extreme heat event, animals were subjected to restraint stress (1 h) and sampled again. Blood samples were used to determine neutrophil: lymphocyte ratio, plasma bacterial killing ability, as well as, corticosterone and plasma testosterone levels. Overall, we found exposure to extreme heat events did not affect immune and endocrine variables over time. Meanwhile, the previous exposure to extreme heat events modulated the responsiveness to restraint. The amplitude of increased corticosterone plasma levels and neutrophil: lymphocyte ratio in response to restraint decreased with the number of previous exposures to extreme heat events. These results suggest that exposure to extreme climatic events has hidden effects on bullfrog's stress response, expressed as diminished reactive scope to a novel stressor. This represents a highly deleterious facet of climate change since diminished responsiveness prevents proper coping with wildlife challenges.
Collapse
Affiliation(s)
- Alan Siqueira Lima
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Aymam Cobo de Figueredo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Felipe Rangel Floreste
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Patrício Getúlio Garcia Neto
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Stefanny Christie Monteiro Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| |
Collapse
|
8
|
Slama SL, Williams GS, Painter MN, Sheedy MD, Sandmeier FC. Temperature and Season Influence Phagocytosis by B1 Lymphocytes in the Mojave Desert Tortoise. Integr Comp Biol 2022; 62:1683-1692. [PMID: 35536570 DOI: 10.1093/icb/icac025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/05/2023] Open
Abstract
Lymphocytes are usually interpreted as functioning in adaptive immunity despite evidence that large proportions of these cells (B1 lymphocytes) have innate immune functions, including phagocytosis, in the peripheral blood of ectothermic vertebrates. We used a recently optimized assay to assess environmental influences on phagocytic activity of lymphocytes isolated from the Mojave desert tortoise (Gopherus agassizii). Previous studies suggest that lymphocytes in this species are associated with reduced pathogen loads, especially in cooler climates, and that lymphocyte numbers fluctuate seasonally. Thus, we evaluated thermal dependence of phagocytic activity in vitro and across seasons. While B1 lymphocytes appeared to be cold-adapted and always increased phagocytosis at cool temperatures, we also found evidence of thermal acclimation. Tortoises upregulated these lymphocytes during cooler seasons in the fall as their preferred body temperatures dropped, and phagocytosis also increased in efficiency during this same time. Like many other ectothermic species, populations of desert tortoises are in decline, in part due to a cold-adapted pathogen that causes chronic respiratory disease. Future studies, similarly focused on the function of B1 lymphocytes, could serve to uncover new patterns in thermal acclimation of immune functions and disease ecology across taxa of ectothermic vertebrates.
Collapse
Affiliation(s)
- Summer L Slama
- Department of Biology, Colorado State University-Pueblo, 2200 Bonforte Blvd Pueblo, CO 81001, USA
| | - Grace S Williams
- Department of Biology, Colorado State University-Pueblo, 2200 Bonforte Blvd Pueblo, CO 81001, USA
| | - Mariah N Painter
- Department of Biology, Colorado State University-Pueblo, 2200 Bonforte Blvd Pueblo, CO 81001, USA
| | - Maxwell D Sheedy
- Department of Biology, Colorado State University-Pueblo, 2200 Bonforte Blvd Pueblo, CO 81001, USA
| | - Franziska C Sandmeier
- Department of Biology, Colorado State University-Pueblo, 2200 Bonforte Blvd Pueblo, CO 81001, USA
| |
Collapse
|
9
|
Tao W, Ou J, Wu D, Zhang Q, Han X, Xie L, Li S, Zhang Y. Heat wave induces oxidative damage in the Chinese pond turtle (Mauremys reevesii) from low latitudes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1053260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
IntroductionGlobal warming has led to frequent heat waves, causing global organisms to face severe survival challenges. However, the way in which heat waves threaten the fitness and survival of animals remains largely unclear. Oxidative damage and immunity are widely considered the link between heat waves and threats to animals.MethodsTo evaluate the oxidative damage caused by heat waves and to reveal the physiological resistance to heat waves by the antioxidant defense of animals from different latitudes, we exposed both high-latitude (Zhejiang) and low-latitude (Hainan) populations of Chinese pond turtle (Mauremys reevesii) to simulate heat waves and a moderate thermal environment for 1 week, respectively. Next, we compared the oxidative damage by malondialdehyde (MDA) and antioxidant capacity by superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and total antioxidant capacity (T-AOC) in the liver tissues and evaluated the innate immunity by serum complement protein levels (C3, C4) and lysozyme activity in plasma of turtles.Results and discussionWe found that heat waves significantly increased the content of MDA and the activity of CAT, whereas it decreased the activity of SOD, T-AOC, and GSH/GSSG in turtles from low latitudes. Furthermore, heat waves increased CAT activity but decreased GSH/GSSG in turtles from high latitudes. Although the turtles from high latitudes had higher levels of innate immunity, the heat waves did not affect the innate immunity of C3, C4, or lysozyme in either population. These results indicate that the low-latitude population suffered higher oxidative damage with lower antioxidant capacities. Therefore, we predict that Chinese pond turtles from low latitudes may be more vulnerable to heat waves caused by climate warming. This study reveals the physiological and biochemical resistance to heat waves in Chinese pond turtles from different latitudes and highlights the importance of integrative determination of fitness-related responses in evaluating the vulnerability of ectotherms from different latitudes to climate warming.
Collapse
|
10
|
Zhang H, Zhang X, Xu T, Li X, Storey KB, Chen Q, Niu Y. Effects of acute heat exposure on oxidative stress and antioxidant defenses in overwintering frogs, Nanorana parkeri. J Therm Biol 2022; 110:103355. [DOI: 10.1016/j.jtherbio.2022.103355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022]
|
11
|
Absence of mitochondrial responses in muscles of zebrafish exposed to several heat waves. Comp Biochem Physiol A Mol Integr Physiol 2022; 274:111299. [PMID: 36031060 DOI: 10.1016/j.cbpa.2022.111299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/31/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022]
Abstract
Heat waves are extreme thermal events whose frequency and intensity will increase with global warming. As metabolic responses to temperature are time-dependent, we explored the effects of an exposure to several heat waves on the mitochondrial metabolism of zebrafish Danio rerio. For this purpose, zebrafish were acclimated at 26 °C or 31 °C for 4 weeks and some fish acclimated at 26 °C underwent 2 types of heat waves: 2 periods of 5 days at 31 °C or 10 days at 31 °C. After this acclimation period, mitochondrial respiration of red muscle fibres was measured at 26 °C and 31 °C for each fish, with the phosphorylation (OXPHOS) and basal (LEAK) respirations obtained with activation of complex I, complex II or complexes I and II. The respiratory control ratio (RCR) and the mitochondrial aerobic scope (CAS) were also calculated at both temperatures after the activation of complexes I and II. Under our conditions, heat waves did not result in variations in any mitochondrial parameters, suggesting a high tolerance of zebrafish to environmental temperature fluctuations. However, an acute in vitro warming led to an increase in the LEAK respiration together with a higher temperature effect on complex II than complex I, inducing a decrease of mitochondrial efficiency to produce energy at high temperatures. Increased interindividual variability for some parameters at 26 °C or 31 °C also suggests that each individual has its own ability to cope with temperature fluctuations.
