1
|
Bimler MD, Stouffer DB, Martyn TE, Mayfield MM. Plant interaction networks reveal the limits of our understanding of diversity maintenance. Ecol Lett 2024; 27:e14376. [PMID: 38361464 DOI: 10.1111/ele.14376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 02/17/2024]
Abstract
Species interactions are key drivers of biodiversity and ecosystem stability. Current theoretical frameworks for understanding the role of interactions make many assumptions which unfortunately, do not always hold in natural, diverse communities. This mismatch extends to annual plants, a common model system for studying coexistence, where interactions are typically averaged across environmental conditions and transitive competitive hierarchies are assumed to dominate. We quantify interaction networks for a community of annual wildflowers in Western Australia across a natural shade gradient at local scales. Whilst competition dominated, intraspecific and interspecific facilitation were widespread in all shade categories. Interaction strengths and directions varied substantially despite close spatial proximity and similar levels of local species richness, with most species interacting in different ways under different environmental conditions. Contrary to expectations, all networks were predominantly intransitive. These findings encourage us to rethink how we conceive of and categorize the mechanisms driving biodiversity in plant systems.
Collapse
Affiliation(s)
- Malyon D Bimler
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel B Stouffer
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Trace E Martyn
- Eastern Oregon Agriculture Research Center-Union Experiment Station, Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, USA
- Eastern Oregon Agriculture and Natural Resource Program, Oregon State University, Oregon, USA
| | - Margaret M Mayfield
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
García-Callejas D, Godoy O, Buche L, Hurtado M, Lanuza JB, Allen-Perkins A, Bartomeus I. Non-random interactions within and across guilds shape the potential to coexist in multi-trophic ecological communities. Ecol Lett 2023; 26:831-842. [PMID: 36972904 DOI: 10.1111/ele.14206] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/12/2023] [Accepted: 02/05/2023] [Indexed: 03/29/2023]
Abstract
Theory posits that the persistence of species in ecological communities is shaped by their interactions within and across trophic guilds. However, we lack empirical evaluations of how the structure, strength and sign of biotic interactions drive the potential to coexist in diverse multi-trophic communities. Here, we model community feasibility domains, a theoretically informed measure of multi-species coexistence probability, from grassland communities comprising more than 45 species on average from three trophic guilds (plants, pollinators and herbivores). Contrary to our hypothesis, increasing community complexity, measured either as the number of guilds or community richness, did not decrease community feasibility. Rather, we observed that high degrees of species self-regulation and niche partitioning allow for maintaining larger levels of community feasibility and higher species persistence in more diverse communities. Our results show that biotic interactions within and across guilds are not random in nature and both structures significantly contribute to maintaining multi-trophic diversity.
Collapse
Affiliation(s)
- David García-Callejas
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
- Instituto Universitario de Ciencias del Mar (INMAR), Departamento de Biología, Universidad de Cádiz, E-11510, Puerto Real, Spain
- School of Biological Sciences, University of Canterbury, 8140, Christchurch, Private Bag 4800, New Zealand
| | - Oscar Godoy
- Instituto Universitario de Ciencias del Mar (INMAR), Departamento de Biología, Universidad de Cádiz, E-11510, Puerto Real, Spain
| | - Lisa Buche
- Instituto Universitario de Ciencias del Mar (INMAR), Departamento de Biología, Universidad de Cádiz, E-11510, Puerto Real, Spain
| | - María Hurtado
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
- Instituto Universitario de Ciencias del Mar (INMAR), Departamento de Biología, Universidad de Cádiz, E-11510, Puerto Real, Spain
| | - Jose B Lanuza
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Alfonso Allen-Perkins
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
- Departamento de Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada, ETSIDI, Technical University of Madrid, 28040, Madrid, Spain
| | | |
Collapse
|
4
|
Clark AT, Arnoldi JF, Zelnik YR, Barabas G, Hodapp D, Karakoç C, König S, Radchuk V, Donohue I, Huth A, Jacquet C, de Mazancourt C, Mentges A, Nothaaß D, Shoemaker LG, Taubert F, Wiegand T, Wang S, Chase JM, Loreau M, Harpole S. General statistical scaling laws for stability in ecological systems. Ecol Lett 2021; 24:1474-1486. [PMID: 33945663 DOI: 10.1111/ele.13760] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/08/2021] [Accepted: 03/21/2021] [Indexed: 01/03/2023]
Abstract
Ecological stability refers to a family of concepts used to describe how systems of interacting species vary through time and respond to disturbances. Because observed ecological stability depends on sampling scales and environmental context, it is notoriously difficult to compare measurements across sites and systems. Here, we apply stochastic dynamical systems theory to derive general statistical scaling relationships across time, space, and ecological level of organisation for three fundamental stability aspects: resilience, resistance, and invariance. These relationships can be calibrated using random or representative samples measured at individual scales, and projected to predict average stability at other scales across a wide range of contexts. Moreover deviations between observed vs. extrapolated scaling relationships can reveal information about unobserved heterogeneity across time, space, or species. We anticipate that these methods will be useful for cross-study synthesis of stability data, extrapolating measurements to unobserved scales, and identifying underlying causes and consequences of heterogeneity.
