1
|
Groen JA, Crezee J, van Laarhoven HWM, Bijlsma MF, Kok HP. Quantification of tissue property and perfusion uncertainties in hyperthermia treatment planning: Multianalysis using polynomial chaos expansion. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107675. [PMID: 37339535 DOI: 10.1016/j.cmpb.2023.107675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
INTRODUCTION Hyperthermia treatment planning (HTP) tools can guide treatment delivery, particularly with locoregional radiative phased array systems. Uncertainties in tissue and perfusion property values presently lead to quantitative inaccuracy of HTP, leading to sub-optimal treatment. Assessment of these uncertainties would allow for better judgement of the reliability of treatment plans and improve their value for treatment guidance. However, systematically investigating the impact of all uncertainties on treatment plans is a complex, high-dimensional problem and too computationally expensive for traditional Monte Carlo approaches. This study aims to systematically quantify the treatment-plan impact of tissue property uncertainties by investigating their individual contribution to, and combined impact on predicted temperature distributions. METHODS A novel Polynomial Chaos Expansion (PCE)-based HTP uncertainty quantification was developed and applied for locoregional hyperthermia of modelled tumours in the pancreatic head, prostate, rectum, and cervix. Patient models were based on the Duke and Ella digital human models. Using Plan2Heat, treatment plans were created to optimise tumour temperature (represented by T90) for treatment using the Alba4D system. For all 25-34 modelled tissues, the impact of tissue property uncertainties was analysed individually i.e., electrical and thermal conductivity, permittivity, density, specific heat capacity and perfusion. Next, combined analyses were performed on the top 30 uncertainties with the largest impact. RESULTS Uncertainties in thermal conductivity and heat capacity were found to have negligible impact on the predicted temperature ( < 1 × 10-10 °C), density and permittivity uncertainties had a small impact (< 0.3 °C). Uncertainties in electrical conductivity and perfusion can lead to large variations in predicted temperature. However, variations in muscle properties result in the largest impact at locations that could limit treatment quality, with a standard deviation up to almost 6 °C (pancreas) and 3.5 °C (prostate) for perfusion and electrical conductivity, respectively. The combined influence of all significant uncertainties leads to large variations with a standard deviation up to 9.0, 3.6, 3.7 and 4.1 °C for the pancreatic, prostate, rectal and cervical cases, respectively. CONCLUSION Uncertainties in tissue and perfusion property values can have a large impact on predicted temperatures from hyperthermia treatment planning. PCE-based analysis helps to identify all major uncertainties, their impact and judge the reliability of treatment plans.
Collapse
Affiliation(s)
- Jort A Groen
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, the Netherlands.
| | - Johannes Crezee
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, the Netherlands
| | - Hanneke W M van Laarhoven
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and biomarkers, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - H Petra Kok
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Sung D, Rejimon A, Allen JW, Fedorov AG, Fleischer CC. Predicting brain temperature in humans using bioheat models: Progress and outlook. J Cereb Blood Flow Metab 2023; 43:833-842. [PMID: 36883416 PMCID: PMC10196749 DOI: 10.1177/0271678x231162173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 03/09/2023]
Abstract
Brain temperature, regulated by the balance between blood circulation and metabolic heat generation, is an important parameter related to neural activity, cerebral hemodynamics, and neuroinflammation. A key challenge for integrating brain temperature into clinical practice is the lack of reliable and non-invasive brain thermometry. The recognized importance of brain temperature and thermoregulation in both health and disease, combined with limited availability of experimental methods, has motivated the development of computational thermal models using bioheat equations to predict brain temperature. In this mini-review, we describe progress and the current state-of-the-art in brain thermal modeling in humans and discuss potential avenues for clinical applications.
