1
|
Cosmo LG, Acquaviva JN, Guimarães PR, Pires MM. Coevolutionary hotspots favour dispersal and fuel biodiversity in mutualistic landscapes under environmental changes. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230133. [PMID: 38913059 PMCID: PMC11391304 DOI: 10.1098/rstb.2023.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 06/25/2024] Open
Abstract
Mutualistic interactions are key to sustaining Earth's biodiversity. Yet, we are only beginning to understand how coevolution in mutualistic assemblages can shape the distribution and persistence of species across landscapes. Here, we combine the geographic mosaic theory of coevolution with metacommunity dynamics to understand how geographically structured selection can shape patterns of richness, dispersal, extinction and persistence of mutualistic species. In this model, species may experience strong or weak reciprocal selection imposed by mutualisms within each patch (i.e. hotspots and coldspots, respectively). Using numerical simulations, we show that mutualistic coevolution leads to a concentration of species richness at hotspots. Such an effect occurs because hotspots sustain higher rates of colonization and lower rates of extinction than coldspots, whether the environment changes or not. Importantly, under environmental changes, coldspots fail to sustain a positive colonization-to-extinction balance. Rather, species persistence within coldspots relies on hotspots acting as biodiversity sources and enhancing population dispersal across the landscape. In fact, even a few hotspots in the landscape can fuel the spatial network of dispersal of populations in the metacommunity. Our study highlights that coevolutionary hotspots can act as biodiversity sources, favouring colonization and allowing species to expand their distribution across landscapes even in changing environments. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
Collapse
Affiliation(s)
- Leandro G Cosmo
- Programa de Pós-Graduação em Ecologia, Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo-USP , São Paulo, State of São Paulo, Brazil
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190 , Zurich CH-8057, Switzerland
| | - Julia N Acquaviva
- Instituto de Biologia, Programa de Pós-Graduação em Ecologia, Universidade Estadual de Campinas-UNICAMP , Campinas, State of São Paulo, Brazil
| | - Paulo R Guimarães
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo-USP , São Paulo, State of São Paulo, Brazil
| | - Mathias M Pires
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas-UNICAMP , Campinas, State of São Paulo, Brazil
| |
Collapse
|
2
|
Riley AB, Grillo MA, Epstein B, Tiffin P, Heath KD. Discordant population structure among rhizobium divided genomes and their legume hosts. Mol Ecol 2023; 32:2646-2659. [PMID: 36161739 DOI: 10.1111/mec.16704] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022]
Abstract
Symbiosis often occurs between partners with distinct life history characteristics and dispersal mechanisms. Many bacterial symbionts have genomes comprising multiple replicons with distinct rates of evolution and horizontal transmission. Such differences might drive differences in population structure between hosts and symbionts and among the elements of the divided genomes of bacterial symbionts. These differences might, in turn, shape the evolution of symbiotic interactions and bacterial evolution. Here we use whole genome resequencing of a hierarchically structured sample of 191 strains of Sinorhizobium meliloti collected from 21 locations in southern Europe to characterize population structures of this bacterial symbiont, which forms a root nodule symbiosis with the host plant Medicago truncatula. S. meliloti genomes showed high local (within-site) variation and little isolation by distance. This was particularly true for the two symbiosis elements, pSymA and pSymB, which have population structures that are similar to each other, but distinct from both the bacterial chromosome and the host plant. Given limited recombination on the chromosome, compared to the symbiosis elements, distinct population structures may result from differences in effective gene flow. Alternatively, positive or purifying selection, with little recombination, may explain distinct geographical patterns at the chromosome. Discordant population structure between hosts and symbionts indicates that geographically and genetically distinct host populations in different parts of the range might interact with genetically similar symbionts, potentially minimizing local specialization.
