1
|
Hart A, Dudzic JP, Clarke JW, Eby J, Perlman SJ, Bazalova-Carter M. High-throughput, low-cost FLASH: irradiation of Drosophila melanogaster with low-energy X-rays using time structures spanning conventional and ultrahigh dose rates. JOURNAL OF RADIATION RESEARCH 2024:rrae079. [PMID: 39422537 DOI: 10.1093/jrr/rrae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/16/2024] [Indexed: 10/19/2024]
Abstract
FLASH radiotherapy is an emerging technique in radiation oncology that may improve clinical outcomes by reducing normal tissue toxicities. The physical radiation characteristics needed to induce the radiobiological benefits of FLASH are still an active area of investigation. To determine the dose rate, range of doses and delivery time structure necessary to trigger the FLASH effect, Drosophila melanogaster were exposed to ultrahigh dose rate (UHDR) or conventional radiotherapy dose rate (CONV) 120-kVp X-rays. A conventional X-ray tube outfitted with a shutter system was used to deliver 17- to 44-Gy doses to third-instar D. melanogaster larvae at both UHDR (210 Gy/s) and CONV (0.2-0.4 Gy/s) dose rates. The larvae were then tracked through development to adulthood and scored for eclosion and lifespan. Larvae exposed to UHDR eclosed at higher rates and had longer median survival as adults compared to those treated with CONV at the same doses. Eclosion rates at 24 Gy were 68% higher for the UHDR group (P < 0.05). Median survival from 22 Gy was >22 days for UHDR and 17 days for CONV (P < 0.01). Two normal tissue-sparing effects were observed for D. melanogaster irradiated with UHDR 120-kVp X-rays. The effects appeared only at intermediate doses and may be useful in establishing the dose range over which the benefits of FLASH can be obtained. This work also demonstrates the usefulness of a high-throughput fruit fly model and a low-cost X-ray tube system for radiobiological FLASH research.
Collapse
Affiliation(s)
- Alexander Hart
- Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Jan P Dudzic
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Jameson W Clarke
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Jonathan Eby
- Institute of Biomedical Engineering, University of Toronto, 164 College St. Toronto, Ontario M5S 3E2, Canada
| | - Steve J Perlman
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Magdalena Bazalova-Carter
- Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
2
|
Redlarski G, Lewczuk B, Żak A, Koncicki A, Krawczuk M, Piechocki J, Jakubiuk K, Tojza P, Jaworski J, Ambroziak D, Skarbek Ł, Gradolewski D. The influence of electromagnetic pollution on living organisms: historical trends and forecasting changes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:234098. [PMID: 25811025 PMCID: PMC4355556 DOI: 10.1155/2015/234098] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/19/2015] [Indexed: 12/20/2022]
Abstract
Current technologies have become a source of omnipresent electromagnetic pollution from generated electromagnetic fields and resulting electromagnetic radiation. In many cases this pollution is much stronger than any natural sources of electromagnetic fields or radiation. The harm caused by this pollution is still open to question since there is no clear and definitive evidence of its negative influence on humans. This is despite the fact that extremely low frequency electromagnetic fields were classified as potentially carcinogenic. For these reasons, in recent decades a significant growth can be observed in scientific research in order to understand the influence of electromagnetic radiation on living organisms. However, for this type of research the appropriate selection of relevant model organisms is of great importance. It should be noted here that the great majority of scientific research papers published in this field concerned various tests performed on mammals, practically neglecting lower organisms. In that context the objective of this paper is to systematise our knowledge in this area, in which the influence of electromagnetic radiation on lower organisms was investigated, including bacteria, E. coli and B. subtilis, nematode, Caenorhabditis elegans, land snail, Helix pomatia, common fruit fly, Drosophila melanogaster, and clawed frog, Xenopus laevis.
