1
|
Cooperband MF, Murman KM. Spotted Lanternflies Respond to Natural Pheromone Lures for Mate-Finding and Oviposition. INSECTS 2024; 15:447. [PMID: 38921162 PMCID: PMC11203839 DOI: 10.3390/insects15060447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024]
Abstract
Using semiochemicals collected from spotted lanternflies Lycorma delicatula (Hemiptera: Fulgoridae) (SLF) and deployed in the field with circle traps, we demonstrated that SLF responded to SLF pheromones: in particular, this was the case for males while seeking mates and for females while ovipositing. The attractants consisted of SLF body extract emitted from diffuser lures and SLF honeydew on burlap ribbons, collected from heavily infested locations. Traps with attractants were deployed in field sites with very light SLF infestations to avoid competing signals of pre-existing aggregations. The number of SLF equivalents emitted by each diffuser per trapping period was used in a dose-response analysis. Three trees per block received either (1) a control hexane lure and a clean ribbon, (2) a lure containing SLF extract and a clean ribbon, or (3) a lure containing SLF extract and a honeydew-laden ribbon. Ten blocks were sampled three times per week for twelve weeks. We found a significant positive dose-response by males to SLF body extract only in the presence of SLF honeydew, indicating a synergistic effect between honeydew volatiles and body volatiles. This dose-response occurred for five weeks after mating started, after which males no longer responded. Subsequently, females had a significant positive dose-response to SLF extract only in the presence of honeydew when oviposition was their primary activity, continuing for two weeks, suggesting that females may use pheromones to aggregate for oviposition. The extract in the absence of honeydew did not result in a positive dose-response, nor did the hexane control. These findings suggest that SLF respond synergistically to the combination of pheromones present in both SLF honeydew and SLF bodies. Thus, combining key components from both sources may aid the development of semiochemical lures for SLF.
Collapse
Affiliation(s)
- Miriam F. Cooperband
- Forest Pest Methods Laboratory, USDA—APHIS—PPQ, 1398 W. Truck Rd., Buzzards Bay, MA 02542, USA
| | | |
Collapse
|
2
|
Mauck KE, Gebiola M, Percy DM. The Hidden Secrets of Psylloidea: Biology, Behavior, Symbionts, and Ecology. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:277-302. [PMID: 37738463 DOI: 10.1146/annurev-ento-120120-114738] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Psyllids constitute a diverse group of sap-feeding Sternorrhyncha that were relatively obscure until it was discovered that a handful of species transmit bacterial plant pathogens. Yet the superfamily Psylloidea is much richer than the sum of its crop-associated vectors, with over 4,000 described species exhibiting diverse life histories and host exploitation strategies. A growing body of research is uncovering fascinating insights into psyllid evolution, biology, behavior, and species interactions. This work has revealed commonalities and differences with better-studied Sternorrhyncha, as well as unique evolutionary patterns of lineage divergence and host use. We are also learning how psyllid evolution and foraging ecology underlie life history traits and the roles of psyllids in communities. At finer scales, we are untangling the web of symbionts across the psyllid family tree, linking symbiont and psyllid lineages, and revealing mechanisms underlying reciprocal exchange between symbiont and host. In this review, we synthesize and summarize key advances within these areas with a focus on free-living (nongalling) Psylloidea.
Collapse
Affiliation(s)
- Kerry E Mauck
- Department of Entomology, University of California, Riverside, California, USA; ,
| | - Marco Gebiola
- Department of Entomology, University of California, Riverside, California, USA; ,
| | - Diana M Percy
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada;
| |
Collapse
|
3
|
Ulyshen M, Urban-Mead KR, Dorey JB, Rivers JW. Forests are critically important to global pollinator diversity and enhance pollination in adjacent crops. Biol Rev Camb Philos Soc 2023; 98:1118-1141. [PMID: 36879466 DOI: 10.1111/brv.12947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
Although the importance of natural habitats to pollinator diversity is widely recognized, the value of forests to pollinating insects has been largely overlooked in many parts of the world. In this review, we (i) establish the importance of forests to global pollinator diversity, (ii) explore the relationship between forest cover and pollinator diversity in mixed-use landscapes, and (iii) highlight the contributions of forest-associated pollinators to pollination in adjacent crops. The literature shows unambiguously that native forests support a large number of forest-dependent species and are thus critically important to global pollinator diversity. Many pollinator taxa require or benefit greatly from resources that are restricted to forests, such as floral resources provided by forest plants (including wind-pollinated trees), dead wood for nesting, tree resins, and various non-floral sugar sources (e.g. honeydew). Although landscape-scale studies generally support the conclusion that forests enhance pollinator diversity, findings are often complicated by spatial scale, focal taxa, landscape context, temporal context, forest type, disturbance history, and external stressors. While some forest loss can be beneficial to pollinators by enhancing habitat complementarity, too much can result in the near-elimination of forest-associated species. There is strong evidence from studies of multiple crop types that forest cover can substantially increase yields in adjacent habitats, at least within the foraging ranges of the pollinators involved. The literature also suggests that forests may have enhanced importance to pollinators in the future given their role in mitigating the negative effects of pesticides and climate change. Many questions remain about the amount and configuration of forest cover required to promote the diversity of forest-associated pollinators and their services within forests and in neighbouring habitats. However, it is clear from the current body of knowledge that any effort to preserve native woody habitats, including the protection of individual trees, will benefit pollinating insects and help maintain the critical services they provide.