Collapse
Affiliation(s)
- Alex B Riley
- Department of Plant Biology, University of Illinois, Urbana, Illinois, USA
| | - Michael A Grillo
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Brendan Epstein
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Katy D Heath
- Department of Plant Biology, University of Illinois, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
3
|
Warson J, Baguette M, Stevens VM, Honnay O, De Kort H. The impact of habitat loss on molecular signatures of coevolution between an iconic butterfly (Alcon blue) and its host plant (Marsh gentian). J Hered 2023; 114:22-34. [PMID: 36749638 DOI: 10.1093/jhered/esac059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
Abstract
Habitat loss is threatening natural communities worldwide. Small and isolated populations suffer from inbreeding and genetic drift, which jeopardize their long-term survival and adaptive capacities. However, the consequences of habitat loss for reciprocal coevolutionary interactions remain poorly studied. In this study, we investigated the effects of decreasing habitat patch size and connectivity associated with habitat loss on molecular signatures of coevolution in the Alcon blue butterfly (Phengaris alcon) and its most limited host, the marsh gentian (Gentiana pneumonanthe). Because reciprocal coevolution is characterized by negative frequency-dependent selection as a particular type of balancing selection, we investigated how signatures of balancing selection vary along a gradient of patch size and connectivity, using single nucleotide polymorphisms (SNPs). We found that signatures of coevolution were unaffected by patch characteristics in the host plants. On the other hand, more pronounced signatures of coevolution were observed in both spatially isolated and in large Alcon populations, together with pronounced spatial variation in SNPs that are putatively involved in coevolution. These findings suggest that habitat loss can facilitate coevolution in large butterfly populations through limiting swamping of locally beneficial alleles by maladaptive ones. We also found that allelic richness (Ar) of the coevolutionary SNPs is decoupled from neutral Ar in the butterfly, indicating that habitat loss has different effects on coevolutionary as compared with neutral processes. We conclude that this specialized coevolutionary system requires particular conservation interventions aiming at generating a spatial mosaic of both connected and of isolated habitat to maintain coevolutionary dynamics.
Collapse
Affiliation(s)
- Jonas Warson
- Plant Conservation and Population Biology, Department of Biology, University of Leuven, Heverlee, Belgium
- Leuven Plant Institute, Heverlee, Belgium
| | - Michel Baguette
- Centre National de la Recherche Scientifique, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, Moulis, France
- Institut Systématique, Evolution, Biodiversité (ISYEB), UMR 7205 Museum National d'HistoireNaturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Virginie M Stevens
- Centre National de la Recherche Scientifique, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, Moulis, France
| | - Olivier Honnay
- Plant Conservation and Population Biology, Department of Biology, University of Leuven, Heverlee, Belgium
- Leuven Plant Institute, Heverlee, Belgium
| | - Hanne De Kort
- Plant Conservation and Population Biology, Department of Biology, University of Leuven, Heverlee, Belgium
- Leuven Plant Institute, Heverlee, Belgium
| |
Collapse
|
4
|
Cosmo LG, Sales LP, Guimarães PR, Pires MM. Mutualistic coevolution and community diversity favour persistence in metacommunities under environmental changes. Proc Biol Sci 2023; 290:20221909. [PMID: 36629106 PMCID: PMC9832548 DOI: 10.1098/rspb.2022.1909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023] Open
Abstract
Linking local to regional ecological and evolutionary processes is key to understand the response of Earth's biodiversity to environmental changes. Here we integrate evolution and mutualistic coevolution in a model of metacommunity dynamics and use numerical simulations to understand how coevolution can shape species distribution and persistence in landscapes varying in space and time. Our simulations show that coevolution and species richness can synergistically shape distribution patterns by increasing colonization and reducing extinction of populations in metacommunities. Although conflicting selective pressures emerging from mutualisms may increase mismatches with the local environment and the rate of local extinctions, coevolution increases trait matching among mutualists at the landscape scale, counteracting local maladaptation and favouring colonization and range expansions. Our results show that by facilitating colonization, coevolution can also buffer the effects of environmental changes, preventing species extinctions and the collapse of metacommunities. Our findings reveal the mechanisms whereby coevolution can favour persistence under environmental changes and highlight that these positive effects are greater in more diverse systems that retain landscape connectivity.
Collapse
Affiliation(s)
- Leandro G. Cosmo
- Programa de Pós-Graduação em Ecologia, Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo - USP, São Paulo, SP, Brazil
| | - Lilian P. Sales
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, SP, Brazil
- Biology Department, Faculty of Arts and Science, Concordia University, Montreal, Canada
| | - Paulo R. Guimarães
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo - USP, São Paulo, SP, Brazil
| | - Mathias M. Pires
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
5
|
Gawecka KA, Pedraza F, Bascompte J. Effects of habitat destruction on coevolving metacommunities. Ecol Lett 2022; 25:2597-2610. [PMID: 36223432 DOI: 10.1111/ele.14118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/27/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022]
Abstract
Habitat destruction is a growing threat to biodiversity and ecosystem services. The ecological consequences of habitat loss and fragmentation involve reductions in species abundance and even the extinction of species and their interactions. However, we do not yet understand how habitat loss alters the coevolutionary trajectories of the remaining species or how coevolution, in turn, affects their response to habitat loss. To investigate this, we develop a spatially explicit model which couples metacommunity and coevolutionary dynamics. We show that, by changing the size, composition and structure of local networks, habitat destruction increases the diversity of coevolutionary trajectories of mutualists across the landscape. Conversely, in antagonistic communities, some species increase while others reduce their spatial trait heterogeneity. Furthermore, we show that while coevolution dampens the negative effects of habitat destruction in mutualistic networks, its effects on the persistence of antagonistic communities tend to be smaller and less predictable.
