1
|
Aihara T, Araki K, Onuma Y, Cai Y, Paing AMM, Goto S, Hisamoto Y, Tomaru N, Homma K, Takagi M, Yoshida T, Iio A, Nagamatsu D, Kobayashi H, Hirota M, Uchiyama K, Tsumura Y. Divergent mechanisms of reduced growth performance in Betula ermanii saplings from high-altitude and low-latitude range edges. Heredity (Edinb) 2023; 131:387-397. [PMID: 37940658 PMCID: PMC10673911 DOI: 10.1038/s41437-023-00655-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023] Open
Abstract
The reduced growth performance of individuals from range edges is a common phenomenon in various taxa, and considered to be an evolutionary factor that limits the species' range. However, most studies did not distinguish between two mechanisms that can lead to this reduction: genetic load and adaptive selection to harsh conditions. To address this lack of understanding, we investigated the climatic and genetic factors underlying the growth performance of Betula ermanii saplings transplanted from 11 populations including high-altitude edge and low-latitude edge population. We estimated the climatic position of the populations within the overall B. ermanii's distribution, and the genetic composition and diversity using restriction-site associated DNA sequencing, and measured survival, growth rates and individual size of the saplings. The high-altitude edge population (APW) was located below the 95% significance interval for the mean annual temperature range, but did not show any distinctive genetic characteristics. In contrast, the low-latitude edge population (SHK) exhibited a high level of linkage disequilibrium, low genetic diversity, a distinct genetic composition from the other populations, and a high relatedness coefficient. Both APW and SHK saplings displayed lower survival rates, heights and diameters, while SHK saplings also exhibited lower growth rates than the other populations' saplings. The low heights and diameters of APW saplings was likely the result of adaptive selection to harsh conditions, while the low survival and growth rates of SHK saplings was likely the result of genetic load. Our findings shed light on the mechanisms underlying the reduced growth performance of range-edge populations.
Collapse
Affiliation(s)
- Takaki Aihara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kyoko Araki
- Garden Division, Maintenance and Works Department, the Imperial Household Agency, 1-1, Chiyoda, Chiyoda-ku, Tokyo, 100-8111, Japan
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yunosuke Onuma
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yihan Cai
- Graduate School of Environmental Science, Hokkaido University, Kita 10 Nishi 5, Kita-ku, Sapporo, 060-0810, Japan
| | - Aye Myat Myat Paing
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Susumu Goto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yoko Hisamoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Nobuhiro Tomaru
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Cikusa-ku, Nagoya, Aichi, 464-0804, Japan
| | - Kosuke Homma
- Sado Island Center for Ecological Sustainability, Niigata University, 1101-1, Niibokatagami, Sado, Niigata, 952-0103, Japan
| | - Masahiro Takagi
- Faculty of Agriculture, University of Miyazaki, 1-1, Gakuen kibanadai nishi, Miyazaki, Miyazaki, 889-2192, Japan
| | - Toshiya Yoshida
- Field Science Center for Northern Biosphere, Hokkaido University, Kita 10 Nishi 5, Kita-ku, Sapporo, 060-0810, Japan
| | - Atsuhiro Iio
- Graduate School of Integrated Science and Technology, Shizuoka University, 836, Ohtani, Suruga-ku, Shizuoka, Shizuoka, 422-8017, Japan
| | - Dai Nagamatsu
- Faculty of Agriculture, Tottori University, 4-101, Koyama-cho, Tottori, Tottori, 680-8553, Japan
| | - Hajime Kobayashi
- Faculty of Agriculture, Shinshu University, 8304, Minamiminowa-mura, Kamiina-gun, Nagano, 399-4598, Japan
| | - Mitsuru Hirota
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kentaro Uchiyama
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, 1, Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | - Yoshihiko Tsumura
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
2
|
Penaluna BE, Burnett JD, Christiansen K, Arismendi I, Johnson SL, Griswold K, Holycross B, Kolstoe SH. UPRLIMET: UPstream Regional LiDAR Model for Extent of Trout in stream networks. Sci Rep 2022; 12:20266. [PMID: 36456610 PMCID: PMC9715699 DOI: 10.1038/s41598-022-23754-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/04/2022] [Indexed: 12/05/2022] Open
Abstract
Predicting the edges of species distributions is fundamental for species conservation, ecosystem services, and management decisions. In North America, the location of the upstream limit of fish in forested streams receives special attention, because fish-bearing portions of streams have more protections during forest management activities than fishless portions. We present a novel model development and evaluation framework, wherein we compare 26 models to predict upper distribution limits of trout in streams. The models used machine learning, logistic regression, and a sophisticated nested spatial cross-validation routine to evaluate predictive performance while accounting for spatial autocorrelation. The model resulting in the best predictive performance, termed UPstream Regional LiDAR Model for Extent of Trout (UPRLIMET), is a two-stage model that uses a logistic regression algorithm calibrated to observations of Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii) occurrence and variables representing