1
|
Watson WH, Gutzler BC, Goldstein JS, Jury SH. Impacts of Increasing Temperature on the Metabolism of Confined and Freely Moving American Lobsters ( Homarus americanus). THE BIOLOGICAL BULLETIN 2023; 245:103-116. [PMID: 38980328 DOI: 10.1086/730687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
AbstractGulf of Maine waters are warming rapidly, prompting a reevaluation of how commercially important marine species will respond. The goal of this study was to determine the respiratory, cardiac, and locomotory responses of American lobsters (Homarus americanus) to increasing water temperatures and to compare these to similar published studies. First, we measured the heart rate and ventilation rate of 10 lobsters that were confined in a temperature-controlled chamber while exposing them to gradually warming temperatures from 16 to 30 °C over 7 h. Both heart rate and ventilation rate increased along with the temperature up to a break point, with the mean heart rate peaking at 26.5 ± 1.6 °C, while the ventilation rate peaked at 27.4 ± 0.8 °C. In a subset of these trials (n = 5), oxygen consumption was also monitored and peaked at similar temperatures. In a second experiment, both the heart rate and activity of five lobsters were monitored with custom-built dataloggers while they moved freely in a large tank, while the temperature was increased from 18 to 29 °C over 24 h. The heart rate of these lobsters also increased with temperature, but their initial heart rates were lower than we recorded from confined lobsters. Finally, we confirmed that the low heart rates of the freely moving lobsters were due to the methods used by comparing heart rate data from eight lobsters collected using both methods with each individual animal. Thus, while our overall results are consistent with data from previous studies, they also show that the methods used in studies of physiological and behavioral responses to warming temperatures can impact the results obtained.
Collapse
|
2
|
Reyes-Avalos W, Melgarejo-Velásquez G, Yzásiga-Barrera C, Ferrer-Chujutalli K. Thermal tolerance of the male freshwater prawn Cryphiops caementarius exposed to different acclimation temperatures. J Therm Biol 2023; 113:103494. [PMID: 37055113 DOI: 10.1016/j.jtherbio.2023.103494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 01/22/2023] [Accepted: 01/22/2023] [Indexed: 02/09/2023]
Abstract
The variation in water temperature influences metabolic and biochemical processes in ectothermic organisms, affecting development, behavior, and thermal responses. We conducted laboratory experiments based on different acclimation temperatures to determine the thermal tolerance in male specimens of the freshwater prawn Cryphiops caementarius. During 30 days, male prawns were exposed to acclimation temperatures of 19 °C (control), 24 °C, and 28 °C treatments. The Critical Thermal Maxima (CTMax) values at these acclimation temperatures were 33.42 °C, 34.92 °C, and 36.80 °C; whereas values for the Critical Thermal Minimum (CTMin) were 9.38 °C, 10.57 °C, and 13.88 °C. All acclimation temperature treatments had a positive effect (P < 0.05) on CTMax and CTMin, with high and significant correlations (CTMax: r = 0.992, P < 0.01; CTMin: r = 0.946, P < 0.01). The area of the thermal tolerance polygon over the three acclimation temperatures was 211.32 °C2 and the acclimation response rate values were high (CTMax from 0.30 to 0.47; CTMin from 0.24 to 0.83) but similar to those from other tropical crustacean species. These results demonstrate that adult males of the freshwater prawn C. caementarius can tolerate extreme water temperatures through a thermal plasticity response, which could be advantageous during a global warming scenario.
Collapse
Affiliation(s)
- Walter Reyes-Avalos
- Laboratorio de Acuicultura Ornamental, Departamento Académico de Biología, Microbiología y Biotecnología, Universidad Nacional del Santa, Ancash, 02710, Peru.
