1
|
Tait CC, Ramirez MD, Katz PS. Egg-laying hormone expression in identified neurons across developmental stages and reproductive states of the nudibranch Berghia stephanieae. Horm Behav 2024; 164:105578. [PMID: 38925074 PMCID: PMC11330727 DOI: 10.1016/j.yhbeh.2024.105578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Neuropeptides play essential roles in coordinating reproduction. Egg-laying hormone (ELH) is conserved in genetic sequence and behavioral function across molluscs, where neuronal clusters secrete ELH to modulate and induce egg-laying. Here we investigated ELH in the nudibranch mollusc, Berghia stephanieae. ELH preprohormone gene orthologs, which showed clade-specific differences at the C-terminus of the predicted bioactive peptide, were identified in brain transcriptomes across several nudipleuran species, including B. stephanieae. ELH shares deep homology with the corticotropin-releasing hormone gene family, which has roles broadly in stress response. Injection of synthesized B. stephanieae ELH peptide into mature individuals induced egg-laying. ELH gene expression in the brain and body was mapped using in-situ hybridization chain reaction. Across the adult brain, 300-400 neurons expressed ELH. Twenty-one different cell types were identified in adults, three of which were located unilaterally on the right side, which corresponds to the location of the reproductive organs. Ten cell types were present in pre-reproductive juvenile stages. An asymmetric cluster of approximately 100 small neurons appeared in the right pedal ganglion of late-stage juveniles. Additional neurons in the pleural and pedal ganglia expressed ELH only in adults that were actively laying eggs and sub-adults that were on the verge of doing so, implicating their direct role in reproduction. Outside the brain, ELH was expressed on sensory appendages, including in presumptive sensory neurons. Its widespread expression in the nudibranch B. stephanieae suggests that ELH plays a role beyond reproduction in gastropod molluscs.
Collapse
Affiliation(s)
- Cheyenne C Tait
- Department of Biology, University of Massachusetts Amherst, United States of America.
| | - M Desmond Ramirez
- Department of Biology, University of Massachusetts Amherst, United States of America
| | - Paul S Katz
- Department of Biology, University of Massachusetts Amherst, United States of America; Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, United States of America
| |
Collapse
|
2
|
Lee CA, Watson WH. In the sea slug Melibe leonina the posterior nerves communicate stomach distention to inhibit feeding and modify oral hood movements. Front Physiol 2022; 13:1047106. [PMID: 36505045 PMCID: PMC9727288 DOI: 10.3389/fphys.2022.1047106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
The sea slug Melibe leonina is an excellent model system for the study of the neural basis of satiation, and previous studies have demonstrated that stomach distention attenuates feeding. Here we expanded on this work by examining the pathway communicating stomach distention to the central nervous system and the effects of distention on motor output. We found that the posterior nerves (PN), which extend posteriorly from the buccal ganglia and innervate the stomach, communicate stomach distention in Melibe. PN lesions led to increased feeding duration and food consumption, and PN activity increased in response to stomach distention. Additionally, the percentage of incomplete feeding movements increased with satiation, and PN stimulation had a similar impact in the nerves that innervate the oral hood. These incomplete movements may be functionally similar to the egestive, food rejecting motions seen in other gastropods and enable Melibe to remain responsive to food, yet adjust their behavior as they become satiated. Such flexibility would not be possible if the entire feeding network were inhibited.