Collapse
|
12
|
Dezetter M, Le Galliard JF, Leroux-Coyau M, Brischoux F, Angelier F, Lourdais O. Two stressors are worse than one: combined heatwave and drought affect hydration state and glucocorticoid levels in a temperate ectotherm. J Exp Biol 2022; 225:274818. [PMID: 35319758 DOI: 10.1242/jeb.243777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/14/2022] [Indexed: 11/20/2022]
Abstract
Heatwaves and droughts are becoming more intense and frequent with climate change. These extreme weather events often occur simultaneously and may alter organismal physiology, yet their combined impacts remain largely unknown. Here, we experimentally investigated physiological responses of a temperate ectotherm, the asp viper (Vipera aspis), to a simulated heatwave and drought. We applied a two-by-two factorial design by manipulating the daily temperature cycle (control vs. heatwave) and the water availability (water available vs. water-deprived) over a month followed by exposure to standard thermal conditions with ad libium access to water. Simulated heatwave and water deprivation additively increased mass loss, while water deprivation led to greater plasma osmolality (dehydration). Mass gain from drinking after the treatment period was higher in vipers from the heatwave and water-deprived group suggesting that thirst was synergistically influenced by thermal and water constraints. Heatwave conditions and water deprivation also additively increased baseline corticosterone levels but did not influence basal metabolic rates and plasma markers of oxidative stress. Our results demonstrate that a short-term exposure to combined heatwave and drought can exacerbate physiological stress through additive effects, and interactively impact behavioral responses to dehydration. Considering combined effects of temperature and water availability is thus crucial to assess organismal responses to climate change.
Collapse
Affiliation(s)
- Mathias Dezetter
- Sorbonne University, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (iEES Paris), 4 Place Jussieu, 75252 Paris Cedex 5, France.,Centre d'étude biologique de Chizé, UMR 7372 CNRS-La Rochelle Université, , 79360, Villiers en Bois, France
| | - Jean-François Le Galliard
- Sorbonne University, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (iEES Paris), 4 Place Jussieu, 75252 Paris Cedex 5, France.,Ecole normale supérieure, PSL University, Département de biologie, CNRS, UMS 3194, Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), 11 chemin de Busseau, 77140 Saint-Pierre-lès-Nemours, France
| | - Mathieu Leroux-Coyau
- Sorbonne University, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (iEES Paris), 4 Place Jussieu, 75252 Paris Cedex 5, France
| | - François Brischoux
- Centre d'étude biologique de Chizé, UMR 7372 CNRS-La Rochelle Université, , 79360, Villiers en Bois, France
| | - Fréderic Angelier
- Centre d'étude biologique de Chizé, UMR 7372 CNRS-La Rochelle Université, , 79360, Villiers en Bois, France
| | - Olivier Lourdais
- Centre d'étude biologique de Chizé, UMR 7372 CNRS-La Rochelle Université, , 79360, Villiers en Bois, France.,School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|
13
|
Kunze C, Luijckx P, Jackson AL, Donohue I. Alternate patterns of temperature variation bring about very different disease outcomes at different mean temperatures. eLife 2022; 11:e72861. [PMID: 35164901 PMCID: PMC8846586 DOI: 10.7554/elife.72861] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
The dynamics of host-parasite interactions are highly temperature-dependent and may be modified by increasing frequency and intensity of climate-driven heat events. Here, we show that altered patterns of temperature variance lead to an almost order-of-magnitude shift in thermal performance of host and pathogen life-history traits over and above the effects of mean temperature and, moreover, that different temperature regimes affect these traits differently. We found that diurnal fluctuations of ±3°C lowered infection rates and reduced spore burden compared to constant temperatures in our focal host Daphnia magna exposed to the microsporidium parasite Ordospora colligata. In contrast, a 3-day heatwave (+6°C) did not affect infection rates, but increased spore burden (relative to constant temperatures with the same mean) at 16°C, while reducing burden at higher temperatures. We conclude that changing patterns of climate variation, superimposed on shifts in mean temperatures due to global warming, may have profound and unanticipated effects on disease dynamics.
Collapse
Affiliation(s)
- Charlotte Kunze
- Institute for Chemistry and Biology of the Marine Environment [ICBM], Carl von Ossietzky University of OldenburgOldenburgGermany
- Department of Zoology, School of Natural Sciences, Trinity College DublinDublinIreland
| | - Pepijn Luijckx
- Department of Zoology, School of Natural Sciences, Trinity College DublinDublinIreland
| | - Andrew L Jackson
- Department of Zoology, School of Natural Sciences, Trinity College DublinDublinIreland
| | - Ian Donohue
- Department of Zoology, School of Natural Sciences, Trinity College DublinDublinIreland
| |
Collapse
|
14
|
He J, Tang X, Pu P, Zhang T, Niu Z, Meng F, Xi L, Ma M, Wu J, Ma M, Chen Q. Influence of High Temperatures and Heat Wave on Thermal Biology, Locomotor Performance, and Antioxidant System of High-Altitude Frog Nanorana pleskei Endemic to Qinghai-Tibet Plateau. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.763191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Investigating how highland amphibians respond to changes in ambient temperature may be of great significance for their fate prediction and effective conservation in the background of global warming. Here, using field individuals as the control group, we investigated the influence of high temperatures (20.5 and 25.5°C) and heat wave (15–26.6°C) on the thermal preference, critical thermal limits, locomotor performance, oxidative stress, and antioxidant enzyme activities in high-altitude frog Nanorana pleskei (3,490 m) endemic to the Qinghai-Tibet Plateau (QTP). After 2 weeks of acclimation to high temperatures and heat wave, the thermal preference (Tpref), critical thermal maximum (CTmax), and range of tolerable temperature significantly increased, while the critical thermal minimum (CTmin) was significantly decreased. The total time of jump to exhaustion significantly decreased, and burst swimming speed significantly increased in frogs acclimated in the high temperature and heat wave groups compared with the field group. In the high temperature group, the level of H2O2 and lipid peroxide (malondialdehyde, MDA), as well as the activities of glutathione peroxidase (GPX), glutathione reductase (GR), catalase (CAT), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) significantly increased in the liver or muscle. However, in the heat wave group, the MDA content significantly decreased in the liver, and antioxidants activities decreased in the liver and muscle except for CAT activities that were significantly increased in the liver. These results indicated that N. pleskei could respond to the oxidative stress caused by high temperatures by enhancing the activity of antioxidant enzymes. The heat wave did not appear to cause oxidative damage in N. pleskei, which may be attributed to the fact that they have successfully adapted to the dramatic temperature fluctuations on the QTP.