hydro-topographic characteristics of the landscape. We predict trout presence along reaches throughout a stream network, and include a stopping rule to identify a discrete upper limit point above which all stream reaches are classified as fishless. Although there is no simple explanation for the upper distribution limit identified in UPRLIMET, four factors, including upstream channel length above the point of uppermost fish, drainage area, slope, and elevation, had highest importance. Across our study region of western Oregon, we found that more of the fish-bearing network is on private lands than on state, US Bureau of Land Mangement (BLM), or USDA Forest Service (USFS) lands, highlighting the importance of using spatially consistent maps across a region and working across land ownerships. Our research underscores the value of using occurrence data to develop simple, but powerful, prediction tools to capture complex ecological processes that contribute to distribution limits of species.
Collapse
Affiliation(s)
- Brooke E Penaluna
- U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA.
| | - Jonathan D Burnett
- U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Kelly Christiansen
- U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Ivan Arismendi
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, 104 Nash Hall, Corvallis, OR, 97331, USA
| | - Sherri L Johnson
- U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Kitty Griswold
- Department of Biological Sciences, Idaho State University, 921 S. 8th Ave Mail, Stop 8007, Pocatello, ID, 83209-8007, USA
| | - Brett Holycross
- Pacific States Marine Fisheries Commission, 205 SE Spokane St., Portland, OR, 97202, USA
| | - Sonja H Kolstoe
- U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 1220 SW 3rd Avenue, Suite 1410, Portland, OR, 97204, USA
| |
Collapse
|
3
|
Sánchez-Castro D, Armbruster G, Willi Y. Reduced pollinator service in small populations of Arabidopsis lyrata at its southern range limit. Oecologia 2022; 200:107-117. [PMID: 36053350 PMCID: PMC9547784 DOI: 10.1007/s00442-022-05237-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
Abstract
Even though a high fraction of angiosperm plants depends on animal pollinators for sexual reproduction, little is known how pollinator service changes across the ranges of plant species and whether it may contribute to range limits. Here, we tested for variation in pollinator service in the North American Arabidopsis lyrata from its southern to northern range edge and evaluated the driving mechanisms. We monitored insect pollinators using time-lapse cameras in 13 populations over two years and spotted 67 pollinating insect taxa, indicating the generalist nature of this plant-pollinator system. Pollinator service was highest at intermediate local flower densities and higher in large compared to small plant populations. Southern populations had generally smaller population sizes, and visitation rate and pollination ratio decreased with latitude. We also found that pollinator visitation was positively correlated with the richness of other flowering plants. This study indicates that plant populations at southern range edges receive only marginal pollinator service if they are small, and the effect of lower pollination is also detectable within populations across the range when the local flower density is low. Results, therefore, suggest the potential for an Allee effect in pollination that manifests itself across spatial scales.
Collapse
Affiliation(s)
- Darío Sánchez-Castro
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| | - Georg Armbruster
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| | - Yvonne Willi
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
4
|
Maccagni A, Willi Y. Trait divergence and trade-offs among Brassicaceae species differing in elevational distribution. Evolution 2022; 76:1986-2003. [PMID: 35779006 PMCID: PMC9545065 DOI: 10.1111/evo.14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/22/2023]
Abstract
Species have restricted geographic distributions and the causes are still largely unknown. Temperature has long been associated with distribution limits, suggesting that there are ubiquitous constraints to the evolution of the climate niche. Here, we investigated the traits involved in such constraints by macroevolutionary comparisons involving 100 Brassicaceae species differing in elevational distribution. Plants were grown under three temperature treatments (regular frost, mild, regular heat) and phenotyped for phenological, morphological, and thermal resistance traits. Trait values were analyzed by assessing the effect of temperature and elevational distribution, by comparing models of evolutionary trajectories, and by correlative approaches to identify trade-offs. Analyses pointed to size, leaf morphology, and growth under heat as among the most discriminating traits between low- and high-elevation species, with high-elevation species growing faster under the occurrence of regular heat bouts, at the cost of reduced size. Mixed models and evolutionary models supported adaptive divergence for these traits, and correlation analysis indicated their involvement in moderate trade-offs. Finally, we found asymmetry in trait evolution, with evolvability across traits being 50% less constrained under regular frost. Overall, results suggest that trade-offs between traits under adaptive divergence contribute to the disparate distribution of species along the elevational gradient.