Collapse
Affiliation(s)
- Colin Anthony Lee
- Department of Biological Sciences, University of New Hampshire, Durham, NH, United States,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States,*Correspondence: Colin Anthony Lee,
| | - Winsor Hays Watson
- Department of Biological Sciences, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
3
|
Rawlinson KA, Reid AJ, Lu Z, Driguez P, Wawer A, Coghlan A, Sankaranarayanan G, Buddenborg SK, Soria CD, McCarthy C, Holroyd N, Sanders M, Hoffmann KF, Wilcockson D, Rinaldi G, Berriman M. Daily rhythms in gene expression of the human parasite Schistosoma mansoni. BMC Biol 2021; 19:255. [PMID: 34852797 PMCID: PMC8638415 DOI: 10.1186/s12915-021-01189-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
Background The consequences of the earth’s daily rotation have led to 24-h biological rhythms in most organisms. Even some parasites are known to have daily rhythms, which, when in synchrony with host rhythms, can optimise their fitness. Understanding these rhythms may enable the development of control strategies that take advantage of rhythmic vulnerabilities. Recent work on protozoan parasites has revealed 24-h rhythms in gene expression, drug sensitivity and the presence of an intrinsic circadian clock; however, similar studies on metazoan parasites are lacking. To address this, we investigated if a metazoan parasite has daily molecular oscillations, whether they reveal how these longer-lived organisms can survive host daily cycles over a lifespan of many years and if animal circadian clock genes are present and rhythmic. We addressed these questions using the human blood fluke Schistosoma mansoni that lives in the vasculature for decades and causes the tropical disease schistosomiasis. Results Using round-the-clock transcriptomics of male and female adult worms collected from experimentally infected mice, we discovered that ~ 2% of its genes followed a daily pattern of expression. Rhythmic processes included a stress response during the host’s active phase and a ‘peak in metabolic activity’ during the host’s resting phase. Transcriptional profiles in the female reproductive system were mirrored by daily patterns in egg laying (eggs are the main drivers of the host pathology). Genes cycling with the highest amplitudes include predicted drug targets and a vaccine candidate. These 24-h rhythms may be driven by host rhythms and/or generated by a circadian clock; however, orthologs of core clock genes are missing and secondary clock genes show no 24-h rhythmicity. Conclusions There are daily rhythms in the transcriptomes of adult S. mansoni, but they appear less pronounced than in other organisms. The rhythms reveal temporally compartmentalised internal processes and host interactions relevant to within-host survival and between-host transmission. Our findings suggest that if these daily rhythms are generated by an intrinsic circadian clock then the oscillatory mechanism must be distinct from that in other animals. We have shown which transcripts oscillate at this temporal scale and this will benefit the development and delivery of treatments against schistosomiasis. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01189-9.
Collapse
Affiliation(s)
| | - Adam J Reid
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Zhigang Lu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Patrick Driguez
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.,King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia
| | - Anna Wawer
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Avril Coghlan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | | | | | | | - Nancy Holroyd
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Mandy Sanders
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Karl F Hoffmann
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - David Wilcockson
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | |
Collapse
|
4
|
Watson WH, Bourque KMF, Sullivan JR, Miller M, Buell A, Kallins MG, Curtis NE, Pierce SK, Blackman E, Urato S, Newcomb JM. The Digestive Diverticula in the Carnivorous Nudibranch, Melibe leonina, Do Not Contain Photosynthetic Symbionts. Integr Org Biol 2021; 3:obab015. [PMID: 34337322 PMCID: PMC8319451 DOI: 10.1093/iob/obab015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A number of nudibranchs, including Melibe engeli and Melibe pilosa, harbor symbiotic photosynthetic zooxanthellae. Melibe leonina spends most of its adult life on seagrass or kelp, capturing planktonic organisms in the water column with a large, tentacle-lined oral hood that brings food to its mouth. M. leonina also has an extensive network of digestive diverticula, located just beneath its translucent integument, that are typically filled with pigmented material likely derived from ingested food. Therefore, the focus of this project was to test the hypothesis that M. leonina accumulates symbiotic photosynthetic dinoflagellates in these diverticula. First, we conducted experiments to determine if M. leonina exhibits a preference for light, which would allow chloroplasts that it might be harboring to carry out photosynthesis. We found that most M. leonina preferred shaded areas and spent less time in direct sunlight. Second, we examined the small green circular structures in cells lining the digestive diverticula. Like chlorophyll, they exhibited autofluorescence when illuminated at 480 nm, and they were also about the same size as chloroplasts and symbiotic zooxanthellae. However, subsequent electron microscopy found no evidence of chloroplasts in the digestive diverticula of M. leonina; the structures exhibiting autofluorescence at 480 nm were most likely heterolysosomes, consistent with normal molluscan digestion. Third, we did not find evidence of altered oxygen consumption or production in M. leonina housed in different light conditions, suggesting the lack of any significant photosynthetic activity in sunlight. Fourth, we examined the contents of the diverticula, using HPLC, thin layer chromatography, and spectroscopy. The results of these studies indicate that the diverticula did not contain any chlorophyll, but rather harbored other pigments, such as astaxanthin, which likely came from crustaceans in their diet. Together, all of these data suggest that M. leonina does sequester pigments from its diet, but not for the purpose of symbiosis with photosynthetic zooxanthellae. Considering the translucent skin of M. leonina, the pigmented diverticula may instead provide camouflage.