Collapse
Affiliation(s)
- Dongsuk Sung
- Department of Biomedical
Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA,
USA
- Department of Radiology and Imaging
Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Abinand Rejimon
- Department of Biomedical
Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA,
USA
- Department of Radiology and Imaging
Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jason W Allen
- Department of Biomedical
Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA,
USA
- Department of Radiology and Imaging
Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory
University School of Medicine, Atlanta, GA, USA
| | - Andrei G Fedorov
- Woodruff School of Mechanical
Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering
and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Candace C Fleischer
- Department of Biomedical
Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA,
USA
- Department of Radiology and Imaging
Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Petit Institute for Bioengineering
and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
3
|
Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, Huang L, Liu Y. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther 2023; 8:152. [PMID: 37037849 PMCID: PMC10086073 DOI: 10.1038/s41392-023-01400-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 04/12/2023] Open
Abstract
Vascular complications of diabetes pose a severe threat to human health. Prevention and treatment protocols based on a single vascular complication are no longer suitable for the long-term management of patients with diabetes. Diabetic panvascular disease (DPD) is a clinical syndrome in which vessels of various sizes, including macrovessels and microvessels in the cardiac, cerebral, renal, ophthalmic, and peripheral systems of patients with diabetes, develop atherosclerosis as a common pathology. Pathological manifestations of DPDs usually manifest macrovascular atherosclerosis, as well as microvascular endothelial function impairment, basement membrane thickening, and microthrombosis. Cardiac, cerebral, and peripheral microangiopathy coexist with microangiopathy, while renal and retinal are predominantly microangiopathic. The following associations exist between DPDs: numerous similar molecular mechanisms, and risk-predictive relationships between diseases. Aggressive glycemic control combined with early comprehensive vascular intervention is the key to prevention and treatment. In addition to the widely recommended metformin, glucagon-like peptide-1 agonist, and sodium-glucose cotransporter-2 inhibitors, for the latest molecular mechanisms, aldose reductase inhibitors, peroxisome proliferator-activated receptor-γ agonizts, glucokinases agonizts, mitochondrial energy modulators, etc. are under active development. DPDs are proposed for patients to obtain more systematic clinical care requires a comprehensive diabetes care center focusing on panvascular diseases. This would leverage the advantages of a cross-disciplinary approach to achieve better integration of the pathogenesis and therapeutic evidence. Such a strategy would confer more clinical benefits to patients and promote the comprehensive development of DPD as a discipline.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yanfei Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Shiwei Liu
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Mengqi Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Wenting Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Luqi Huang
- China Center for Evidence-based Medicine of TCM, China Academy of Chinese Medical Sciences, Beijing, 100010, China.
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
4
|
Kok HP, van Rhoon GC, Herrera TD, Overgaard J, Crezee J. Biological modeling in thermoradiotherapy: present status and ongoing developments toward routine clinical use. Int J Hyperthermia 2022; 39:1126-1140. [PMID: 35998930 DOI: 10.1080/02656736.2022.2113826] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Biological modeling for anti-cancer treatments using mathematical models can be very supportive in gaining more insight into dynamic processes responsible for cellular response to treatment, and predicting, evaluating and optimizing therapeutic effects of treatment. This review presents an overview of the current status of biological modeling for hyperthermia in combination with radiotherapy (thermoradiotherapy). Various distinct models have been proposed in the literature, with varying complexity; initially aiming to model the effect of hyperthermia alone, and later on to predict the effect of the combined thermoradiotherapy treatment. Most commonly used models are based on an extension of the linear-quadratic (LQ)-model enabling an easy translation to radiotherapy where the LQ model is widely used. Basic predictions of cell survival have further progressed toward 3 D equivalent dose predictions, i.e., the radiation dose that would be needed without hyperthermia to achieve the same biological effect as the combined thermoradiotherapy treatment. This approach, with the use of temperature-dependent model parameters, allows theoretical evaluation of the effectiveness of different treatment strategies in individual patients, as well as in patient cohorts. This review discusses the significant progress that has been made in biological modeling for hyperthermia combined with radiotherapy. In the future, when adequate temperature-dependent LQ-parameters will be available for a large number of tumor sites and normal tissues, biological modeling can be expected to be of great clinical importance to further optimize combined treatments, optimize clinical protocols and guide further clinical studies.