Collapse
Affiliation(s)
- Grzegorz Redlarski
- Department of Mechatronics and High Voltage Engineering, Gdansk University of Technology, Własna Strzecha Street 18A, 80-233 Gdansk, Poland
- Department of Electrical Engineering, Power Engineering, Electronics, and Control Engineering, University of Warmia and Mazury, Oczapowskiego Street 11, 10-736 Olsztyn, Poland
| | - Bogdan Lewczuk
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Street 13, 10-719 Olsztyn, Poland
| | - Arkadiusz Żak
- Department of Mechatronics and High Voltage Engineering, Gdansk University of Technology, Własna Strzecha Street 18A, 80-233 Gdansk, Poland
| | - Andrzej Koncicki
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Street 13, 10-719 Olsztyn, Poland
| | - Marek Krawczuk
- Department of Mechatronics and High Voltage Engineering, Gdansk University of Technology, Własna Strzecha Street 18A, 80-233 Gdansk, Poland
| | - Janusz Piechocki
- Department of Electrical Engineering, Power Engineering, Electronics, and Control Engineering, University of Warmia and Mazury, Oczapowskiego Street 11, 10-736 Olsztyn, Poland
| | - Kazimierz Jakubiuk
- Department of Mechatronics and High Voltage Engineering, Gdansk University of Technology, Własna Strzecha Street 18A, 80-233 Gdansk, Poland
| | - Piotr Tojza
- Department of Mechatronics and High Voltage Engineering, Gdansk University of Technology, Własna Strzecha Street 18A, 80-233 Gdansk, Poland
| | - Jacek Jaworski
- Department of Mechatronics and High Voltage Engineering, Gdansk University of Technology, Własna Strzecha Street 18A, 80-233 Gdansk, Poland
| | - Dominik Ambroziak
- Department of Mechatronics and High Voltage Engineering, Gdansk University of Technology, Własna Strzecha Street 18A, 80-233 Gdansk, Poland
| | - Łukasz Skarbek
- Department of Mechatronics and High Voltage Engineering, Gdansk University of Technology, Własna Strzecha Street 18A, 80-233 Gdansk, Poland
| | - Dawid Gradolewski
- Department of Mechatronics and High Voltage Engineering, Gdansk University of Technology, Własna Strzecha Street 18A, 80-233 Gdansk, Poland
| |
Collapse
|
3
|
Todorović D, Marković T, Prolić Z, Mihajlović S, Rauš S, Nikolić L, Janać B. The influence of static magnetic field (50 mT) on development and motor behaviour ofTenebrio(Insecta, Coleoptera). Int J Radiat Biol 2012; 89:44-50. [DOI: 10.3109/09553002.2012.715786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Savić T, Janać B, Todorović D, Prolić Z. The embryonic and post-embryonic development in two Drosophila species exposed to the static magnetic field of 60 mT. Electromagn Biol Med 2011; 30:108-14. [DOI: 10.3109/15368378.2011.566780] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Binhi V. Do naturally occurring magnetic nanoparticles in the human body mediate increased risk of childhood leukaemia with EMF exposure? Int J Radiat Biol 2009; 84:569-79. [DOI: 10.1080/09553000802195323] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Kravchenko KL, Grechany GV, Gadjiev GD. Correlation between Drosophila population sizes and solar activity parameters. Biophysics (Nagoya-shi) 2006. [DOI: 10.1134/s0006350906030201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Cañedo L, Cantú RG, Hernández-R J. Magnetic field exposure during gestation: pineal and cerebral cortex serotonin in the rat. Int J Dev Neurosci 2003; 21:263-6. [PMID: 12850059 DOI: 10.1016/s0736-5748(03)00054-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Extremely low frequency (ELF) magnetic fields seem to have a reproducible influence on cells in transitional states, such as cells during the embryonic and early postnatal periods. Intense and continuous serotonergic synaptic growth is present during the first 2 weeks of postnatal development, paralleled by 5-HT content in the brain, so, the effect of ELF on 5-HT content in the cerebral cortex and pineal gland was determined in growing rats exposed during pregnancy, and in normal controls. The results showed a significant 5-HT increase at birth, 15 and 21 days, in the cerebral cortex. No differences were found in the pineal gland. These short MF exposures had a long term effect on cerebral cortex 5-HT, possibly starting since the fetal period. The relevance of the present findings are discussed as related to the serotonin trophic role on the brain cortex.
Collapse
Affiliation(s)
- L Cañedo
- División de Investigación, Hospital Juárez, Mexico, DF, Mexico
| | | | | |
Collapse
|
8
|
Mirabolghasemi G, Azarnia M. Developmental changes in Drosophila melanogaster following exposure to alternating electromagnetic fields. Bioelectromagnetics 2002; 23:416-20. [PMID: 12210559 DOI: 10.1002/bem.10042] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study investigated the biological effects of alternating electromagnetic fields (EMFs) on developmental stages of Drosophila melanogaster eggs and the first, second and third instar larvae stages. D. melanogaster eggs and larval stages were exposed to a 11 mT 50 Hz field produced by a pair of Helmholtz coils. Each stage was exposed to aEMFs for 2, 4, 6 and 8 h. Features of adult flies such as head, thorax, abdomen and other morphological changes were studied and compared. The frequency of abnormal flies was calculated using statistical methods at P <.05. The results obtained from exposing larvae in different stages of development showed a significant increase in the number of abnormal adult flies, whereas no significant increase was observed in the group arising from eggs exposed to aEMFs. Also, it appeared that duration of exposure correlates with the increase in the number of abnormal flies. There was no significant difference in mortality rate and sex distribution of the abnormal flies between field exposed and the control groups.