Collapse
Affiliation(s)
- W H Watson
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - K M F Bourque
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
- Department of Pediatrics, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - J R Sullivan
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
- Department of Human Development and Family Studies, University of New Hampshire, Durham, NH 03824, USA
| | - M Miller
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - A Buell
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
- Department of Psychiatry, Dartmouth College Geisel School of Medicine, Hanover, NH 03755, USA
| | - M G Kallins
- Department of Biology, Rollins College, Winter Park, FL 32789, USA
| | - N E Curtis
- Department of Biology, Rollins College, Winter Park, FL 32789, USA
- Department of Biology, Ave Maria University, Ave Maria, FL 34142, USA
| | - S K Pierce
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - E Blackman
- Department of Biology and Health Science, New England College, Henniker, NH 03242, USA
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - S Urato
- Department of Biology and Health Science, New England College, Henniker, NH 03242, USA
| | - J M Newcomb
- Department of Biology and Health Science, New England College, Henniker, NH 03242, USA
| |
Collapse
|
5
|
Chapman EC, Bonsor BJ, Parsons DR, Rotchell JM. Influence of light and temperature cycles on the expression of circadian clock genes in the mussel Mytilus edulis. MARINE ENVIRONMENTAL RESEARCH 2020; 159:104960. [PMID: 32250881 DOI: 10.1016/j.marenvres.2020.104960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Clock genes and environmental cues regulate essential biological rhythms. The blue mussel, Mytilus edulis, is an ecologically and economically important intertidal bivalve undergoing seasonal reproductive rhythms. We previously identified seasonal expression differences in M. edulis clock genes. Herein, the effects of light/dark cycles, constant darkness, and daily temperature cycles on the circadian expression patterns of such genes are characterised. Clock genes Clk, Cry1, ROR/HR3, Per and Rev-erb/NR1D1, and Timeout-like, show significant mRNA expression variation, persisting in darkness indicating endogenous control. Rhythmic expression was apparent under diurnal temperature cycles in darkness for all except Rev-erb. Temperature cycles induced a significant expression difference in the non-circadian clock-associated gene aaNAT. Furthermore, Suppression Subtractive Hybridisation (SSH) was used to identify seasonal genes with potential links to molecular clock function and revealed numerous genes meriting further investigation. Understanding the relationship between environmental cues and molecular clocks is crucial in predicting the outcomes of environmental change on fundamental rhythmic processes.
Collapse
Affiliation(s)
- Emma C Chapman
- Department of Biological and Marine Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Brodie J Bonsor
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Daniel R Parsons
- Department of Geography, Geology and Environment, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Jeanette M Rotchell
- Department of Biological and Marine Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom.