Collapse
Affiliation(s)
- Klementyna A Gawecka
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Fernando Pedraza
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Hund AK, Fuess LE, Kenney ML, Maciejewski MF, Marini JM, Shim KC, Bolnick DI. Population-level variation in parasite resistance due to differences in immune initiation and rate of response. Evol Lett 2022; 6:162-177. [PMID: 35386836 PMCID: PMC8966477 DOI: 10.1002/evl3.274] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/20/2023] Open
Abstract
Closely related populations often differ in resistance to a given parasite, as measured by infection success or failure. Yet, the immunological mechanisms of these evolved differences are rarely specified. Does resistance evolve via changes to the host's ability to recognize that an infection exists, actuate an effective immune response, or attenuate that response? We tested whether each of these phases of the host response contributed to threespine sticklebacks' recently evolved resistance to their tapeworm Schistocephalus solidus. Although marine stickleback and some susceptible lake fish permit fast-growing tapeworms, other lake populations are resistant and suppress tapeworm growth via a fibrosis response. We subjected lab-raised fish from three populations (susceptible marine "ancestors," a susceptible lake population, and a resistant lake population) to a novel immune challenge using an injection of (1) a saline control, (2) alum, a generalized pro-inflammatory adjuvant that causes fibrosis, (3) a tapeworm protein extract, or (4) a combination of alum and tapeworm protein. With enough time, all three populations generated a robust fibrosis response to the alum treatments. Yet, only the resistant population exhibited a fibrosis response to the tapeworm protein alone. Thus, these populations differed in their ability to respond to the tapeworm protein but shared an intact fibrosis pathway. The resistant population also initiated fibrosis faster in response to alum, and was able to attenuate fibrosis, unlike the susceptible populations' slow but longer lasting response to alum. As fibrosis has pathological side effects that reduce fecundity, the faster recovery by the resistant population may reflect an adaptation to mitigate the costs of immunity. Broadly, our results confirm that parasite detection and immune initiation, activation speed, and immune attenuation simultaneously contribute to the evolution of parasite resistance and adaptations to infection in natural populations.
Collapse
Affiliation(s)
- Amanda K. Hund
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesota55123
| | - Lauren E. Fuess
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269
- Current Address: Department of BiologyTexas State UniversitySan MarcosTexas78666
| | - Mariah L. Kenney
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269
| | - Meghan F. Maciejewski
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269
| | - Joseph M. Marini
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269
| | - Kum Chuan Shim
- Department of Ecology, Evolution, and BehaviorUniversity of Texas at AustinAustinTexas78712
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269
| |
Collapse
|
7
|
Stengel A, Stanke KM, Quattrone AC, Herr JR. Improving Taxonomic Delimitation of Fungal Species in the Age of Genomics and Phenomics. Front Microbiol 2022; 13:847067. [PMID: 35250961 PMCID: PMC8892103 DOI: 10.3389/fmicb.2022.847067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/28/2022] [Indexed: 01/04/2023] Open
Abstract
Species concepts have long provided a source of debate among biologists. These lively debates have been important for reaching consensus on how to communicate across scientific disciplines and for advancing innovative strategies to study evolution, population biology, ecology, natural history, and disease epidemiology. Species concepts are also important for evaluating variability and diversity among communities, understanding biogeographical distributions, and identifying causal agents of disease across animal and plant hosts. While there have been many attempts to address the concept of species in the fungi, there are several concepts that have made taxonomic delimitation especially challenging. In this review we discuss these major challenges and describe methodological approaches that show promise for resolving ambiguity in fungal taxonomy by improving discrimination of genetic and functional traits. We highlight the relevance of eco-evolutionary theory used in conjunction with integrative taxonomy approaches to improve the understanding of interactions between environment, ecology, and evolution that give rise to distinct species boundaries. Beyond recent advances in genomic and phenomic methods, bioinformatics tools and modeling approaches enable researchers to test hypothesis and expand our knowledge of fungal biodiversity. Looking to the future, the pairing of integrative taxonomy approaches with multi-locus genomic sequencing and phenomic techniques, such as transcriptomics and proteomics, holds great potential to resolve many unknowns in fungal taxonomic classification.