Collapse
|
15
|
Scheun J, Campbell R, Ganswindt A, McIntyre T. Hot and bothered: alterations in faecal glucocorticoid metabolite concentrations of the sungazer lizard, Smaug giganteus, in response to an increase in environmental temperature. AFRICAN ZOOLOGY 2021. [DOI: 10.1080/15627020.2021.1980103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- J Scheun
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
- National Zoological Garden, South African National Biodiversity Institute, Pretoria, South Africa
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - R Campbell
- National Zoological Garden, South African National Biodiversity Institute, Pretoria, South Africa
| | - A Ganswindt
- National Zoological Garden, South African National Biodiversity Institute, Pretoria, South Africa
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - T McIntyre
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
16
|
Ritchie DJ, Friesen CR. Invited review: Thermal effects on oxidative stress in vertebrate ectotherms. Comp Biochem Physiol A Mol Integr Physiol 2021; 263:111082. [PMID: 34571153 DOI: 10.1016/j.cbpa.2021.111082] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Human-induced climate change is occurring rapidly. Ectothermic organisms are particularly vulnerable to these temperature changes due to their reliance on environmental temperature. The extent of ectothermic thermal adaptation and plasticity in the literature is well documented; however, the role of oxidative stress in these processes needs more attention. Oxidative stress occurs when reactive oxygen species, generated mainly through aerobic respiration, overwhelm antioxidant defences and damage crucial biomolecules. The effects of oxidative damage include the alteration of life-history traits and reductions in whole-organism fitness. Here we review the literature addressing experimental temperature effects on oxidative stress in vertebrate ectotherms. Acute and acclimation temperature treatments produce distinctly different results and highlight the role of phylogeny and thermal adaptation in shaping oxidative stress responses. Acute treatments on organisms adapted to stable environments generally produced significant oxidative stress responses, whilst organisms adapted to variable conditions exhibited capacity to cope with temperature changes and mitigate oxidative stress. In acclimation treatments, the temperature treatments higher than optimal temperatures tended to produce significantly less oxidative stress than lower temperatures in reptiles, whilst in some eurythermal fish species, no oxidative stress response was observed. These results highlight the importance of phylogeny and adaptation to past environmental conditions for temperature-dependent oxidative stress responses. We conclude with recommendations on experimental procedures to investigate these phenomena with reference to thermal plasticity, adaptation and biogeographic variation that provide the most significant benefits to adaptable populations. These results have potential conservation ramifications as they may shed light on the physiological effects of temperature alterations in some vertebrate ectotherms.
Collapse
Affiliation(s)
- Daniel J Ritchie
- School of Earth, Atmospheric and Life Sciences, The University of Wollongong, 2522 Wollongong, New South Wales, Australia
| | - Christopher R Friesen
- School of Earth, Atmospheric and Life Sciences, The University of Wollongong, 2522 Wollongong, New South Wales, Australia; School of Life and Environmental Sciences, University of Sydney, Heydon-Laurence Bldg A08, Science Road, Sydney, NSW 2006, Australia.
| |
Collapse
|
17
|
Strohecker J, Golladay J, Paramo M, Paramo M, El Rahmany W, Blackstone NW. Reactive Oxygen Species and the Stress Response in Octocorals. Physiol Biochem Zool 2021; 94:394-410. [PMID: 34542375 DOI: 10.1086/716857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractReactive oxygen species (ROS) may damage cellular components but may also contribute to signaling that mitigates damage. In this context, the role of ROS in the stress response that leads to coral bleaching was investigated in three series of experiments with octocorals Sarcothelia sp. and Sympodium sp. Using video and fluorescent microscopy, the first experiments examined ROS and symbiont migration. Colonies mildly stressed with increased temperature and light showed increases in both ROS and numbers of migrating symbionts compared with stress-free controls. Symbionts migrating in the gastrovascular lumen may escape programmed cell death and provide a reservoir of healthy symbionts once conditions return to normal. In the second series of experiments, colonies were mildly stressed with elevated temperature and light. During stress, treated colonies were incubated in seawater enriched with two concentrations of bicarbonate (1 and 3 mmol/L), while controls were incubated in normal seawater. Bicarbonate enrichment provides additional carbon for photosynthesis and at some concentrations diminished the ROS emissions of stressed colonies of Sympodium sp. and Sarcothelia sp. In all experiments, the latter species tended to exhibit more ROS. Sympodium sp. contains Cladocopium sp. symbionts, which are less tolerant of stress, while Sarcothelia sp. contains the more resistant Durusdinium sp. Indeed, in direct comparisons, Sarcothelia sp. experienced higher levels of ROS under stress-free conditions and thus is conditioned to endure the stress associated with bleaching. Generally, ROS levels provide important insight into the cnidarian stress response and should be measured more often in studies of this response.
Collapse
|
18
|
Li S, Li J, Chen W, Xu Z, Xie L, Zhang Y. Effects of Simulated Heat Wave on Oxidative Physiology and Immunity in Asian Yellow Pond Turtle (Mauremys mutica). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.704105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Global warming has led to an increase in the frequency, duration, and intensity of heat waves in the summer, which can cause frequent and acute heat stress on ectotherms. Thus, determining how ectothermic animals respond to heat waves has been attracting growing interest among ecologists. However, the physiological and biochemical responses to heat waves in reptiles, especially aquatic reptiles, are still poorly understood. The current study investigated the oxidant physiology, immunity, and expression levels of heat shock proteins (HSP) mRNA after exposure to a simulated heat wave (1 week, 35 ± 4°C), followed by a recovery period (1 week, 28 ± 4°C) in juvenile Asian yellow pond turtle (Mauremys mutica), a widely farmed aquatic turtle in East Asia. The contents of malondialdehyde (MDA) in the liver and muscle were not significantly affected by the heat wave or recovery. Of all antioxidant enzymes, only the activity of glutathione peroxidase (GSH-Px) in muscles increased after heat wave, while the total superoxide dismutase (T-SOD), catalase activity (CAT), and total antioxidant capacity (T-AOC) did not change during the study. The organo-somatic index for the liver and spleen of M. mutica decreased after the heat wave but increased to the initial level after recovery. In contrast, plasma lysozyme activity and serum complement C4 levels increased after the heat wave, returning to the control level after recovery. In addition, heat waves did not alter the relative expression of HSP60, HSP70, and HSP90 mRNA in the liver. Eventually, heat wave slightly increased the IBR/n index. Therefore, our results suggested that heat waves did not lead to oxidative damage to lipids in M. mutica, but deleteriously affected the turtles’ immune organs. Meanwhile, the constitutive levels of most antioxidative enzyme activities, HSPs and enhanced blood immune functions might protect the turtles from the threat of heat waves under the current climate scenarios.