Collapse
Affiliation(s)
- Alessio Maccagni
- Department of Environmental SciencesUniversity of BaselBaselCH‐4056Switzerland,Botanical Garden of Canton TicinoBrissagoCH‐6614Switzerland
| | - Yvonne Willi
- Department of Environmental SciencesUniversity of BaselBaselCH‐4056Switzerland
| |
Collapse
|
5
|
Perrier A, Sánchez‐Castro D, Willi Y. Environment dependence of the expression of mutational load and species' range limits. J Evol Biol 2022; 35:731-741. [PMID: 35290676 PMCID: PMC9314787 DOI: 10.1111/jeb.13997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 12/21/2022]
Abstract
Theoretical and empirical research on the causes of species' range limits suggest the contribution of several intrinsic and extrinsic factors, with potentially complex interactions among them. An intrinsic factor proposed by recent theory is mutational load increasing towards range edges because of genetic drift. Furthermore, environmental quality may decline towards range edges and enhance the expression of load. Here, we tested whether the expression of mutational load associated with range limits in the North American plant Arabidopsis lyrata was enhanced under stressful environmental conditions by comparing the performance of within- versus between-population crosses at common garden sites across the species' distribution and beyond. Heterosis, reflecting the expression of load, increased with heightened estimates of genomic load and with environmental stress caused by warming, but the interaction was not significant. We conclude that range-edge populations suffer from a twofold genetic Allee effect caused by increased mutational load and stress-dependent load linked to general heterozygote deficiency, but there is no synergistic effect between them.
Collapse
Affiliation(s)
- Antoine Perrier
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Environmental SciencesUniversity of BaselBaselSwitzerland
| | | | - Yvonne Willi
- Department of Environmental SciencesUniversity of BaselBaselSwitzerland
| |
Collapse
|
6
|
Willi Y, Van Buskirk J. A review on trade-offs at the warm and cold ends of geographical distributions. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210022. [PMID: 35184594 PMCID: PMC8859520 DOI: 10.1098/rstb.2021.0022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/18/2022] [Indexed: 12/21/2022] Open
Abstract
Species' range limits are ubiquitous. This suggests that the evolution of the ecological niche is constrained in general and at the edges of distributions in particular. While there may be many ecological and genetic reasons for this phenomenon, here we focus on the potential role of trade-offs. We performed a literature search on evidence for trade-offs associated with geographical or elevational range limits. The majority of trade-offs were reported as relevant at either the cold end of species' distribution (n = 19), the warm or dry end (n = 19) or both together (n = 14). One common type of trade-off involved accelerating growth or development (27%), often at the cost of small size. Another common type involved resistance to or tolerance of climatic extremes that occur at certain periods of the year (64%), often at the cost of small size or reduced growth. Trade-offs overlapped with some of the classic trade-offs reported in life-history evolution or thermal adaptation. The results highlight several general insights about species' niches and ranges, and we outline how future research should better integrate the ecological context and test for the presence of microevolutionary trade-offs. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.