Collapse
Affiliation(s)
- H P Kok
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - G C van Rhoon
- Department of Radiation Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Radiation Science and Technology, Delft University of Technology, Delft, The Netherlands
| | - T D Herrera
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - J Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - J Crezee
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
5
|
|
6
|
Sebeke LC, Rademann P, Maul AC, Yeo SY, Castillo Gómez JD, Deenen DA, Schmidt P, de Jager B, Heemels WPMH, Grüll H, Heijman E. Visualization of thermal washout due to spatiotemporally heterogenous perfusion in the application of a model-based control algorithm for MR-HIFU mediated hyperthermia. Int J Hyperthermia 2021; 38:1174-1187. [PMID: 34374624 DOI: 10.1080/02656736.2021.1933616] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE This article will report results from the in-vivo application of a previously published model-predictive control algorithm for MR-HIFU hyperthermia. The purpose of the investigation was to test the controller's in-vivo performance and behavior in the presence of heterogeneous perfusion. MATERIALS AND METHODS Hyperthermia at 42°C was induced and maintained for up to 30 min in a circular section of a thermometry slice in the biceps femoris of German landrace pigs (n=5) using a commercial MR-HIFU system and a recently developed MPC algorithm. The heating power allocation was correlated with heat sink maps and contrast-enhanced MRI images. The temporal change in perfusion was estimated based on the power required to maintain hyperthermia. RESULTS The controller performed well throughout the treatments with an absolute average tracking error of 0.27 ± 0.15 °C and an average difference of 1.25 ± 0.22 °C between T10 and T90. The MPC algorithm allocates additional heating power to sub-volumes with elevated heat sink effects, which are colocalized with blood vessels visible on contrast-enhanced MRI. The perfusion appeared to have increased by at least a factor of ∼1.86 on average. CONCLUSIONS The MPC controller generates temperature distributions with a narrow spectrum of voxel temperatures inside the target ROI despite the presence of spatiotemporally heterogeneous perfusion due to the rapid thermometry feedback available with MR-HIFU and the flexible allocation of heating power. The visualization of spatiotemporally heterogeneous perfusion presents new research opportunities for the investigation of stimulated perfusion in hypoxic tumor regions.
Collapse
Affiliation(s)
- Lukas Christian Sebeke
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany.,Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
| | - Pia Rademann
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Experimental Medicine, Cologne, Germany
| | - Alexandra Claudia Maul
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Experimental Medicine, Cologne, Germany
| | - Sin Yuin Yeo
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany.,Profound Medical GmbH, Hamburg, Germany
| | - Juan Daniel Castillo Gómez
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany
| | - Daniel A Deenen
- Eindhoven University of Technology, Department of Mechanical Engineering, Control Systems Technology, Eindhoven, The Netherlands
| | - Patrick Schmidt
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany
| | - Bram de Jager
- Eindhoven University of Technology, Department of Mechanical Engineering, Control Systems Technology, Eindhoven, The Netherlands
| | - W P M H Heemels
- Eindhoven University of Technology, Department of Mechanical Engineering, Control Systems Technology, Eindhoven, The Netherlands
| | - Holger Grüll
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany.,Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands
| | - Edwin Heijman
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Institute of Diagnostic and Interventional Radiology, Cologne, Germany.,Philips Research, Eindhoven, The Netherlands
| |
Collapse
|
7
|