Collapse
Affiliation(s)
- Michael Ulyshen
- USDA Forest Service, 320 Green Street, Athens, GA, 30602, USA
| | - Katherine R Urban-Mead
- Department of Entomology, Cornell University, 129 Garden Avenue, Ithaca, NY, 14853, USA
- The Xerces Society for Invertebrate Conservation, Columbus, NJ, 08022, USA
| | - James B Dorey
- College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, SA, 5042, Australia
| | - James W Rivers
- Department of Forest Engineering, Resources, and Management, Oregon State University, 3100 SW Jefferson Way, Corvallis, OR, 97331, USA
| |
Collapse
|
4
|
Hoffmann BD. Honey bees are not attracted to multiple new ant bait matrices containing sugar. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:190-195. [PMID: 36111521 DOI: 10.1017/s0007485322000451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multiple new ant treatment products containing high volumes of sugar have recently been developed specifically for use in ant management programs. The presence of sugar in these products could potentially attract bees, and any such attractancy would likely be fatal given that these products typically contain general insecticides. To determine the risk of such products to bees I present four studies assessing bee attractancy to multiple matrices that are used to make these products. The trials were conducted across multiple years, seasons, and locations, containing various concentrations of sugar in multiple forms, using various experimental setups with many different bee hives, and multiple observers. Not a single bee was attracted to any matrix, nor were bees observed inspecting any matrix, and no bees fed on any matrix, irrespective of whether the matrices were placed close to hives and directly under bee flight paths, or out in areas where bees were feeding. This is in stark contrast to large numbers of bees that were feeding on flowers within the immediate vicinity of all of the matrices in the first two experiments, or flying over the arrays in experiments 3 and 4 travelling to and from other food sources. I present five suggestions for the discrepancy between the trials presented here and the general perception that bees are attracted to sugar. These matrices appear to be acceptable as a basis to make treatment products for broadscale use within ant management programs. However, it should be recognized that bees, and other non-target species, are indeed capable of feeding on these matrices. Therefore vigilance should still be maintained to identify special circumstances where bees may be killed when constituents are added to these matrices that do attract bees, or usage methods can adversely affect bees.
Collapse
Affiliation(s)
- Benjamin D Hoffmann
- CSIRO Health & Biosecurity, Tropical Ecosystems Research Centre, PMB 44, Winnellie, NT 0822, Australia
| |
Collapse
|
5
|
Değirmenci L, Rogé Ferreira FL, Vukosavljevic A, Heindl C, Keller A, Geiger D, Scheiner R. Sugar perception in honeybees. Front Physiol 2023; 13:1089669. [PMID: 36714315 PMCID: PMC9880324 DOI: 10.3389/fphys.2022.1089669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Honeybees (Apis mellifera) need their fine sense of taste to evaluate nectar and pollen sources. Gustatory receptors (Grs) translate taste signals into electrical responses. In vivo experiments have demonstrated collective responses of the whole Gr-set. We here disentangle the contributions of all three honeybee sugar receptors (AmGr1-3), combining CRISPR/Cas9 mediated genetic knock-out, electrophysiology and behaviour. We show an expanded sugar spectrum of the AmGr1 receptor. Mutants lacking AmGr1 have a reduced response to sucrose and glucose but not to fructose. AmGr2 solely acts as co-receptor of AmGr1 but not of AmGr3, as we show by electrophysiology and using bimolecular fluorescence complementation. Our results show for the first time that AmGr2 is indeed a functional receptor on its own. Intriguingly, AmGr2 mutants still display a wildtype-like sugar taste. AmGr3 is a specific fructose receptor and is not modulated by a co-receptor. Eliminating AmGr3 while preserving AmGr1 and AmGr2 abolishes the perception of fructose but not of sucrose. Our comprehensive study on the functions of AmGr1, AmGr2 and AmGr3 in honeybees is the first to combine investigations on sugar perception at the receptor level and simultaneously in vivo. We show that honeybees rely on two gustatory receptors to sense all relevant sugars.