Collapse
Affiliation(s)
- Yvonne Willi
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| | - Josh Van Buskirk
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
7
|
Banks-Leite C, Betts MG, Ewers RM, Orme CDL, Pigot AL. The macroecology of landscape ecology. Trends Ecol Evol 2022; 37:480-487. [DOI: 10.1016/j.tree.2022.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/28/2022]
|
8
|
Moutouama JK, Gaoue OG. Altitude-mediated soil properties, not geography or climatic distance, explain the distribution of a tropical endemic herb. Ecol Evol 2022; 12:e8572. [PMID: 35154654 PMCID: PMC8826065 DOI: 10.1002/ece3.8572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 11/11/2022] Open
Abstract
Understanding the ecological processes that govern species' range margins is a fundamental question in ecology with practical implications in conservation biology. The center-periphery hypothesis predicts that organisms have higher abundance at the center of their geographic range. However, most tests of this hypothesis often used raster data, assuming that climatic conditions are consistent across one square km. This assumption is not always justified, particularly for mountainous species for which climatic conditions can vary widely across a small spatial scale. Previous studies rarely evenly sample occurrence data across the species' distribution. In this study, we sampled an endemic perennial herb, Thunbergia atacorensis (Acanthanceae), throughout its range in West Africa using 54 plots and collected data on (a)biotic variables, the species density, leaf mass per area, and basal diameter. We built a structural equation model to test the direct and indirect effects of distance from geographic and climatic niche centers, and altitude on Thunbergia density as mediated by abiotic and biotic factors, population demographic structure, and individual size. Contrary to the prediction of the center-periphery hypothesis, we found no significant effect of distance from geographic or climatic niche centers on plant density. This indicates that even the climatic center does not necessarily have optimal ecological conditions. In contrast, plant density varied with altitudinal gradient, but this was mediated by the effect of soil nitrogen and potassium which had positive effect on plant size. Surprisingly, we found no direct or mediating effect of interspecific competition on plant density. Altogether, our results highlight the role of geography, climatic, and ecological mismatch in predicting species distribution. Our study highlights that where altitudinal gradient is strong local-scale heterogeneity in abiotic factors can play important role in shaping species range limits.
Collapse
Affiliation(s)
- Jacob K. Moutouama
- Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Orou G. Gaoue
- Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
- Faculty of AgronomyUniversity of ParakouParakouBenin
- Department of Geography, Environmental Management and Energy StudiesUniversity of JohannesburgJohannesburgSouth Africa
| |
Collapse
|
9
|
Shirani F, Miller JR. Competition, Trait Variance Dynamics, and the Evolution of a Species' Range. Bull Math Biol 2022; 84:37. [PMID: 35099649 DOI: 10.1007/s11538-022-00990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022]
Abstract
Geographic ranges of communities of species evolve in response to environmental, ecological, and evolutionary forces. Understanding the effects of these forces on species' range dynamics is a major goal of spatial ecology. Previous mathematical models have jointly captured the dynamic changes in species' population distributions and the selective evolution of fitness-related phenotypic traits in the presence of an environmental gradient. These models inevitably include some unrealistic assumptions, and biologically reasonable ranges of values for their parameters are not easy to specify. As a result, simulations of the seminal models of this type can lead to markedly different conclusions about the behavior of such populations, including the possibility of maladaptation setting stable range boundaries. Here, we harmonize such results by developing and simulating a continuum model of range evolution in a community of species that interact competitively while diffusing over an environmental gradient. Our model extends existing models by incorporating both competition and freely changing intraspecific trait variance. Simulations of this model predict a spatial profile of species' trait variance that is consistent with experimental measurements available in the literature. Moreover, they reaffirm interspecific competition as an effective factor in limiting species' ranges, even when trait variance is not artificially constrained. These theoretical results can inform the design of, as yet rare, empirical studies to clarify the evolutionary causes of range stabilization.
Collapse
Affiliation(s)
- Farshad Shirani
- Department of Mathematics and Statistics, Georgetown University, Washington, DC, 20057, USA. .,School of Mathematics, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Judith R Miller
- Department of Mathematics and Statistics, Georgetown University, Washington, DC, 20057, USA
| |
Collapse
|
10
|
Mauro AA, Torres-Dowdall J, Marshall CA, Ghalambor CK. A genetically based ecological trade-off contributes to setting a geographic range limit. Ecol Lett 2021; 24:2739-2749. [PMID: 34636129 DOI: 10.1111/ele.13900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/07/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022]
Abstract
Understanding the ecological factors that shape geographic range limits and the evolutionary constraints that prevent populations from adaptively evolving beyond these limits is an unresolved question. Here, we investigated why the euryhaline fish, Poecila reticulata, is confined to freshwater within its native range, despite being tolerant of brackish water. We hypothesised that competitive interactions with a close relative, Poecilia picta, in brackish water prevents P. reticulata from colonising brackish water. Using a combination of field transplant, common garden breeding, and laboratory behaviour experiments, we find support for this hypothesis, as P. reticulata are behaviourally subordinate and have lower survival in brackish water with P. picta. We also found a negative genetic correlation between P. reticulata growth in brackish water versus freshwater in the presence of P. picta, suggesting a genetically based trade-off between salinity tolerance and competitive ability could constrain adaptive evolution at the range limit.