Collapse
|
9
|
Levin M, Ernst SG. Applied DC magnetic fields cause alterations in the time of cell divisions and developmental abnormalities in early sea urchin embryos. Bioelectromagnetics 2000; 18:255-63. [PMID: 9096844 DOI: 10.1002/(sici)1521-186x(1997)18:3<255::aid-bem9>3.0.co;2-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Most work on magnetic field effects focuses on AC fields. The present study demonstrates that exposure to medium-strength (10 mT-0.1 T) static magnetic fields can alter the early embryonic development of two species of sea urchin embryos. Batches of fertilized eggs from two species of urchin were exposed to fields produced by permanent magnets. Samples of the continuous cultures were scored for the timing of the first two cell divisions, time of hatching, and incidence of exogastrulation. It was found that static fields delay the onset of mitosis in both species by an amount dependent on the exposure timing relative to fertilization. The exposure time that caused the maximum effect differed between the two species. Thirty millitesla fields, but not 15 mT fields, caused an eightfold increase in the incidence of exogastrulation in Lytechinus pictus, whereas neither of these fields produced exogastrulation in Strongylocentrotus purpuratus.
Collapse
Affiliation(s)
- M Levin
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | | |
Collapse
|
10
|
|
11
|
Ho MW. Towards a theory of the organism. INTEGRATIVE PHYSIOLOGICAL AND BEHAVIORAL SCIENCE : THE OFFICIAL JOURNAL OF THE PAVLOVIAN SOCIETY 1997; 32:343-63. [PMID: 9502521 DOI: 10.1007/bf02688631] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A tentative theory of the organism is derived from McClare's (1971) notion of stored energy and Denbigh's (1951) thermodynamics of the steady state, as a dynamically closed, energetically self-sufficient domain of cyclic non-dissipative processes coupled to irreversible dissipative processes. This effectively frees the organism from thermodynamic constraints so that it is poised for rapid, specific intercommunication, enabling it to function as a coherent whole. In the ideal, the organism is a quantum superposition of coherent activities over all space-time domains, with instantaneous (nonlocal) noiseless intercommunication throughout the system. Evidence for quantum coherence is considered and reviewed.
Collapse
Affiliation(s)
- M W Ho
- Bioelectrodynamics Laboratory, Open University, Milton Keynes, UK
| |
Collapse
|
12
|
|
13
|
|
14
|
Nguyen P, Bournias-Vardiabasis N, Haggren W, Adey WR, Phillips JL. Exposure of Drosophila melanogaster embryonic cell cultures to 60-Hz sinusoidal magnetic fields: assessment of potential teratogenic effects. TERATOLOGY 1995; 51:273-7. [PMID: 7570370 DOI: 10.1002/tera.1420510413] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
There is considerable concern about potential detrimental health effects associated with exposure to environmentally relevant magnetic fields. One specific concern relates to potential effects of magnetic field (MF) exposure on reproduction and development. Consequently, an in vitro teratogenesis (developmental toxicity) assay employing embryonic Drosophila cells has been used to determine whether exposure to a 60-Hz MF of 100 microT for 16-18 hr is itself teratogenic and whether such an exposure could potentiate the teratogenic response induced by a chemical teratogen (developmental toxicant). The results demonstrated that (1) MF exposure alone did not induce a teratogenic response, whether the MF was oriented parallel or perpendicular to the plane of the culture dishes; and (2) MF exposure did not alter the teratogenic response induced by optimal or suboptimal concentrations of three chemical teratogens (retinoic acid, hydroxyurea, and cadmium). Furthermore, in additional studies, Drosophila embryos were exposed to 60-Hz MFs of 10 and 100 microT for 24 hr or for their entire development time (i.e., until adult ecolsion, about 10 days). Results demonstrated that MF exposure did not produce an increase in developmental abnormalities over those observed in unexposed controls.
Collapse
Affiliation(s)
- P Nguyen
- California State University San Bernardino, Department of Biology 92407, USA
| | | | | | | | | |
Collapse
|
15
|
Levin M, Ernst SG. Applied AC and DC magnetic fields cause alterations in the mitotic cycle of early sea urchin embryos. Bioelectromagnetics 1995; 16:231-40. [PMID: 7488256 DOI: 10.1002/bem.2250160405] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This study demonstrates that exposure to 60 Hz magnetic fields (3.4-8.8 mT) and magnetic fields over the range DC-600 kHz (2.5-6.5 mT) can alter the early embryonic development of sea urchin embryos by inducing alterations in the timing of the cell cycle. Batches of fertilized eggs were exposed to the fields produced by a coil system. Samples of the continuous cultures were taken and scored for cell division. The times of both the first and second cell divisions were advanced by ELF AC fields and by static fields. The magnitude of the 60 Hz effect appears proportional to the field strength over the range tested. The relationship to field frequency was nonlinear and complex. For certain frequencies above the ELF range, the exposure resulted in a delay of the onset of mitosis. The advance of mitosis was also dependent on the duration of exposure and on the timing of exposure relative to fertilization.
Collapse
Affiliation(s)
- M Levin
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA
| | | |
Collapse
|