1
|
Riecke TV, Hegelbach J, Schaub M. Reproductive senescence and mating tactic interact and conflict to drive reproductive success in a passerine. J Anim Ecol 2023; 92:838-849. [PMID: 36708046 DOI: 10.1111/1365-2656.13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/10/2023] [Indexed: 01/29/2023]
Abstract
An understanding of the drivers of individual fitness is a fundamental component of evolutionary ecology and life-history theory. Reproductive senescence, mate and mating tactic choice and latent heterogeneity in individual quality interact to affect individual fitness. We sought to disentangle the effects of these fitness drivers, where longitudinal data are required to understand their respective impacts. We used reproductive allocation and success data from a long-term (1989-2018) study of white-throated dippers Cinclus cinclus in Switzerland to simultaneously examine the effects of female and male age, mating tactic, nest initiation date and individual heterogeneity on reproductive performance. We modelled quadratic and categorical effects of age on reproductive parameters. The probability of polygyny increased with age in both sexes before declining in older age classes. Similarly, hatching probability in monogamous pairs and the number of nestlings hatched in both monogamous and polygynous pairs increased with female age before declining later in life. As predicted, offspring survival in monogamous pairs increased with male age before declining in older age classes, but male age had no effect on offspring survival in polygynous nesting attempts. Our results demonstrate that parental age, mating tactic and individual heterogeneity all affect reproductive success, and that the impacts of senescent decline are expressed across different demographic components as a function of sex-specific senescent decline and mating tactic.
Collapse
Affiliation(s)
| | - Johann Hegelbach
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
2
|
Maney DL, Küpper C. Supergenes on steroids. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200507. [PMID: 35634926 PMCID: PMC9149793 DOI: 10.1098/rstb.2020.0507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/18/2021] [Indexed: 07/20/2023] Open
Abstract
At the birth of supergenes, the genomic landscape is dramatically re-organized leading to pronounced differences in phenotypes and increased intrasexual diversity. Two of the best-studied supergenes in vertebrates are arguably the inversion polymorphisms on chromosomes 2 and 11 in the white-throated sparrow (Zonotrichia albicollis) and the ruff (Calidris pugnax), respectively. In both species, regions of suppressed recombination determine plumage coloration and social behavioural phenotypes. Despite the apparent lack of gene overlap between these two supergenes, in both cases the alternative phenotypes seem to be driven largely by alterations in steroid hormone pathways. Here, we explore the interplay between genomic architecture and steroid-related genes. Due to the highly pleiotropic effects of steroid-related genes and their universal involvement in social behaviour and transcriptomic regulation, processes favouring their linkage are likely to have substantial effects on the evolution of behavioural phenotypes, individual fitness, and life-history strategies. We propose that inversion-related differentiation and regulatory changes in steroid-related genes lie at the core of phenotypic differentiation in both of these interesting species. This article is part of the theme issue 'Genetic basis of adaptation and speciation: from loci to causative mutations'.
Collapse
Affiliation(s)
- Donna L. Maney
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | - Clemens Küpper
- Research Group of Behavioural Genetics and Evolutionary Ecology, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| |
Collapse
|
3
|
Barcelo-Serra M, Gordo O, Gonser RA, Tuttle EM. Behavioural polymorphism in wintering white-throated sparrows, Zonotrichia albicollis. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Caro SP, Cornil CA, van Oers K, Visser ME. Personality and gonadal development as sources of individual variation in response to GnRH challenge in female great tits. Proc Biol Sci 2020; 286:20190142. [PMID: 31039718 DOI: 10.1098/rspb.2019.0142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Seasonal timing of reproduction is a key life-history trait, but we know little about the mechanisms underlying individual variation in female endocrine profiles associated with reproduction. In birds, 17β-oestradiol is a key reproductive hormone that links brain neuroendocrine mechanisms, involved in information processing and decision-making, to downstream mechanisms in the liver, where egg-yolk is produced. Here, we test, using a simulated induction of the reproductive system through a Gonadotropin-Releasing Hormone (GnRH) challenge, whether the ovary of pre-breeding female great tits responds to brain stimulation by increasing oestradiol. We also assess how this response is modified by individual-specific traits like age, ovarian follicle size, and personality, using females from lines artificially selected for divergent levels of exploratory behaviour. We show that a GnRH injection leads to a rapid increase in circulating concentrations of oestradiol, but responses varied among individuals. Females with more developed ovarian follicles showed stronger responses and females from lines selected for fast exploratory behaviour showed stronger increases compared to females from the slow line, indicating a heritable component. This study shows that the response of the ovary to reproductive stimulation from the brain greatly varies among individuals and that this variation can be attributed to several commonly measured individual traits, which sheds light on the mechanisms shaping heritable endocrine phenotypes.