Collapse
Affiliation(s)
- Alexander A Mauro
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Craig A Marshall
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Cameron K Ghalambor
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA.,Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
11
|
Fenollosa E, Jené L, Munné-Bosch S. Geographic patterns of seed trait variation in an invasive species: how much can close populations differ? Oecologia 2021; 196:747-761. [PMID: 34216272 PMCID: PMC8292299 DOI: 10.1007/s00442-021-04971-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 06/11/2021] [Indexed: 11/26/2022]
Abstract
Seeds play a major role in plant species persistence and expansion, and therefore they are essential when modeling species dynamics. However, homogeneity in seed traits is generally assumed, underestimating intraspecific trait variability across the geographic space, which might bias species success models. The aim of this study was to evaluate the existence and consequences of interpopulation variability in seed traits of the invasive species Carpobrotus edulis at different geographical scales. We measured seed production, morphology, vigour and longevity of nine populations of C. edulis along the Catalan coast (NE Spain) from three differentiated zones with a human presence gradient. Geographic distances between populations were contrasted against individual and multivariate trait distances to explore trait variation along the territory, evaluating the role of bioclimatic variables and human density of the different zones. The analysis revealed high interpopulation variability that was not explained by geographic distance, as regardless of the little distance between some populations (< 0.5 km), significant differences were found in several seed traits. Seed production, germination, and persistence traits showed the strongest spatial variability up to 6000% of percent trait variability between populations, leading to differentiated C. edulis soil seed bank dynamics at small distances, which may demand differentiated strategies for a cost-effective species management. Seed trait variability was influenced by human density but also bioclimatic conditions, suggesting a potential impact of increased anthropogenic pressure and climate shifts. Geographic interpopulation trait variation should be included in ecological models and will be important for assessing species responses to environmental heterogeneity and change.
Collapse
Affiliation(s)
- Erola Fenollosa
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain.
- Institute of Research in Biodiversity (IRBio-UB), Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain.
| | - Laia Jené
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
- Institute of Research in Biodiversity (IRBio-UB), Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| |
Collapse
|
12
|
Willi Y, Fracassetti M, Bachmann O, Van Buskirk J. Demographic Processes Linked to Genetic Diversity and Positive Selection across a Species' Range. PLANT COMMUNICATIONS 2020; 1:100111. [PMID: 33367266 PMCID: PMC7747977 DOI: 10.1016/j.xplc.2020.100111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/27/2020] [Accepted: 09/09/2020] [Indexed: 06/12/2023]
Abstract
Demography determines the strength of genetic drift, which generally reduces genetic variation and the efficacy of selection. Here, we disentangled the importance of demographic processes at a local scale (census size and mating system) and at a species-range scale (old split between population clusters, recolonization after the last glaciation cycle, and admixture) in determining within-population genomic diversity and genomic signatures of positive selection. Analyses were based on re-sequence data from 52 populations of North American Arabidopsis lyrata collected across its entire distribution. The mating system and range dynamics since the last glaciation cycle explained around 60% of the variation in genomic diversity among populations and 52% of the variation in the signature of positive selection. Diversity was lowest in selfing compared with outcrossing populations and in areas further away from glacial refugia. In parallel, reduced positive selection was found in selfing populations and in populations with a longer route of postglacial range expansion. The signature of positive selection was also reduced in populations without admixture. We conclude that recent range expansion can have a profound influence on diversity in coding and non-coding DNA, similar in magnitude to the shift toward selfing. Distribution limits may in fact be caused by reduced effective population size and compromised positive selection in recently colonized parts of the range.