Collapse
Affiliation(s)
- Ashley Stengel
- Complex Biosystems Interdisciplinary Life Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Kimberly M. Stanke
- Complex Biosystems Interdisciplinary Life Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Amanda C. Quattrone
- Complex Biosystems Interdisciplinary Life Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Joshua R. Herr
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
8
|
de Alvarenga AMSB, Borges ME, Jorge LR, Varassin IG, Araújo SBL. Consumers' active choice behaviour promotes coevolutionary units in antagonistic networks. J Evol Biol 2021; 35:134-145. [PMID: 34758181 DOI: 10.1111/jeb.13956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022]
Abstract
Individual behaviour and local context can influence the evolution of ecological interactions and how they structure into networks. In trophic interactions, consumers can increase their fitness by actively choosing resources that they are more likely to explore successfully. Mathematical modelling is often employed in theoretical studies to understand the coevolutionary dynamics between consumers and resources. However, they often disregard the individual consumer behaviour since the complexity of these systems usually requires simplifying assumptions about interaction details. Using an individual-based model, we model a community of several species that interact antagonistically. Each individual has a trait (attack or defence) that is explicitly modelled and the probability of the interaction to occur successfully increases with increased trait-matching. In addition, consumers can actively choose resources that guarantee greater fitness. We show that active consumer choice can generate coevolutionary units over time. It means that the traits of both consumers and resources converge into multiple groups with similar traits and the species interactions stay restricted to these groups over time. We also observed that network structure is more dependent on the parameter that delimits active consumer choice than on the intensity of selective pressure. Thus, our results support the idea that consumer active choice behaviour plays an important role in the ecological and evolutionary processes that structure interacting communities.
Collapse
Affiliation(s)
| | | | - Leonardo Ré Jorge
- Department of Ecology, Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Isabela Galarda Varassin
- Laboratório de Interações e Biologia Reprodutiva, Departamento de Botânica, Universidade Federal do Paraná, Curitiba, Brazil
| | - Sabrina Borges Lino Araújo
- Laboratório de Interações Biológicas, Universidade Federal do Paraná, Curitiba, Brazil.,Departamento de Física, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
9
|
Craig TP, Itami JK. A geographic mosaic of coevolution between Eurosta solidaginis (Fitch) and its host plant tall goldenrod Solidago altissima (L.). Evolution 2021; 75:3056-3070. [PMID: 34726264 DOI: 10.1111/evo.14391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 09/10/2021] [Accepted: 09/19/2021] [Indexed: 11/30/2022]
Abstract
A geographic mosaic of coevolution has produced local reciprocal adaptation in tall goldenrod, Solidago altissima (L.), and the goldenrod ball-gall fly, Eurosta solidaginis (Fitch 1855). The fly is selected to induce gall diameters that minimize mortality from natural enemies, and the plant is selected to limit gall growth that reduces plant fitness. We conducted a double reciprocal transplant experiment where S. altissima and E. solidaginis from three sites were grown in gardens at each site to partition the gall morphology variation into fly genotype, plant genotype, and the environment components. The host plant gall diameter induced by each E. solidaginis population was adapted to inhibit local natural enemies from ovipositing on or consuming enclosed larvae. Reciprocally, increasing the gall size induced by the local fly population increased the resistance of the local plant host population to gall growth. Differences among sites in natural enemies produced a mosaic of hotspots of coevolutionary arms races between flies selecting for greater gall diameter and plants for smaller diameters, and coldspots where there is no selection on plant or fly for a change in gall diameter. In contrast, the geographic variations of gall length and gall shape were not due to coevolutionary interactions.
Collapse
Affiliation(s)
- Timothy P Craig
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota
| | - Joanne K Itami
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota
| |
Collapse
|
10
|
Stenberg JA, Ortiz R. Focused Identification of Germplasm Strategy (FIGS): polishing a rough diamond. CURRENT OPINION IN INSECT SCIENCE 2021; 45:1-6. [PMID: 33166746 DOI: 10.1016/j.cois.2020.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Focused Identification of Germplasm Strategy (FIGS) has been advocated as an efficient approach to predict and harness variation in adaptive traits in genebanks or wild populations of plants. However, a weakness of the current FIGS approach is that it only utilizes a priori knowledge of one evolutionary factor: natural selection. Further optimization is needed to capture elusive traits, and this review shows that nonadaptive evolutionary processes (gene flow and genetic drift) should be incorporated to increase precision. Focusing on plant resistance to insect herbivores, we also note that historic selection pressures can be difficult to disentangle, and provide suggestions for successful mining based on eco-evolutionary theory. We conclude that with such refinement FIGS has high potential for enhancing breeding efforts and hence sustainable plant production.