Collapse
|
19
|
Madelaire CB, Zena LA, Dillon D, Silva DP, Hunt KE, Loren Buck C, Bícego KC, Gomes FR. Who rules over immunology? Sseasonal variation in body temperature,, steroid hormones, and immune variables in a tegu lizard. Integr Comp Biol 2021; 61:1867-1880. [PMID: 34022037 DOI: 10.1093/icb/icab093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multiple factors can influence the immune response of ectothermic vertebrates, including body temperature, gonadal steroids, and seasonality, in ways that are thought to reflect trade-offs between energetic investment in immunity vs. reproduction. Hibernating tegu lizards (Salvator merianae) are a unique model to investigate how immunocompetence might be influenced by different factors during their annual cycle. We assessed immunological measures (plasma bacterial killing ability, total and differential leukocyte count), plasma hormone levels (testosterone in males, estradiol and progesterone in females, and corticosterone in both sexes), body temperature, and body condition from adult tegus during each stage of their annual cycle: reproduction, post-reproduction/preparation for hibernation, and hibernation. Our hypothesis that immune traits present higher values during the reproductive phase, and a sharp decrease during hibernation, was partially supported. Immune variables did not change between life history stages, except for total number of leukocytes, which was higher at the beginning of the reproductive season (September) in both males and females. Average body temperature of the week prior to sampling was positively correlated with number of eosinophils, basophils, monocytes and azurophils, corroborating other studies showing that when animals maintain a high Tb, there is an increase in immune activity. Surprisingly, no clear relationship between immune traits and gonadal steroids or corticosterone levels was observed, even when including life history stage in the model. When gonadal hormones peaked in males and females, heterophil:lymphocyte ratio (which often elevates during physiological stress) also increased. Additionally, we did not observe any trade-off between reproduction and immunity traits, sex differences in immune traits or a correlation between body condition and immune response. Our results suggest that variation in patterns of immune response and correlations with body condition and hormone secretion across the year can depend upon the specific hormone and immune trait, and that experienced Tb is an important variable determining immune response in ectotherms.
Collapse
Affiliation(s)
- Carla B Madelaire
- Department of Biological Sciences, Northern Arizona University, 1899 S San Francisco St, Flagstaff, AZ, 86001, USA.,Department of Physiology, Institute of Biosciences, University of São Paulo, Trav. 14 da Rua do Matão, 321, São Paulo, SP, 05508-090, Brazil
| | - Lucas A Zena
- Department of Biological Sciences, Northern Arizona University, 1899 S San Francisco St, Flagstaff, AZ, 86001, USA.,Department of Physiology, Institute of Biosciences, University of São Paulo, Trav. 14 da Rua do Matão, 321, São Paulo, SP, 05508-090, Brazil.,Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Danielle Dillon
- Department of Biological Sciences, Northern Arizona University, 1899 S San Francisco St, Flagstaff, AZ, 86001, USA
| | - Diego P Silva
- Smithsonian-Mason School of Conservation & George Mason University, 1500 Remount Rd, Front Royal, VA, 22630, USA
| | - Kathleen E Hunt
- Department of Biological Sciences, Northern Arizona University, 1899 S San Francisco St, Flagstaff, AZ, 86001, USA
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, 1899 S San Francisco St, Flagstaff, AZ, 86001, USA
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University, Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Fernando R Gomes
- Department of Physiology, Institute of Biosciences, University of São Paulo, Trav. 14 da Rua do Matão, 321, São Paulo, SP, 05508-090, Brazil
| |
Collapse
|
20
|
Rutschmann A, Dupoué A, Miles DB, Megía-Palma R, Lauden C, Richard M, Badiane A, Rozen-Rechels D, Brevet M, Blaimont P, Meylan S, Clobert J, Le Galliard JF. Intense nocturnal warming alters growth strategies, colouration and parasite load in a diurnal lizard. J Anim Ecol 2021; 90:1864-1877. [PMID: 33884616 DOI: 10.1111/1365-2656.13502] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/06/2021] [Indexed: 11/27/2022]
Abstract
In the past decades, nocturnal temperatures have been playing a disproportionate role in the global warming of the planet. Yet, they remain a neglected factor in studies assessing the impact of global warming on natural populations. Here, we question whether an intense augmentation of nocturnal temperatures is beneficial or deleterious to ectotherms. Physiological performance is influenced by thermal conditions in ectotherms and an increase in temperature by only 2°C is sufficient to induce a disproportionate increase in metabolic expenditure. Warmer nights may expand ectotherms' species thermal niche and open new opportunities for prolonged activities and improve foraging efficiency. However, increased activity may also have deleterious effects on energy balance if exposure to warmer nights reduces resting periods and elevates resting metabolic rate. We assessed whether warmer nights affected an individual's growth, dorsal skin colouration, thermoregulation behaviour, oxidative stress status and parasite load by exposing yearling common lizards (Zootoca vivipara) from four populations to either ambient or high nocturnal temperatures for approximately 5 weeks. Warmer nocturnal temperatures increased the prevalence of ectoparasitic infestation and altered allocation of resources towards structural growth rather than storage. We found no change in markers for oxidative stress. The thermal treatment did not influence thermal preferences, but influenced dorsal skin brightness and luminance, in line with a predicted acclimation response in colder environments to enhance heat gain from solar radiation. Altogether, our results highlight the importance of considering nocturnal warming as an independent factor affecting ectotherms' life history in the context of global climate change. .