| |
Collapse
|
6
|
Watson WH, Nash A, Lee C, Patz MD, Newcomb JM. The Distribution and Possible Roles of Small Cardioactive Peptide in the Nudibranch Melibe leonina. Integr Org Biol 2020; 2:obaa016. [PMID: 33791559 PMCID: PMC7671164 DOI: 10.1093/iob/obaa016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The neuropeptide small cardioactive peptide (SCP) plays an integrative role in exciting various motor programs involved in feeding and locomotion in a number of gastropod species. In this study, immunohistochemistry, using monoclonal antibodies against SCPB, was used to localize SCPB-like-immunoreactive neurons in the central nervous system, and map their connections to various tissues, in the nudibranch, Melibe leonina. Approximately 28-36 SCPB-like-immunoreactive neurons were identified in the M. leonina brain, as well as one large neuron in each of the buccal ganglia. The neuropil of the pedal ganglia contained the most SCPB-like-immunoreactive varicosities, although only a small portion of these were due to SCPB-like-immunoreactive neurons in the same ganglion. This suggests that much of the SCPB-like immunoreactivity in the neuropil of the pedal ganglia was from neurons in other ganglia that projected through the pedal-pedal connectives or the connectives from the cerebral and pleural ganglia. We also observed extensive SCPB innervation along the length of the esophagus. Therefore, we investigated the impact of SCPB on locomotion in intact animals, as well as peristaltic contractions of the isolated esophagus. Injection of intact animals with SCPB at night led to a significant increase in crawling and swimming, compared to control animals injected with saline. Furthermore, perfusion of isolated brains with SCPB initiated expression of the swim motor program. Application of SCPB to the isolated quiescent esophagus initiated rhythmic peristaltic contractions, and this occurred in preparations both with and without the buccal ganglia being attached. All these data, taken together, suggest that SCPB could be released at night to arouse animals and enhance the expression of both feeding and swimming motor programs in M. leonina.
Collapse
Affiliation(s)
- W H Watson
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - A Nash
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - C Lee
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - M D Patz
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - J M Newcomb
- Department of Biology and Health Science, New England College, Henniker, NH 03242, USA
| |
Collapse
|
7
|
Arboleda E, Zurl M, Waldherr M, Tessmar-Raible K. Differential Impacts of the Head on Platynereis dumerilii Peripheral Circadian Rhythms. Front Physiol 2019; 10:900. [PMID: 31354531 PMCID: PMC6638195 DOI: 10.3389/fphys.2019.00900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/27/2019] [Indexed: 12/20/2022] Open
Abstract
The marine bristle worm Platynereis dumerilii is a useful functional model system for the study of the circadian clock and its interplay with others, e.g., circalunar clocks. The focus has so far been on the worm's head. However, behavioral and physiological cycles in other animals typically arise from the coordination of circadian clocks located in the brain and in peripheral tissues. Here, we focus on peripheral circadian rhythms and clocks, revisit and expand classical circadian work on the worm's chromatophores, investigate locomotion as read-out and include molecular analyses. We establish that different pieces of the trunk exhibit synchronized, robust oscillations of core circadian clock genes. These circadian core clock transcripts are under strong control of the light-dark cycle, quickly losing synchronized oscillation under constant darkness, irrespective of the absence or presence of heads. Different wavelengths are differently effective in controlling the peripheral molecular synchronization. We have previously shown that locomotor activity is under circadian clock control. Here, we show that upon decapitation worms exhibit strongly reduced activity levels. While still following the light-dark cycle, locomotor rhythmicity under constant darkness is less clear. We also observe the rhythmicity of pigments in the worm's individual chromatophores, confirming their circadian pattern. These size changes continue under constant darkness, but cannot be re-entrained by light upon decapitation. Our works thus provides the first basic characterization of the peripheral circadian clock of P. dumerilii. In the absence of the head, light is essential as a major synchronization cue for peripheral molecular and locomotor circadian rhythms, while circadian changes in chromatophore size can continue for several days in the absence of light/dark changes and the head. Thus, in Platynereis the dependence on the head depends on the type of peripheral rhythm studied. These data show that peripheral circadian rhythms and clocks should also be considered in "non-conventional" molecular model systems, i.e., outside Drosophila melanogaster, Danio rerio, and Mus musculus, and build a basic foundation for future investigations of interactions of clocks with different period lengths in marine organisms.