Collapse
Affiliation(s)
- Laura Değirmenci
- Behavioral Physiology and Sociobiology, Biocenter, Julius-Maximilians-Universität Würzburg, Wuerzburg, Germany,*Correspondence: Laura Değirmenci, ; Fabio Luiz Rogé Ferreira,
| | - Fabio Luiz Rogé Ferreira
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Wuerzburg, Germany,*Correspondence: Laura Değirmenci, ; Fabio Luiz Rogé Ferreira,
| | - Adrian Vukosavljevic
- Behavioral Physiology and Sociobiology, Biocenter, Julius-Maximilians-Universität Würzburg, Wuerzburg, Germany
| | - Cornelia Heindl
- Behavioral Physiology and Sociobiology, Biocenter, Julius-Maximilians-Universität Würzburg, Wuerzburg, Germany
| | - Alexander Keller
- Organismic and Cellular Interactions, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dietmar Geiger
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Wuerzburg, Germany
| | - Ricarda Scheiner
- Behavioral Physiology and Sociobiology, Biocenter, Julius-Maximilians-Universität Würzburg, Wuerzburg, Germany
| |
Collapse
|
6
|
Calvo‐Agudo M, Tooker JF, Dicke M, Tena A. Insecticide-contaminated honeydew: risks for beneficial insects. Biol Rev Camb Philos Soc 2022; 97:664-678. [PMID: 34802185 PMCID: PMC9299500 DOI: 10.1111/brv.12817] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022]
Abstract
Honeydew is the sugar-rich excretion of phloem-feeding hemipteran insects such as aphids, mealybugs, whiteflies, and psyllids, and can be a main carbohydrate source for beneficial insects in some ecosystems. Recent research has revealed that water-soluble, systemic insecticides contaminate honeydew excreted by hemipterans that feed on plants treated with these insecticides. This contaminated honeydew can be toxic to beneficial insects, such as pollinators, parasitic wasps and generalist predators that feed on it. This route of exposure has now been demonstrated in three plant species, for five systemic insecticides and four hemipteran species; therefore, we expect this route to be widely available in some ecosystems. In this perspective paper, we highlight the importance of this route of exposure by exploring: (i) potential pathways through which honeydew might be contaminated with insecticides; (ii) hemipteran families that are more likely to excrete contaminated honeydew; and (iii) systemic insecticides with different modes of action that might contaminate honeydew through the plant. Furthermore, we analyse several model scenarios in Europe and/or the USA where contaminated honeydew could be problematic for beneficial organisms that feed on this ubiquitous carbohydrate source. Finally, we explain why this route of exposure might be important when exotic, invasive, honeydew-producing species are treated with systemic insecticides. Overall, this review opens a new area of research in the field of ecotoxicology to understand how insecticides can reach non-target beneficial insects. In addition, we aim to shed light on potential undescribed causes of insect declines in ecosystems where honeydew is an important carbohydrate source for insects, and advocate for this route of exposure to be included in future environmental risk assessments.
Collapse
Affiliation(s)
- Miguel Calvo‐Agudo
- Centro de Protección Vegetal y BiotecnologíaInstituto Valenciano de Investigaciones Agrarias (IVIA)Carretera de Moncada‐Náquera Km. 4,546113MoncadaValenciaSpain
- Laboratory of EntomologyWageningen UniversityPO Box 166700AAWageningenThe Netherlands
| | - John F. Tooker
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPA16802U.S.A.
| | - Marcel Dicke
- Laboratory of EntomologyWageningen UniversityPO Box 166700AAWageningenThe Netherlands
| | - Alejandro Tena
- Centro de Protección Vegetal y BiotecnologíaInstituto Valenciano de Investigaciones Agrarias (IVIA)Carretera de Moncada‐Náquera Km. 4,546113MoncadaValenciaSpain
| |
Collapse
|
7
|
Rusman Q, Karssemeijer PN, Lucas-Barbosa D, Poelman EH. Settling on leaves or flowers: herbivore feeding site determines the outcome of indirect interactions between herbivores and pollinators. Oecologia 2019; 191:887-896. [PMID: 31686227 PMCID: PMC6854048 DOI: 10.1007/s00442-019-04539-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/19/2019] [Indexed: 11/29/2022]
Abstract
Herbivore attack can alter plant interactions with pollinators, ranging from reduced to enhanced pollinator visitation. The direction and strength of effects of herbivory on pollinator visitation could be contingent on the type of plant tissue or organ attacked by herbivores, but this has seldom been tested experimentally. We investigated the effect of variation in feeding site of herbivorous insects on the visitation by insect pollinators on flowering Brassica nigra plants. We placed herbivores on either leaves or flowers, and recorded the responses of two pollinator species when visiting flowers. Our results show that variation in herbivore feeding site has profound impact on the outcome of herbivore–pollinator interactions. Herbivores feeding on flowers had consistent positive effects on pollinator visitation, whereas herbivores feeding on leaves did not. Herbivores themselves preferred to feed on flowers, and mostly performed best on flowers. We conclude that herbivore feeding site choice can profoundly affect herbivore–pollinator interactions and feeding site thereby makes for an important herbivore trait that can determine the linkage between antagonistic and mutualistic networks.