Collapse
Affiliation(s)
- Yvonne Willi
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, CH-4056 Basel, Switzerland
| | - Marco Fracassetti
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, CH-4056 Basel, Switzerland
| | - Olivier Bachmann
- Department of Environmental Sciences, University of Basel, Schönbeinstrasse 6, CH-4056 Basel, Switzerland
| | - Josh Van Buskirk
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, CH-8057 Zürich, Switzerland
| |
Collapse
|
13
|
Angert AL, Bontrager MG, Ågren J. What Do We Really Know About Adaptation at Range Edges? ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-012120-091002] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent theory and empirical evidence have provided new insights regarding how evolutionary forces interact to shape adaptation at stable and transient range margins. Predictions regarding trait divergence at leading edges are frequently supported. However, declines in fitness at and beyond edges show that trait divergence has sometimes been insufficient to maintain high fitness, so identifying constraints to adaptation at range edges remains a key challenge. Indirect evidence suggests that range expansion may be limited by adaptive genetic variation, but direct estimates of genetic constraints at and beyond range edges are still scarce. Sequence data suggest increased genetic load in edge populations in several systems, but its causes and fitness consequences are usually poorly understood. The balance between maladaptive and positive effects of gene flow on fitness at range edges deserves further study. It is becoming increasingly clear that characterizations about degree of adaptation based solely on geographical peripherality are unsupported.
Collapse
Affiliation(s)
- Amy L. Angert
- Departments of Botany and Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Megan G. Bontrager
- Department of Evolution and Ecology, University of California, Davis, California 95616, USA
| | - Jon Ågren
- Department of Ecology and Genetics, Uppsala University, SE-752 36 Uppsala, Sweden
| |
Collapse
|
14
|
Bachmann JC, Van Buskirk J. Adaptation to elevation but limited local adaptation in an amphibian. Evolution 2020; 75:956-969. [PMID: 33063864 DOI: 10.1111/evo.14109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/24/2020] [Accepted: 10/04/2020] [Indexed: 01/10/2023]
Abstract
We performed a reciprocal transplant experiment to estimate "parallel" adaptation to elevation and "unique" adaptation to local sites at the same elevation, using the frog Rana temporaria in the Swiss Alps. It is important to distinguish these two processes because they have different implications for population structure and ecological specialization. Larvae were reared from hatching to metamorphosis within enclosures installed in their pond of origin, in three foreign ponds at the same elevation, and in four ponds at different elevation (1500-2000 m higher or lower). There were two source populations from each elevation, and adults were held in a common environment for 1 year before they were crossed to produce offspring for the experiment. Fitness was a measure that integrated larval survival, development rate, and body size. Parallel adaptation to elevation was indicated by an advantage at the home elevation (11.5% fitness difference at low elevation and 47% at high elevation). This effect was stronger than that observed in most other studies, according to a survey of previous transplant experiments across elevation (N = 8 animal species and 71 plants). Unique local adaptation within elevational zones was only 0.3-0.7 times as strong as parallel adaptation, probably because gene flow is comparatively high among nearby wetlands at the same elevation. The home-elevation advantage may reduce gene flow across the elevational gradient and enable the evolution of habitat races specialized on elevation.
Collapse
Affiliation(s)
- Judith C Bachmann
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Josh Van Buskirk
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Perrier A, Sánchez-Castro D, Willi Y. Expressed mutational load increases toward the edge of a species' geographic range. Evolution 2020; 74:1711-1723. [PMID: 32538471 DOI: 10.1111/evo.14042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/26/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
There is no general explanation for why species have restricted geographic distributions. One hypothesis posits that range expansion or increasing scarcity of suitable habitat results in accumulation of mutational load due to enhanced genetic drift, which constrains population performance toward range limits and further expansion. We tested this hypothesis in the North American plant, Arabidopsis lyrata. We experimentally assessed mutational load by crossing plants of 20 populations from across the entire species range and by raising the offspring of within- and between-population crosses at five common garden sites within and beyond the range. Offspring performance was tracked over three growing seasons. The heterosis effect, depicting expressed mutational load, was increased in populations with heightened genomic estimates of load, longer expansion distance or long-term isolation, and a selfing mating system. The decline in performance of within-population crosses amounted to 80%. Mutation accumulation due to past range expansion and long-term isolation of populations in the area of range margins is therefore a strong determinant of population-mean performance, and the magnitude of effect may be sufficient to cause range limits.