Collapse
Affiliation(s)
- Samuel P Caro
- 1 Netherlands Institute of Ecology (NIOO-KNAW) , Wageningen , The Netherlands.,2 Centre d'Ecologie Fonctionnelle et Evolutive (CEFE-CNRS), Unité Mixte de Recherche CNRS 5175 , Montpellier , France
| | | | - Kees van Oers
- 1 Netherlands Institute of Ecology (NIOO-KNAW) , Wageningen , The Netherlands
| | - Marcel E Visser
- 1 Netherlands Institute of Ecology (NIOO-KNAW) , Wageningen , The Netherlands
| |
Collapse
|
5
|
Newhouse DJ, Barcelo-Serra M, Tuttle EM, Gonser RA, Balakrishnan CN. Parent and offspring genotypes influence gene expression in early life. Mol Ecol 2019; 28:4166-4180. [PMID: 31421010 DOI: 10.1111/mec.15205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Abstract
Parents can have profound effects on offspring fitness. Little, however, is known about the mechanisms through which parental genetic variation influences offspring physiology in natural systems. White-throated sparrows (Zonotrichia albicollis, WTSP) exist in two genetic morphs, tan and white, controlled by a large polymorphic supergene. Morphs mate disassortatively, resulting in two pair types: tan male × white female (T × W) pairs, which provide biparental care and white male × tan female (W × T) pairs, which provide female-biased care. To investigate how parental composition impacts offspring, we performed RNA-seq on whole blood of WTSP nestlings sampled from nests of both pair types. Parental pair type had a large effect on nestling gene expression, with 881 genes differentially expressed (DE) and seven correlated gene coexpression modules. The DE genes and modules expressed at higher levels in W × T nests with female-biased parental care function in metabolism and stress-related pathways resulting from the overrepresentation of proteolysis and stress-response genes (e.g., SOD2, NR3C1). These results show that parental genotypes and/or associated behaviours influence nestling physiology, and highlight avenues of further research investigating the ultimate implications for the maintenance of this polymorphism. Nestlings also exhibited morph-specific gene expression, with 92 differentially expressed genes, comprising immunity genes and genes encompassed by the supergene. Remarkably, we identified the same regulatory hub genes in these blood-derived expression networks as were previously identified in adult WTSP brains (EPM2A, BPNT1, TAF5L). These hub genes were located within the supergene, highlighting the importance of this gene complex in structuring regulatory networks across diverse tissues.
Collapse
Affiliation(s)
- Daniel J Newhouse
- Department of Biology, East Carolina University, Greenville, NC, USA
| | | | | | | | | |
Collapse
|
6
|
Shuster SM, Willen RM, Keane B, Solomon NG. Alternative Mating Tactics in Socially Monogamous Prairie Voles, Microtus ochrogaster. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Grunst ML, Grunst AS, Formica VA, Korody ML, Betuel AM, Barcelo-Serra M, Gonser RA, Tuttle EM. Actuarial senescence in a dimorphic bird: different rates of ageing in morphs with discrete reproductive strategies. Proc Biol Sci 2018; 285:20182053. [PMID: 30518574 PMCID: PMC6283936 DOI: 10.1098/rspb.2018.2053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/08/2018] [Indexed: 11/12/2022] Open
Abstract
It is often hypothesized that intra-sexual competition accelerates actuarial senescence, or the increase in mortality rates with age. However, an alternative hypothesis is that parental investment is more important to determining senescence rates. We used a unique model system, the white-throated sparrow (Zonotrichia albicollis), to study variation in actuarial senescence. In this species, genetically determined morphs display discrete mating strategies and disassortative pairing, providing an excellent opportunity to test the predictions of the above hypotheses. Compared to tan-striped males, white-striped males are more polygynous and aggressive, and less parental. Tan-striped females receive less parental support, and invest more into parental care than white-striped females, which are also more aggressive. Thus, higher senescence rates in males and white-striped birds would support the intra-sexual competition hypothesis, whereas higher senescence rates in females and tan-striped birds would support the parental investment hypothesis. White-striped males showed the lowest rate of actuarial senescence. Tan-striped females had the highest senescence rate, and tan-striped males and white-striped females showed intermediate, relatively equal rates. Thus, results were inconsistent with sexual selection and competitive strategies increasing senescence rates, and instead indicate that senescence may be accelerated by female-biased parental care, and lessened by sharing of parental duties.
Collapse
Affiliation(s)
- Melissa L Grunst
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium
| | - Andrea S Grunst
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, 2610 Wilrijk, Belgium
| | - Vincent A Formica
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| | - Marisa L Korody
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- San Diego Zoo Institute for Conservation Research, San Diego, CA 92101, USA
| | - Adam M Betuel
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- Atlanta Audubon Society, Atlanta, GA 30342, USA
| | | | - Rusty A Gonser
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
| | - Elaina M Tuttle
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
| |
Collapse
|
8
|
Grunst AS, Grunst ML, Gonser RA, Tuttle EM. Developmental stress and telomere dynamics in a genetically polymorphic species. J Evol Biol 2018; 32:134-143. [DOI: 10.1111/jeb.13400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Andrea S. Grunst
- Department of Biology The Center for Genomic Advocacy Indiana State University Terre Haute Indiana
- Department of Biology, Behavioural Ecology and Ecophysiology Research Group University of Antwerp Wilrijk Belgium
| | - Melissa L. Grunst
- Department of Biology The Center for Genomic Advocacy Indiana State University Terre Haute Indiana
- Department of Biology, Behavioural Ecology and Ecophysiology Research Group University of Antwerp Wilrijk Belgium
| | - Rusty A. Gonser
- Department of Biology The Center for Genomic Advocacy Indiana State University Terre Haute Indiana
| | - Elaina M. Tuttle
- Department of Biology The Center for Genomic Advocacy Indiana State University Terre Haute Indiana
| |
Collapse
|