| | - Gladis Melgarejo-Velásquez
- Laboratorio de Acuicultura Ornamental, Departamento Académico de Biología, Microbiología y Biotecnología, Universidad Nacional del Santa, Ancash, 02710, Peru
| | - Carmen Yzásiga-Barrera
- Laboratorio de Genética, Fisiología y Reproducción. Departamento Académico de Biología, Microbiología y Biotecnología. Universidad Nacional del Santa, Ancash, 02710, Peru
| | - Karla Ferrer-Chujutalli
- Escuela Profesional de Biología en Acuicultura, Universidad Nacional del Santa, Ancash, 02710, Peru
| |
Collapse
|
3
|
Christensen EAF, Andersen LEJ, Bergsson H, Steffensen JF, Killen SS. Shuttle-box systems for studying preferred environmental ranges by aquatic animals. CONSERVATION PHYSIOLOGY 2021; 9:coab028. [PMID: 34026213 PMCID: PMC8129825 DOI: 10.1093/conphys/coab028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 05/12/2023]
Abstract
Animals' selection of environments within a preferred range is key to understanding their habitat selection, tolerance to stressors and responses to environmental change. For aquatic animals, preferred environmental ranges can be studied in so-called shuttle-boxes, where an animal can choose its ambient environment by shuttling between separate choice chambers with differences in an environmental variable. Over time, researchers have refined the shuttle-box technology and applied them in many different research contexts, and we here review the use of shuttle-boxes as a research tool with aquatic animals over the past 50 years. Most studies on the methodology have been published in the latest decade, probably due to an increasing research interest in the effects of environmental change, which underlines the current popularity of the system. The shuttle-box has been applied to a wide range of research topics with regards to preferred ranges of temperature, CO 2 , salinity and O 2 in a vast diversity of species, showing broad applicability for the system. We have synthesized the current state-of-the-art of the methodology and provided best practice guidelines with regards to setup, data analyses, experimental design and study reporting. We have also identified a series of knowledge gaps, which can and should be addressed in future studies. We conclude with highlighting directions for research using shuttle-boxes within evolutionary biology and behavioural and physiological ecology.
Collapse
Affiliation(s)
- Emil A F Christensen
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow,
82 Hillhead Street, Glasgow, G12 8QQ, UK
| | - Lars E J Andersen
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Elsinore, Denmark
| | - Heiðrikur Bergsson
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Elsinore, Denmark
| | - John F Steffensen
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Elsinore, Denmark
| | - Shaun S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow,
82 Hillhead Street, Glasgow, G12 8QQ, UK
| |
Collapse
|
4
|
Nay TJ, Longbottom RJ, Gervais CR, Johansen JL, Steffensen JF, Rummer JL, Hoey AS. Regulate or tolerate: Thermal strategy of a coral reef flat resident, the epaulette shark, Hemiscyllium ocellatum. JOURNAL OF FISH BIOLOGY 2021; 98:723-732. [PMID: 33206373 DOI: 10.1111/jfb.14616] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/23/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
Highly variable thermal environments, such as coral reef flats, are challenging for marine ectotherms and are thought to invoke the use of behavioural strategies to avoid extreme temperatures and seek out thermal environments close to their preferred temperatures. Common to coral reef flats, the epaulette shark (Hemiscyllium ocellatum) possesses physiological adaptations to hypoxic and hypercapnic conditions, such as those experienced on reef flats, but little is known regarding the thermal strategies used by these sharks. We investigated whether H. ocellatum uses behavioural thermoregulation (i.e., movement to occupy thermally favourable microhabitats) or tolerates the broad range of temperatures experienced on the reef flat. Using an automated shuttlebox system, we determined the preferred temperature of H. ocellatum under controlled laboratory conditions and then compared this preferred temperature to 6 months of in situ environmental and body temperatures of individual H. ocellatum across the Heron Island reef flat. The preferred temperature of H. ocellatum under controlled conditions was 20.7 ± 1.5°C, but the body temperatures of individual H. ocellatum on the Heron Island reef flat mirrored environmental temperatures regardless of season or month. Despite substantial temporal variation in temperature on the Heron Island reef flat (15-34°C during 2017), there was a lack of spatial variation in temperature across the reef flat between sites or microhabitats. This limited spatial variation in temperature creates a low-quality thermal habitat limiting the ability of H. ocellatum to behaviourally thermoregulate. Behavioural thermoregulation is assumed in many shark species, but it appears that H. ocellatum may utilize other physiological strategies to cope with extreme temperature fluctuations on coral reef flats. While H. ocellatum appears to be able to tolerate acute exposure to temperatures well outside of their preferred temperature, it is unclear how this, and other, species will cope as temperatures continue to rise and approach their critical thermal limits. Understanding how species will respond to continued warming and the strategies they may use will be key to predicting future populations and assemblages.