Collapse
Affiliation(s)
- Alexis Rutschmann
- USR5321, CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Moulis, France.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Andréaz Dupoué
- INRA, IRD, CNRS, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES)-Paris, Sorbonne Université, Paris, France
| | - Donald B Miles
- USR5321, CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Moulis, France.,Department of Biological Sciences, Ohio University, Athens, OH, USA
| | - Rodrigo Megía-Palma
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Vairão, Portugal.,School of Pharmacy, Department of Biomedicine and Biotechnology, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Clémence Lauden
- USR5321, CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Moulis, France
| | - Murielle Richard
- USR5321, CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Moulis, France
| | - Arnaud Badiane
- INRA, IRD, CNRS, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES)-Paris, Sorbonne Université, Paris, France
| | - David Rozen-Rechels
- INRA, IRD, CNRS, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES)-Paris, Sorbonne Université, Paris, France.,Centre d'Études Biologiques de Chizé, CNRS, La Rochelle Université, Villiers-en-Bois, France
| | - Mathieu Brevet
- USR5321, CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Moulis, France
| | | | - Sandrine Meylan
- INRA, IRD, CNRS, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES)-Paris, Sorbonne Université, Paris, France
| | - Jean Clobert
- USR5321, CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), Moulis, France
| | - Jean-François Le Galliard
- INRA, IRD, CNRS, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES)-Paris, Sorbonne Université, Paris, France.,Centre de Recherche en Écologie Expérimentale et Prédictive (CEREEP-Ecotron Ile De France), Département de Biologie, Ecole Normale Supérieure, CNRS, PSL University, Saint-Pierre-lès-Nemours, France
| |
Collapse
|
21
|
Jacobs PJ, Oosthuizen MK, Mitchell C, Blount JD, Bennett NC. Oxidative stress in response to heat stress in wild caught Namaqua rock mice, Micaelamys namaquensis. J Therm Biol 2021; 98:102958. [PMID: 34016369 DOI: 10.1016/j.jtherbio.2021.102958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 11/27/2022]
Abstract
Modelling of anthropogenic induced climate suggests more frequent and severe heatwaves in the future, which are likely to result in the mass die-off of several species of organisms. Oxidative stress induced by severe heat stress has previously been associated with a reduction in animal cognitive performance, depressed reproduction and lower life expectancy. Little is known about the non-lethal consequences of species should they survive extreme heat exposure. We investigated the oxidative stress experienced by the Namaqua rock mouse, a nocturnal rodent, using two experimental heat stress protocols, a 6 hour acute heat stress protocol without access to water and a 3-day heatwave simulation with ad libitum water. Oxidative stress was determined in the liver, kidney and brain using malondialdehyde (MDA) and protein carbonyl (PC) as markers of oxidative damage, and superoxide dismutase (SOD) and total antioxidant capacity (TAC) as markers of antioxidant defence. Incubator heat stress (heat and dehydration stress) was brought about by increasing the body temperatures of animals to 39-40.8 °C for 6 hours. Following incubator heat stress, significantly higher levels of MDA were observed in the liver. Dehydration did not explain the variation in oxidative markers and is likely a combined effect of thermal and dehydration stress. Individual body mass was significantly negatively correlated to kidney SOD and lipid peroxidation. A heatwave was simulated using a temperature cycle that would naturally occur during a heatwave in the species' local habitat, with a maximal ambient temperature of 38 °C. Following the simulated heatwave, SOD activity of the kidney demonstrated significantly lowered activity suggesting oxidative stress. Current heat waves in this species have the potential of causing oxidative stress. Heat and dehydration stress following exacerbated temperatures are likely to incur significant oxidative stress in multiple tissues demonstrating the importance of water availability to allow for rehydration to prevent oxidative stress.
Collapse
Affiliation(s)
- Paul J Jacobs
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, 0002, South Africa.
| | - M K Oosthuizen
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, 0002, South Africa.
| | - C Mitchell
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK.
| | - J D Blount
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK.
| | - N C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|
22
|
Spence AR, French SS, Hopkins GR, Durso AM, Hudson SB, Smith GD, Neuman‐Lee LA. Long‐term monitoring of two snake species reveals immune–endocrine interactions and the importance of ecological context. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 333:744-755. [DOI: 10.1002/jez.2442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/18/2020] [Accepted: 12/10/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Austin R. Spence
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs Connecticut USA
| | - Susannah S. French
- Department of Biology, Ecology Center Utah State University Logan Utah USA
| | | | - Andrew M. Durso
- Department of Biological Sciences Florida Gulf Coast University Fort Myers Florida USA
| | - Spencer B. Hudson
- Department of Biology, Ecology Center Utah State University Logan Utah USA
| | - Geoffrey D. Smith
- Department of Biological Sciences Dixie State University St. George Utah USA
| | - Lorin A. Neuman‐Lee
- Department of Biological Sciences Arkansas State University Jonesboro Arkansas USA
| |
Collapse
|
23
|
Slama SL, Painter MN, Sheedy MD, Sandmeier FC. Quantifying phagocytic lymphocytes in ectothermic vertebrates: A simplified technique for assessing immune function. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Jacobs PJ, Oosthuizen MK, Mitchell C, Blount JD, Bennett NC. Heat and dehydration induced oxidative damage and antioxidant defenses following incubator heat stress and a simulated heat wave in wild caught four-striped field mice Rhabdomys dilectus. PLoS One 2020; 15:e0242279. [PMID: 33186409 PMCID: PMC7665817 DOI: 10.1371/journal.pone.0242279] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/29/2020] [Indexed: 01/22/2023] Open
Abstract
Heat waves are known for their disastrous mass die-off effects due to dehydration and cell damage, but little is known about the non-lethal consequences of surviving severe heat exposure. Severe heat exposure can cause oxidative stress which can have negative consequences on animal cognition, reproduction and life expectancy. We investigated the current oxidative stress experienced by a mesic mouse species, the four striped field mouse, Rhabdomys dilectus through a heat wave simulation with ad lib water and a more severe temperature exposure with minimal water. Wild four striped field mice were caught between 2017 and 2019. We predicted that wild four striped field mice in the heat wave simulation would show less susceptibility to oxidative stress as compared to a more severe heat stress which is likely to occur in the future. Oxidative stress was determined in the liver, kidney and brain using malondialdehyde (MDA) and protein carbonyl (PC) as markers for oxidative damage, and superoxide dismutase (SOD) and total antioxidant capacity (TAC) as markers of antioxidant defense. Incubator heat stress was brought about by increasing the body temperatures of animals to 39-40.8°C for 6 hours. A heat wave (one hot day, followed by a 3-day heatwave) was simulated by using temperature cycle that wild four striped field mice would experience in their local habitat (determined through weather station data using temperature and humidity), with maximal ambient temperature of 39°C. The liver and kidney demonstrated no changes in the simulated heat wave, but the liver had significantly higher SOD activity and the kidney had significantly higher lipid peroxidation in the incubator experiment. Dehydration significantly contributed to the increase of these markers, as is evident from the decrease in body mass after the experiment. The brain only showed significantly higher lipid peroxidation following the simulated heat wave with no significant changes following the incubator experiment. The significant increase in lipid peroxidation was not correlated to body mass after the experiment. The magnitude and duration of heat stress, in conjunction with dehydration, played a critical role in the oxidative stress experienced by each tissue, with the results demonstrating the importance of measuring multiple tissues to determine the physiological state of an animal. Current heat waves in this species have the potential of causing oxidative stress in the brain with future heat waves to possibly stress the kidney and liver depending on the hydration state of animals.