Collapse
Affiliation(s)
- Johan A Stenberg
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, PO Box 102, 23053 Alnarp, Sweden.
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, PO Box 101, 23053 Alnarp, Sweden
| |
Collapse
|
11
|
Consistent community genetic effects in the context of strong environmental and temporal variation in Eucalyptus. Oecologia 2021; 195:367-382. [PMID: 33471200 DOI: 10.1007/s00442-020-04835-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
Provenance translocations of tree species are promoted in forestry, conservation, and restoration in response to global climate change. While this option is driven by adaptive considerations, less is known of the effects translocations can have on dependent communities. We investigated the relative importance and consistency of extended genetic effects in Eucalyptus using two species-E. globulus and E. pauciflora. In E. globulus, the dependent arthropod and pathogen canopy communities were quantified based on the abundance of 49 symptoms from 722 progeny from 13 geographic sub-races across 2 common gardens. For E. pauciflora, 6 symptoms were quantified over 2 years from 238 progeny from 16 provenances across 2 common gardens. Genetic effects significantly influenced communities in both species. However, site and year effects outweighed genetic effects with site explaining approximately 3 times the variation in community traits in E. globulus and site and year explaining approximately 6 times the variation in E. pauciflora. While the genetic effect interaction terms were significant in some community traits, broad trends in community traits associated with variation in home-site latitude for E. globulus and home-site altitude for E. pauciflora were evident. These broad-scale trends were consistent with patterns of adaptive differentiation within each species, suggesting there may be extended consequences of local adaptation. While small in comparison to site and year, the consistency of genetic effects highlights the importance of provenance choice in tree species, such as Eucalyptus, as adaptive divergence among provenances may have significant long-term effects on biotic communities.
Collapse
|
12
|
Hund AK, Hubbard JK, Albrecht T, Vortman Y, Munclinger P, Krausová S, Tomášek O, Safran RJ. Divergent sexual signals reflect costs of local parasites. Evolution 2020; 74:2404-2418. [PMID: 32385910 DOI: 10.1111/evo.13994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/12/2020] [Accepted: 04/26/2020] [Indexed: 01/27/2023]
Abstract
Many closely related populations are distinguished by variation in sexual signals and this variation is hypothesized to play an important role in reproductive isolation and speciation. Within populations, there is considerable evidence that sexual signals provide information about the incidence and severity of parasite infections, but it remains unclear if variation in parasite communities across space could play a role in initiating or maintaining sexual trait divergence. To test for variation in parasite-associated selection, we compared three barn swallow subspecies with divergent sexual signals. We found that parasite community structure and host tolerance to ecologically similar parasites varied between subspecies. Across subspecies we also found that different parasites were costly in terms of male survival and reproductive success. For each subspecies, the preferred sexual signal(s) were associated with the most costly local parasite(s), indicating that divergent signals are providing relevant information to females about local parasite communities. Across subspecies, the same traits were often associated with different parasites, indicating that parasite-sexual signal links are quite flexible and may evolve relatively quickly. This study provides evidence for (1) variation in parasite communities and (2) different parasite-sexual signal links among three closely related subspecies with divergent sexual signal traits, suggesting that parasites may play an important role in initiating and/or maintaining the divergence of sexual signals among these closely related, yet geographically isolated populations.
Collapse
Affiliation(s)
- Amanda K Hund
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309.,Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, 55108
| | - Joanna K Hubbard
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309.,Department of Biology, Truman State University, Kirksville, Missouri, 63501
| | - Tomáš Albrecht
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, 60365, Czech Republic.,Department of Zoology, Faculty of Science, Charles University, Prague, 128 44, Czech Republic
| | - Yoni Vortman
- Department of Animal Sciences, Tel Hai Academic College, Upper Galilee, 1220800, Israel
| | - Pavel Munclinger
- Department of Zoology, Faculty of Science, Charles University, Prague, 128 44, Czech Republic
| | - Simona Krausová
- Department of Zoology, Faculty of Science, Charles University, Prague, 128 44, Czech Republic
| | - Oldřich Tomášek
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, 60365, Czech Republic
| | - Rebecca J Safran
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309
| |
Collapse
|