Collapse
Affiliation(s)
- Antoine Perrier
- Department of Environmental Sciences, University of Basel, Basel, 4056, Switzerland
| | - Darío Sánchez-Castro
- Department of Environmental Sciences, University of Basel, Basel, 4056, Switzerland
| | - Yvonne Willi
- Department of Environmental Sciences, University of Basel, Basel, 4056, Switzerland
| |
Collapse
|
16
|
Oldfather MF, Kling MM, Sheth SN, Emery NC, Ackerly DD. Range edges in heterogeneous landscapes: Integrating geographic scale and climate complexity into range dynamics. GLOBAL CHANGE BIOLOGY 2020; 26:1055-1067. [PMID: 31674701 DOI: 10.1111/gcb.14897] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/01/2019] [Indexed: 05/04/2023]
Abstract
The impacts of climate change have re-energized interest in understanding the role of climate in setting species geographic range edges. Despite the strong focus on species' distributions in ecology and evolution, defining a species range edge is theoretically and empirically difficult. The challenge of determining a range edge and its relationship to climate is in part driven by the nested nature of geography and the multidimensionality of climate, which together generate complex patterns of both climate and biotic distributions across landscapes. Because range-limiting processes occur in both geographic and climate space, the relationship between these two spaces plays a critical role in setting range limits. With both conceptual and empirical support, we argue that three factors-climate heterogeneity, collinearity among climate variables, and spatial scale-interact to shape the spatial structure of range edges along climate gradients, and we discuss several ways that these factors influence the stability of species range edges with a changing climate. We demonstrate that geographic and climate edges are often not concordant across species ranges. Furthermore, high climate heterogeneity and low climate collinearity across landscapes increase the spectrum of possible relationships between geographic and climatic space, suggesting that geographic range edges and climatic niche limits correspond less frequently than we may expect. More empirical explorations of how the complexity of real landscapes shapes the ecological and evolutionary processes that determine species range edges will advance the development of range limit theory and its applications to biodiversity conservation in the context of changing climate.
Collapse
Affiliation(s)
- Meagan F Oldfather
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Matthew M Kling
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Seema N Sheth
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Nancy C Emery
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - David D Ackerly
- Department of Integrative Biology, Department of Environmental Science, Policy, and Management, Jepson Herbarium, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
17
|
Cross RL, Eckert CG. Integrated empirical approaches to better understand species' range limits. AMERICAN JOURNAL OF BOTANY 2020; 107:12-16. [PMID: 31828769 DOI: 10.1002/ajb2.1400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Regan L Cross
- Department of Biology, Queen's University, Kingston, ON, K7L 3N6, Canada
| | | |
Collapse
|
18
|
Fenollosa E, Munné-Bosch S. Increased chilling tolerance of the invasive species Carpobrotus edulis may explain its expansion across new territories. CONSERVATION PHYSIOLOGY 2019; 7:coz075. [PMID: 31737274 PMCID: PMC6846103 DOI: 10.1093/conphys/coz075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Invasive plants are expanding their geographical distribution across new regions. Expansion modeling is crucial for geographic prioritization in management policies. However, the assumption of niche conservatism and the lack of information of the species physiological response to the environmental factors determining species presence may hinder predictions. In this study, we aimed to understand the expansion of the widely distributed plant Carpobrotus edulis in Europe. We contrasted introduced and native C. edulis ecological niches and explored the experimental response to temperature, a major determining factor for species distribution, of native and invasive individuals in terms of different biochemical markers. Niche analysis revealed an expansion of the introduced niche to occupy colder climates. Introduced and native individuals showed differential mechanisms facing low temperatures. Individuals from the native range showed an increased sensitivity to chilling, as reflected by photosynthetic pigment degradation, increased de-epoxidation of xanthophylls and the accumulation of the lipophilic antioxidant alpha-tocopherol. The found physiological differentiation towards an increased invasive chilling tolerance of invasive C. edulis individuals together with a high propagule pressure may explain the introduced climatic niche shift to colder climates observed, allowing the extensive expansion of this species in Europe.
Collapse
Affiliation(s)
- Erola Fenollosa
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
- Institute of Research in Biodiversity (IRBio-UB), Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
- Institute of Research in Biodiversity (IRBio-UB), Universitat de Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| |
Collapse
|
19
|
Willi Y. The relevance of mutation load for species range limits. AMERICAN JOURNAL OF BOTANY 2019; 106:757-759. [PMID: 31162640 DOI: 10.1002/ajb2.1296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Yvonne Willi
- Department of Environmental Sciences, University of Basel, 4056, Basel, Switzerland
| |
Collapse
|