Collapse
Affiliation(s)
- Paul J. Jacobs
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - M. K. Oosthuizen
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - C. Mitchell
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Jonathan D. Blount
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Nigel C. Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
25
|
Zimmerman LM. The reptilian perspective on vertebrate immunity: 10 years of progress. J Exp Biol 2020; 223:223/21/jeb214171. [DOI: 10.1242/jeb.214171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ABSTRACT
Ten years ago, ‘Understanding the vertebrate immune system: insights from the reptilian perspective’ was published. At the time, our understanding of the reptilian immune system lagged behind that of birds, mammals, fish and amphibians. Since then, great progress has been made in elucidating the mechanisms of reptilian immunity. Here, I review recent discoveries associated with the recognition of pathogens, effector mechanisms and memory responses in reptiles. Moreover, I put forward key questions to drive the next 10 years of research, including how reptiles are able to balance robust innate mechanisms with avoiding self-damage, how B cells and antibodies are used in immune defense and whether innate mechanisms can display the hallmarks of memory. Finally, I briefly discuss the links between our mechanistic understanding of the reptilian immune system and the field of eco-immunology. Overall, the field of reptile immunology is poised to contribute greatly to our understanding of vertebrate immunity in the next 10 years.
Collapse
|
26
|
Schwanz LE, Crawford-Ash J, Gale T. Context dependence of transgenerational plasticity: the influence of parental temperature depends on offspring environment and sex. Oecologia 2020; 194:391-401. [DOI: 10.1007/s00442-020-04783-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/09/2020] [Indexed: 01/13/2023]
|
27
|
Burraco P, Orizaola G, Monaghan P, Metcalfe NB. Climate change and ageing in ectotherms. GLOBAL CHANGE BIOLOGY 2020; 26:5371-5381. [PMID: 32835446 DOI: 10.1111/gcb.15305] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Human activity is changing climatic conditions at an unprecedented rate. The impact of these changes may be especially acute on ectotherms since they have limited capacities to use metabolic heat to maintain their body temperature. An increase in temperature is likely to increase the growth rate of ectothermic animals, and may also induce thermal stress via increased exposure to heat waves. Fast growth and thermal stress are metabolically demanding, and both factors can increase oxidative damage to essential biomolecules, accelerating the rate of ageing. Here, we explore the potential impact of global warming on ectotherm ageing through its effects on reactive oxygen species production, oxidative damage, and telomere shortening, at the individual and intergenerational levels. Most evidence derives primarily from vertebrates, although the concepts are broadly applicable to invertebrates. We also discuss candidate mechanisms that could buffer ectotherms from the potentially negative consequences of climate change on ageing. Finally, we suggest some potential applications of the study of ageing mechanisms for the implementation of conservation actions. We find a clear need for more ecological, biogeographical, and evolutionary studies on the impact of global climate change on patterns of ageing rates in wild populations of ectotherms facing warming conditions. Understanding the impact of warming on animal life histories, and on ageing in particular, needs to be incorporated into the design of measures to preserve biodiversity to improve their effectiveness.
Collapse
Affiliation(s)
- Pablo Burraco
- Institute of Biodiversity, Animal Health, and Comparative Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Germán Orizaola
- IMIB-Biodiversity Research Institute (Univ. Oviedo-CSIC-Principado Asturias), Mieres-Asturias, Spain
- Zoology Unit, Department of Organisms and Systems Biology, University of Oviedo, Oviedo-Asturias, Spain
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health, and Comparative Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - Neil B Metcalfe
- Institute of Biodiversity, Animal Health, and Comparative Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
28
|
Han X, Hao X, Wang Y, Wang X, Teng L, Liu Z, Zhang F, Zhang Q. Experimental warming induces oxidative stress and immunosuppression in a viviparous lizard, Eremias multiocellata. J Therm Biol 2020; 90:102595. [DOI: 10.1016/j.jtherbio.2020.102595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/30/2020] [Accepted: 04/11/2020] [Indexed: 12/18/2022]
|
29
|
Armour EM, Bruner TL, Hines JK, Butler MW. Low-dose immune challenges result in detectable levels of oxidative damage. J Exp Biol 2020; 223:jeb220095. [PMID: 32054680 DOI: 10.1242/jeb.220095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/10/2020] [Indexed: 08/26/2023]
Abstract
Infection can result in substantial costs to animals, so they frequently respond by removing infectious agents with an immune response. However, immune responses entail their own costs, including upregulation of processes that destroy pathogens (e.g. the production of reactive oxygen species) and processes that limit the extent of self-damage during the immune response (e.g. production of anti-inflammatory proteins such as haptoglobin). Here, we simulated bacterial infection across a 1000-fold range using lipopolysaccharide (LPS) administered to northern bobwhite quail (Colinus virginianus), and quantified metrics related to pro-inflammatory conditions [i.e. generation of oxidative damage (d-ROMs), depletion of antioxidant capacity], anti-inflammatory mechanisms (i.e. production of haptoglobin, expression of the enzyme heme oxygenase, production of the organic molecule biliverdin) and nutritional physiology (e.g. circulating triglyceride levels, maintenance of body mass). We detected increases in levels of haptoglobin and d-ROMs even at LPS doses that are 1/1000th the concentration of doses frequently used in ecoimmunological studies, while loss of body mass and decreases in circulating triglycerides manifested only in individuals receiving the highest dose of LPS (1 mg LPS kg-1 body mass), highlighting variation among dose-dependent responses. Additionally, individuals that lost body mass during the course of the experiment had lower levels of circulating triglycerides, and those with more oxidative damage had greater levels of heme oxygenase expression, which highlights the complex interplay between pro- and anti-inflammatory processes. Because low doses of LPS may simulate natural infection levels, variation in dose-dependent physiological responses may be particularly important in modeling how free-living animals navigate immune challenges.
Collapse
Affiliation(s)
- Ellen M Armour
- Department of Biology, Lafayette College, Easton, PA 18042, USA
| | - Taylor L Bruner
- Department of Chemistry, Lafayette College, Easton, PA 18042, USA
| | - Justin K Hines
- Department of Chemistry, Lafayette College, Easton, PA 18042, USA
| | | |
Collapse
|
30
|
Bury S, Cierniak A, Jakóbik J, Sadowska ET, Cichoń M, Bauchinger U. Cellular Turnover: A Potential Metabolic Rate-Driven Mechanism to Mitigate Accumulation of DNA Damage. Physiol Biochem Zool 2020; 93:90-96. [PMID: 32011970 DOI: 10.1086/707506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Oxidative stress, the imbalance of reactive oxygen species and antioxidant capacity, may cause damage to biomolecules pivotal for cellular processes (e.g., DNA). This may impair physiological performance and, therefore, drive life-history variation and aging rate. Because aerobic metabolism is supposed to be the main source of such oxidative risk, the rate of oxygen consumption should be positively associated with the level of damage and/or antioxidants. Empirical support for such relationships remains unclear, and recent considerations suggest even a negative relationship between metabolic rate and oxidative stress. We investigated the relationship between standard metabolic rate (SMR), antioxidants, and damage in blood plasma and erythrocytes for 35 grass snakes (Natrix natrix). Reactive oxygen metabolites (dROMs) and nonenzymatic antioxidants were assessed in plasma, while two measures of DNA damage and the capacity to neutralize H2O2 were measured in erythrocytes. Plasma antioxidants showed no correlation to SMR, and the level of dROMs was positively related to SMR. A negative relationship between antioxidant capacity and SMR was found in erythrocytes, but no association of SMR with either measure of DNA damage was detected. No increase in DNA damage, despite lower antioxidant capacity at high SMR, indicates an upregulation in other defense mechanisms (e.g., damage repair and/or removal). Indeed, we observed a higher frequency of immature red blood cells in individuals with higher SMR, which indicates that highly metabolic individuals had increased erythrocyte turnover, a mechanism of damage removal. Such DNA protection through upregulated cellular turnover might explain the negligible senescence observed in some ectotherm taxa.