Collapse
Affiliation(s)
- Tiffany J Nay
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Rohan J Longbottom
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Connor R Gervais
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Jacob L Johansen
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii, USA
| | - John F Steffensen
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Andrew S Hoey
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
5
|
Crickenberger S, Hui TY, Landry Yuan F, Bonebrake TC, Williams GA. Preferred temperature of intertidal ectotherms: Broad patterns and methodological approaches. J Therm Biol 2019; 87:102468. [PMID: 32001017 DOI: 10.1016/j.jtherbio.2019.102468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/29/2019] [Accepted: 11/23/2019] [Indexed: 12/30/2022]
Abstract
Preferred temperature (Tpref) has been measured in over 100 species of aquatic and 300 species of terrestrial ectotherms as a metric for assessing behavioural thermoregulation in variable environments and, as such, has been linked to ecological processes ranging from individual behaviour to population and community dynamics. Due to the asymmetric shape of performance curves, Tpref is typically lower than the optimal temperature (Topt, where physiological performance is at its peak), and the degree of this mismatch increases with variability in Tb. Intertidal ectotherms experience huge variability in Tb on a daily basis and therefore provide a good system to test whether the relationship between Tpref and variation in Tb holds in more extreme environments. A review of the literature, however, only revealed comparisons between Tpref and Topt for five intertidal species and measurements of Tpref for 23 species. An analysis of this limited literature for intertidal ectotherms showed a positive relationship between acclimation temperature and Tpref. There was, however, great variation in the methodologies employed to make these assessments. Factors contributing to behavioural thermoregulation in intertidal ectotherms including small body size; low mobility; interactions among individuals; endogenous clocks; metabolic effects; thermal sensitivity; sampling of the thermal environment and recent acclimation history were considered to varying degrees when measuring Tpref, confounding comparisons between species. The methodologies used to measure Tpref in intertidal ectotherms were reviewed in light of each of these factors, and methodologies proposed to standardize approaches. Given the theoretical predictions about the relationships between Tpref and variability in Tb, the spatial and temporal thermal variability experienced by intertidal ectotherms provides numerous opportunities to test these expectations if assessed in a standardized manner, and can potentially provide insights into the value of behavioural thermoregulation in the more thermally variable environments predicted to occur in the near future.
Collapse
Affiliation(s)
- S Crickenberger
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - T Y Hui
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - F Landry Yuan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - T C Bonebrake
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - G A Williams
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
6
|
Jury SH, Pugh TL, Henninger H, Carloni JT, Watson WH. Patterns and possible causes of skewed sex ratios in American lobster ( Homarus americanus) populations. INVERTEBR REPROD DEV 2019. [DOI: 10.1080/07924259.2019.1595184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- SH Jury
- Sciences Department, Saint Joseph’s College of Maine, Standish, ME, USA
| | - TL Pugh
- Massachusetts Division of Marine Fisheries, New Bedford, MA, USA
| | - H Henninger
- Atlantic Offshore Lobstermen’s Association, Dover, NH, USA
| | - JT Carloni
- New Hampshire Fish and Game, Durham, NH, USA
| | - WH Watson
- Department of Biology, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
7
|
Bayer SR, Bianchi KM, Atema J, Jacobs MW. Effects of Prior Experience on Shelter-Seeking Behavior of Juvenile American Lobsters. THE BIOLOGICAL BULLETIN 2017; 232:101-109. [PMID: 28654329 DOI: 10.1086/692697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Shelter-seeking behaviors are vital for survival for a range of juvenile benthic organisms. These behaviors may be innate or they may be affected by prior experience. After hatching, American lobsters Homarus americanus likely first come into contact with shelter during the late postlarval (decapodid) stage, known as stage IV. After the subsequent molt to the first juvenile stage (stage V), they are entirely benthic and are thought to be highly cryptic. We hypothesized that postlarval (stage IV) experience with shelter would carry over into the first juvenile stage (stage V) and reduce the time needed for juveniles to locate and enter shelters (sheltering). We found some evidence of a carryover effect, but not the one we predicted: stage V juveniles with postlarval shelter experience took significantly longer to initiate sheltering. We also hypothesized that stage V juveniles would demonstrate learning by relocating shelters more quickly with immediate prior experience. Our findings were mixed. In a maze, juveniles with immediate prior experience were faster to regain visual contact with shelter, suggesting that they had learned the location of the shelter. In contrast, there was no significant effect of immediate prior experience on time to initiate sheltering in an open arena, or in the maze after juveniles had regained visual contact. We conclude that very young (stage V) juvenile lobsters modify their shelter-seeking behavior based on prior experiences across several timescales. Ecologically relevant variation in habitat exposure among postlarval and early juvenile lobsters may influence successful recruitment in this culturally and commercially important fishery species.
Collapse
|