Collapse
Affiliation(s)
- Adam Thomas Clark
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.,Institute of Biology, University of Graz, Graz, Austria.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | | - Yuval R Zelnik
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, Moulis, France
| | - György Barabas
- Division of Theoretical Biology, Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden.,MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Budapest, Hungary
| | - Dorothee Hodapp
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), Oldenburg, Germany.,Alfred-Wegener-Institute Helmholtz-Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
| | - Canan Karakoç
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Environmental Microbiology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Sara König
- Department of Soil System Science, Helmholtz Centre for Environmental Research (UFZ), Halle (Saale), Germany
| | - Viktoriia Radchuk
- Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Ian Donohue
- Zoology Department, Trinity College Dublin, Dublin, Ireland
| | - Andreas Huth
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Claire Jacquet
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland.,Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland
| | - Claire de Mazancourt
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, Moulis, France
| | - Andrea Mentges
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Computer Sciences, Martin Luther University, Halle, Germany
| | - Dorian Nothaaß
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.,Department of Ecological Modelling, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | | | - Franziska Taubert
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Thorsten Wiegand
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Ecological Modelling, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Computer Sciences, Martin Luther University, Halle, Germany
| | - Michel Loreau
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, Moulis, France
| | - Stanley Harpole
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Martin Luther University, Halle, Germany
| |
Collapse
|
5
|
Karakoç C, Clark AT, Chatzinotas A. Diversity and coexistence are influenced by time-dependent species interactions in a predator-prey system. Ecol Lett 2020; 23:983-993. [PMID: 32243074 DOI: 10.1111/ele.13500] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/08/2019] [Accepted: 02/23/2020] [Indexed: 12/17/2022]
Abstract
Although numerous studies show that communities are jointly influenced by predation and competitive interactions, few have resolved how temporal variability in these interactions influences community assembly and stability. Here, we addressed this challenge in experimental microbial microcosms by employing empirical dynamic modelling tools to: (1) detect causal interactions between prey species in the absence and presence of a predator; (2) quantify the time-varying strength of these interactions and (3) explore stability in the resulting communities. Our findings show that predators boost the number of causal interactions among community members, and lead to reduced dynamic stability, but higher coexistence among prey species. These results correspond to time-varying changes in species interactions, including emergence of morphological characteristics that appeared to reduce predation, and indirectly facilitate growth of predator-susceptible species. Jointly, our findings suggest that careful consideration of both context and time may be necessary to predict and explain outcomes in multi-trophic systems.
Collapse
Affiliation(s)
- Canan Karakoç
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Adam Thomas Clark
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.,Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.,Synthesis Centre for Biodiversity Sciences (sDiv), Deutscher Platz 5e, 04103, Leipzig, Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.,Institute of Biology, Leipzig University, Talstrasse 33, 04103, Leipzig, Germany
| |
Collapse
|