Collapse
|
31
|
Locomotor activity in field captured crepuscular four-striped field mice, Rhabdomys dilectus and nocturnal Namaqua rock mice, Micaelamys namaquensis during a simulated heat wave. J Therm Biol 2020; 87:102479. [DOI: 10.1016/j.jtherbio.2019.102479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/04/2019] [Accepted: 12/01/2019] [Indexed: 11/19/2022]
|
32
|
Stahlschmidt ZR, Jeong N, Johnson D, Meckfessel N. From phenoloxidase to fecundity: food availability does not influence the costs of oxidative challenge in a wing-dimorphic cricket. J Comp Physiol B 2019; 190:17-26. [PMID: 31720761 DOI: 10.1007/s00360-019-01244-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/30/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022]
Abstract
Stressed animals often struggle to maintain optimal investment into a number of fitness-related traits, which can result in some traits being more adversely affected than others. Variation in stress-related costs may also depend on the environment-costs can be facultative and only occur when resources are limited, or they may be obligate and occur regardless of resource availability. Dynamics of oxidative stress may be important in life-history evolution given their role in a range of biological processes-from reproduction to immunity to locomotion. Thus, we examined how resource (food) availability influences the costs of oxidative challenge to fitness-related traits spanning several levels of biological organization. We manipulated food availability and oxidative status in females of the wing-dimorphic sand field cricket (Gryllus firmus) during early adulthood. We then determined investment into several traits: reproduction (ovary mass), soma (body mass and flight musculature), and immune function (total phenoloxidase activity). Oxidative challenge (paraquat exposure) obligated costs to somatic tissue and a parameter of immune function regardless of food availability, but it did not affect reproduction. We show that the costs of oxidative challenge are trait-specific, but we did not detect a facultative (food-dependent) cost of oxidative challenge to any trait measured. Although the dynamics of oxidative stress are complex, our study is an important step toward a more complete understanding of the roles that resource availability and redox systems play in mediating life histories.
Collapse
Affiliation(s)
| | - N Jeong
- University of the Pacific, Stockton, CA, 95211, USA
| | - D Johnson
- University of the Pacific, Stockton, CA, 95211, USA
| | - N Meckfessel
- University of the Pacific, Stockton, CA, 95211, USA
| |
Collapse
|
33
|
Neuman-Lee LA, Van Wettere AJ, French SS. Interrelations among Multiple Metrics of Immune and Physiological Function in a Squamate, the Common Gartersnake (Thamnophis sirtalis). Physiol Biochem Zool 2019; 92:12-23. [PMID: 30403915 DOI: 10.1086/700396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The field of ecoimmunology has made it clear that individual and ecological contexts are critical for interpreting an animal's immune response. In an effort to better understand the relevance of commonly used immunological assays, we tested how different metrics of immunity and physiological function were interrelated in naturally parasitized individuals of a well-studied reptile, the common gartersnake (Thamnophis sirtalis). Overall, we found that bactericidal ability, an integrative measure of innate immunity, was often correlated with more specific immunological and physiological tests (lysis and oxidative stress) but was not related to tissue-level inflammation that was determined by histopathology. The only hematological metric that correlated with tissue-level inflammation was the prevalence of monocytes in blood smears. Finally, using histological techniques, we describe natural parasitism throughout the organ systems in these individuals, finding that neither the presence nor the burden of parasite load affected the physiological and immune metrics that we measured. By performing comprehensive assessments of physiological and immune processes, we are better able to draw conclusions about how to interpret findings from specific assays in wild organisms.
Collapse
|
34
|
Roast MJ, Aulsebrook AE, Fan M, Hidalgo Aranzamendi N, Teunissen N, Peters A. Short-Term Climate Variation Drives Baseline Innate Immune Function and Stress in a Tropical Bird: A Reactive Scope Perspective. Physiol Biochem Zool 2019; 92:140-151. [PMID: 30689489 DOI: 10.1086/702310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Investment in immune function can be costly, and life-history theory predicts trade-offs between immune function and other physiological demands. Environmental heterogeneity may constrain or change the optimal strategy and thereby alter baseline immune function (possibly mediated by stress responses). We tested several hypotheses relating variation in climatic, ecological, and social environments to chronic stress and levels of baseline innate immunity in a wild, cooperatively breeding bird, the purple-crowned fairy-wren (Malurus coronatus coronatus). From samples collected biannually over 5 yr, we quantified three indexes of constitutive innate immune function (haptoglobin/PIT54, natural antibodies, complement activity) and one index of chronic stress (heterophil-lymphocyte ratio; <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>n</mml:mi><mml:mo>=</mml:mo><mml:mn>513</mml:mn><mml:mtext>-</mml:mtext><mml:mn>647</mml:mn></mml:mrow></mml:math> ). Using an information-theoretic and multimodel inference statistical approach, we found that habitat quality and social group size did not affect any immune index, despite hypothesized links to resource abundance and parasite pressure. Rather, short-term variation in temperature and rainfall was related to immune function, while overall differences between seasons were small or absent, despite substantial seasonal variation in climate. Contrary to our expectation, we found no evidence that physiological stress mediated any effects of short-term climatic variables on immune indexes, and alternative mechanisms may be involved. Our results may be interpreted from the perspective of reactive scope models, whereby predictive homeostasis maintains standing immune function relative to long-term demands, while short-term environmental change, being less predictable, has a greater influence on baseline immune function.