Collapse
Affiliation(s)
- Quint Rusman
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Peter N Karssemeijer
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Dani Lucas-Barbosa
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.,Bio-communication and Ecology, ETH Zürich, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
8
|
Harmon LJ, Andreazzi CS, Débarre F, Drury J, Goldberg EE, Martins AB, Melián CJ, Narwani A, Nuismer SL, Pennell MW, Rudman SM, Seehausen O, Silvestro D, Weber M, Matthews B. Detecting the macroevolutionary signal of species interactions. J Evol Biol 2019; 32:769-782. [DOI: 10.1111/jeb.13477] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Luke J. Harmon
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry Eawag Kastanienbaum Switzerland
- Department of Biological Sciences University of Idaho Moscow Idaho
| | | | - Florence Débarre
- Sorbonne Université, UPMC Univ Paris 06, CNRS, IRD, INRA, Université Paris Diderot, Institute of Ecology and Environmental Sciences (UMR7618) Paris France
| | | | - Emma E. Goldberg
- Department of Ecology, Evolution and Behavior University of Minnesota Saint Paul Minnesota
| | - Ayana B. Martins
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry Eawag Kastanienbaum Switzerland
- Instituto de Física ‘Gleb Wataghin’ Universidade Estadual de Campinas Campinas Brazil
| | - Carlos J. Melián
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry Eawag Kastanienbaum Switzerland
| | - Anita Narwani
- Department of Aquatic Ecology Swiss Federal Institute of Aquatic Science and Technology Eawag Dübendorf Switzerland
| | - Scott L. Nuismer
- Department of Biological Sciences University of Idaho Moscow Idaho
| | - Matthew W. Pennell
- Department of Zoology and Biodiversity Research Centre University of British Columbia Vancouver British Columbia
| | - Seth M. Rudman
- Department of Biology University of Pennsylvania Philadelphia Pennsylvania
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry Eawag Kastanienbaum Switzerland
- Institute of Ecology and Evolution University of Bern Bern Switzerland
| | - Daniele Silvestro
- Department of Biological and Environmental Sciences Global Gothenburg Biodiversity Centre University of Gothenburg Gothenburg Sweden
| | - Marjorie Weber
- Department of Plant Biology & Program in Ecology, Evolution, and Behavior Michigan State University East Lansing Michigan
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry Eawag Kastanienbaum Switzerland
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution University of Bern Bern Switzerland
| |
Collapse
|
9
|
Decades of native bee biodiversity surveys at Pinnacles National Park highlight the importance of monitoring natural areas over time. PLoS One 2019; 14:e0207566. [PMID: 30653514 PMCID: PMC6336250 DOI: 10.1371/journal.pone.0207566] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/17/2018] [Indexed: 11/19/2022] Open
Abstract
Thousands of species of bees are in global decline, yet research addressing the ecology and status of these wild pollinators lags far behind work being done to address similar impacts on the managed honey bee. This knowledge gap is especially glaring in natural areas, despite knowledge that protected habitats harbor and export diverse bee communities into nearby croplands where their pollination services have been valued at over $3 billion per year. Surrounded by ranches and farmlands, Pinnacles National Park in the Inner South Coast Range of California contains intact Mediterranean chaparral shrubland. This habitat type is among the most valuable for bee biodiversity worldwide, as well as one of the most vulnerable to agricultural conversion, urbanization and climate change. Pinnacles National Park is also one of a very few locations where extensive native bee inventory efforts have been repeated over time. This park thus presents a valuable and rare opportunity to monitor long-term trends and baseline variability of native bees in natural habitats. Fifteen years after a species inventory marked Pinnacles as a biodiversity hotspot for native bees, we resurveyed these native bee communities over two flowering seasons using a systematic, plot-based design. Combining results, we report a total of 450 bee species within this 109km2 natural area of California, including 48 new species records as of 2012 and 95 species not seen since 1999. As far as we are aware, this species richness marks Pinnacles National Park as one of the most densely diverse places known for native bees. We explore patterns of bee diversity across this protected landscape, compare results to other surveyed natural areas, and highlight the need for additional repeated inventories in protected areas over time amid widespread concerns of bee declines.
Collapse
|