Collapse
Affiliation(s)
- Enrique Arboleda
- Max F. Perutz Laboratories, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Martin Zurl
- Max F. Perutz Laboratories, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform “Rhythms of Life”, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Monika Waldherr
- Max F. Perutz Laboratories, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform “Rhythms of Life”, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max F. Perutz Laboratories, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform “Rhythms of Life”, Vienna BioCenter, University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Duback VE, Sabrina Pankey M, Thomas RI, Huyck TL, Mbarani IM, Bernier KR, Cook GM, O'Dowd CA, Newcomb JM, Watson WH. Localization and expression of putative circadian clock transcripts in the brain of the nudibranch Melibe leonina. Comp Biochem Physiol A Mol Integr Physiol 2018; 223:52-59. [PMID: 29753034 PMCID: PMC5995673 DOI: 10.1016/j.cbpa.2018.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 10/16/2022]
Abstract
The nudibranch, Melibe leonina, expresses a circadian rhythm of locomotion, and we recently determined the sequences of multiple circadian clock transcripts that may play a role in controlling these daily patterns of behavior. In this study, we used these genomic data to help us: 1) identify putative clock neurons using fluorescent in situ hybridization (FISH); and 2) determine if there is a daily rhythm of expression of clock transcripts in the M. leonina brain, using quantitative PCR. FISH indicated the presence of the clock-related transcripts clock, period, and photoreceptive and non-photoreceptive cryptochrome (pcry and npcry, respectively) in two bilateral neurons in each cerebropleural ganglion and a group of <10 neurons in the anterolateral region of each pedal ganglion. Double-label experiments confirmed colocalization of all four clock transcripts with each other. Quantitative PCR demonstrated that the genes clock, period, pcry and npcry exhibited significant differences in expression levels over 24 h. These data suggest that the putative circadian clock network in M. leonina consists of a small number of identifiable neurons that express circadian genes with a daily rhythm.
Collapse
|
9
|
Green DJ, Huang RC, Sudlow L, Hatcher N, Potgieter K, McCrohan C, Lee C, Romanova EV, Sweedler JV, Gillette MLU, Gillette R. cAMP, Ca 2+, pH i, and NO Regulate H-like Cation Channels That Underlie Feeding and Locomotion in the Predatory Sea Slug Pleurobranchaea californica. ACS Chem Neurosci 2018; 9:1986-1993. [PMID: 30067017 PMCID: PMC6128535 DOI: 10.1021/acschemneuro.8b00187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A systems approach to regulation of neuronal excitation in the mollusc Pleurobranchaea has described novel interactions of cyclic AMP-gated cation current (INa,cAMP), Ca2+, pHi, and NO. INa,cAMP appears in many neurons of feeding and locomotor neuronal networks. It is likely one of the family of hyperpolarization-activated, cyclic-nucleotide-gated currents (h-current) of vertebrate and invertebrate pacemaker networks. There are two isoforms. Ca2+ regulates both voltage dependence and depolarization-sensitive inactivation in both isoforms. The Type 1 INa,cAMP of the feeding network is enhanced by intracellular acidification. A direct dependence of INa,cAMP on cAMP allows the current to be used as a reporter on cAMP concentrations in the cell, and from there to the intrinsic activities of the synthetic adenyl cyclase and the degradative phosphodiesterase. Type 2 INa,cAMP of the locomotor system is activated by serotonergic inputs, while Type 1 of the feeding network is thought to be regulated peptidergically. NO synthase activity is high in the CNS, where it differs from standard neuronal NO synthase in not being Ca2+ sensitive. NO acidifies pHi, potentiating Type 1, and may act to open proton channels. A cGMP pathway does not mediate NO effects as in other systems. Rather, nitrosylation likely mediates its actions. An integrated model of the action of cAMP, Ca2+, pHi, and NO in the feeding network postulates that NO regulates proton conductance to cause neuronal excitation in the cell body on the one hand, and relief of activity-induced hyperacidification in fine dendritic processes on the other.
Collapse
Affiliation(s)
- Daniel J Green
- Neuroscience Program , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Rong-Chi Huang
- Department of Molecular & Integrative Physiology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Leland Sudlow
- Department of Molecular & Integrative Physiology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Nathan Hatcher
- Department of Molecular & Integrative Physiology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Kurt Potgieter
- Department of Molecular & Integrative Physiology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Catherine McCrohan
- School of Biological Sciences , University of Manchester , Manchester M13 9PT , United Kingdom
| | - Colin Lee
- Neuroscience Program , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Elena V Romanova
- Beckman Institute for Advanced Science and Technology and Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Jonathan V Sweedler
- Beckman Institute for Advanced Science and Technology and Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Martha L U Gillette
- Department of Cell & Developmental Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Rhanor Gillette
- Department of Molecular & Integrative Physiology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|