Collapse
|
35
|
Goessling JM, Ward C, Mendonça MT. Rapid thermal immune acclimation in common musk turtles (Sternotherus odoratus). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:185-191. [PMID: 30635984 DOI: 10.1002/jez.2252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 12/25/2022]
Abstract
As infectious diseases in ectothermic vertebrates increasingly threaten wild populations, understanding how host immune systems are affected by the environment is key to understanding the process of infection. In this study, we investigated how temperature change and simulated bacterial infection (via lipopolysaccharide [LPS] injection) interacted to regulate innate immunity, as measured by bactericidal ability (BA), phagocytosis rate, and heterophil:lymphocyte ratio (HLR) in common musk turtles (Sternotherus odoratus). We found that LPS stimulated an acute immune response, as measured by an increase in BA, phagocytosis rate, and HLR. When exposed to a 5 or 10°C temperature change for 48 hr, turtles rapidly acclimated to the new temperature by adjusting their immune output. This acclimation was compensatory as seen by elevated rates of immune output in colder animals and decreased rates of immune output in warmer animals. These results indicate that while temperature change may be a constraint on some animals, S. odoratus have the ability to rapidly adjust immunity to match environmental thermal demand. This rapid ability to adjust immunity may be related to the broad geographic distribution of musk turtles. Future research should focus on how immune acclimation in ectotherms varies both intraspecifically and interspecifically across regional scales and geographic distributions.
Collapse
Affiliation(s)
| | - Chelsea Ward
- Biology Department, Auburn University at Montgomery, Montgomery, Alabama
| | - Mary T Mendonça
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| |
Collapse
|
36
|
Fabrício-Neto A, Madelaire CB, Gomes FR, Andrade DV. Exposure to fluctuating temperatures leads to reduced immunity and to stress response in rattlesnakes. J Exp Biol 2019; 222:jeb.208645. [DOI: 10.1242/jeb.208645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/23/2019] [Indexed: 01/17/2023]
Abstract
Ectothermic organisms often experience considerable variation in their body temperature throughout the circadian cycle. However, studies focusing on the measurement of physiological traits are usually performed under constant temperature regimes. This mismatch between thermal exposure in the field and experimental conditions could act as a stressor agent, since physiological functions are strongly influenced by temperature. Herein, we asked the question whether constant thermal regimes would cause a stress response and impact the immunity of the South American rattlesnake (Crotalus durissus) when compared to a fluctuating thermal regime. We addressed this question by determining heterophil:lymphocyte ratio (H:L), plasma bacteria killing ability (BKA) and corticosterone levels (CORT) in snakes kept under a constant temperature regime at 30°C, and under a fluctuating regime that oscillated between 25°C at nighttime to 35°C at daytime. The experiments had a mirrored design, in which half of the snakes were subjected to a fluctuating-to-constant treatment, while the other half was exposed to a constant-to-fluctuating treatment. The shift from constant to fluctuating thermal regime was accompanied by an increase in plasma CORT levels indicating the activation of a stress response. Exposure to a fluctuating thermal regime at the onset of the experiments induced a decrease in the BKA of rattlesnakes. H:L was not affected by treatments and, therefore, the shift between thermal regimes seems to have acted as a low intensity stressor. Our results suggest that the removal from temperatures close to the snakés preferred body temperature triggers a stress response in rattlesnakes.
Collapse
Affiliation(s)
- Ailton Fabrício-Neto
- Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista, 13506-900, Rio Claro, São Paulo, Brazil
| | - Carla B. Madelaire
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, São Paulo, Brazil
| | - Fernando R. Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, São Paulo, Brazil
| | - Denis V. Andrade
- Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista, 13506-900, Rio Claro, São Paulo, Brazil
| |
Collapse
|
37
|
Bury S, Cichoń M, Bauchinger U, Sadowska ET. High oxidative stress despite low energy metabolism and vice versa: Insights through temperature acclimation in an ectotherm. J Therm Biol 2018; 78:36-41. [DOI: 10.1016/j.jtherbio.2018.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/26/2018] [Accepted: 08/06/2018] [Indexed: 01/30/2023]
|
38
|
Diele-Viegas LM, Rocha CFD. Unraveling the influences of climate change in Lepidosauria (Reptilia). J Therm Biol 2018; 78:401-414. [PMID: 30509664 DOI: 10.1016/j.jtherbio.2018.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/25/2018] [Accepted: 11/12/2018] [Indexed: 12/30/2022]
Abstract
In recent decades, changes in climate have caused impacts on natural and human systems on all continents and across the oceans and many species have shifted their geographic ranges, seasonal activities, migration patterns, abundances and interactions in response to these changes. Projections of future climate change are uncertain, but the Earth's warming is likely to exceed 4.8 °C by the end of 21th century. The vulnerability of a population, species, group or system due to climate change is a function of impact of the changes on the evaluated system (exposure and sensitivity) and adaptive capacity as a response to this impact, and the relationship between these elements will determine the degree of species vulnerability. Predicting the potential future risks to biodiversity caused by climate change has become an extremely active field of research, and several studies in the last two decades had focused on determining possible impacts of climate change on Lepidosaurians, at a global, regional and local level. Here we conducted a systematic review of published studies in order to seek to what extent the accumulated knowledge currently allow us to identify potential trends or patterns regarding climate change effects on lizards, snakes, amphisbaenians and tuatara. We conducted a literature search among online literature databases/catalogues and recorded 255 studies addressing the influence of climate change on a total of 1918 species among 49 Lepidosaurian's families. The first study addressing this subject is dated 1999. Most of the studies focused on species distribution, followed by thermal biology, reproductive biology, behavior and genetics. We concluded that an integrative approach including most of these characteristics and also bioclimatic and environmental variables, may lead to consistent and truly effective strategies for species conservation, aiming to buffer the climate change effects on this group of reptiles.
Collapse
|
39
|
Zhang Q, Han X, Hao X, Ma L, Li S, Wang Y, Du W. A simulated heat wave shortens the telomere length and lifespan of a desert lizard. J Therm Biol 2018; 72:94-100. [PMID: 29496020 DOI: 10.1016/j.jtherbio.2018.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/03/2018] [Accepted: 01/20/2018] [Indexed: 11/24/2022]
Abstract
Understanding how organisms respond to warming contributes important information to the conservation of biodiversity that is threatened by climate warming. Here, we conducted experiments on a desert agama (Phrynocephalus przewalskii) to test the hypothesis that climate warming (an increase in both mean temperature and heat waves) would induce oxidative stress, shortening telomere length, and thereby decreasing survival. Our results demonstrated that one week of exposure to a simulated heat wave significantly shortened telomere length, and decreased the overwinter survival of lizards, but mean temperature increase did not affect the survival of lizards. However, the antioxidant capacity (anti-oxidative enzyme) was not affected by the warming treatments. Therefore, heat waves might have negative impacts on the desert agama, with shortened telomeres likely causing the lifespan of lizards to decrease under climate warming.
Collapse
Affiliation(s)
- Qiong Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xingzhi Han
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, China
| | - Xin Hao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Ma
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shuran Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Weiguo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|