Gavazzi S, van Lier ALHMW, Zachiu C, Jansen E, Lagendijk JJW, Stalpers LJA, Crezee H, Kok HP. Advanced patient-specific hyperthermia treatment planning. Int J Hyperthermia 2021; 37:992-1007. [PMID: 32806979 DOI: 10.1080/02656736.2020.1806361] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hyperthermia treatment planning (HTP) is valuable to optimize tumor heating during thermal therapy delivery. Yet, clinical hyperthermia treatment plans lack quantitative accuracy due to uncertainties in tissue properties and modeling, and report tumor absorbed power and temperature distributions which cannot be linked directly to treatment outcome. Over the last decade, considerable progress has been made to address these inaccuracies and therefore improve the reliability of hyperthermia treatment planning. Patient-specific electrical tissue conductivity derived from MR measurements has been introduced to accurately model the power deposition in the patient. Thermodynamic fluid modeling has been developed to account for the convective heat transport in fluids such as urine in the bladder. Moreover, discrete vasculature trees have been included in thermal models to account for the impact of thermally significant large blood vessels. Computationally efficient optimization strategies based on SAR and temperature distributions have been established to calculate the phase-amplitude settings that provide the best tumor thermal dose while avoiding hot spots in normal tissue. Finally, biological modeling has been developed to quantify the hyperthermic radiosensitization effect in terms of equivalent radiation dose of the combined radiotherapy and hyperthermia treatment. In this paper, we review the present status of these developments and illustrate the most relevant advanced elements within a single treatment planning example of a cervical cancer patient. The resulting advanced HTP workflow paves the way for a clinically feasible and more reliable patient-specific hyperthermia treatment planning.
Collapse
Affiliation(s)
- Soraya Gavazzi
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Cornel Zachiu
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eric Jansen
- Amsterdam UMC, Department of Radiation Oncology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan J W Lagendijk
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lukas J A Stalpers
- Amsterdam UMC, Department of Radiation Oncology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans Crezee
- Amsterdam UMC, Department of Radiation Oncology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - H Petra Kok
- Amsterdam UMC, Department of Radiation Oncology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Mekonnen BK, Hsieh TH, Tsai DF, Liaw SK, Yang FL, Huang SL. Generation of Augmented Capillary Network Optical Coherence Tomography Image Data of Human Skin for Deep Learning and Capillary Segmentation. Diagnostics (Basel) 2021; 11:685. [PMID: 33920273 PMCID: PMC8068996 DOI: 10.3390/diagnostics11040685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/27/2021] [Accepted: 04/01/2021] [Indexed: 01/16/2023] Open
Abstract
The segmentation of capillaries in human skin in full-field optical coherence tomography (FF-OCT) images plays a vital role in clinical applications. Recent advances in deep learning techniques have demonstrated a state-of-the-art level of accuracy for the task of automatic medical image segmentation. However, a gigantic amount of annotated data is required for the successful training of deep learning models, which demands a great deal of effort and is costly. To overcome this fundamental problem, an automatic simulation algorithm to generate OCT-like skin image data with augmented capillary networks (ACNs) in a three-dimensional volume (which we called the ACN data) is presented. This algorithm simultaneously acquires augmented FF-OCT and corresponding ground truth images of capillary structures, in which potential functions are introduced to conduct the capillary pathways, and the two-dimensional Gaussian function is utilized to mimic the brightness reflected by capillary blood flow seen in real OCT data. To assess the quality of the ACN data, a U-Net deep learning model was trained by the ACN data and then tested on real in vivo FF-OCT human skin images for capillary segmentation. With properly designed data binarization for predicted image frames, the testing result of real FF-OCT data with respect to the ground truth achieved high scores in performance metrics. This demonstrates that the proposed algorithm is capable of generating ACN data that can imitate real FF-OCT skin images of capillary networks for use in research and deep learning, and that the model for capillary segmentation could be of wide benefit in clinical and biomedical applications.
Collapse
Affiliation(s)
- Bitewulign Kassa Mekonnen
- Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Keelung Rd., Sec. 4, Da’an Dist., Taipei City 10607, Taiwan; (B.K.M.); (S.-K.L.)
- Research Center for Applied Sciences, Academia Sinica, No. 128, Academia Rd., Sec. 2, Nankang, Taipei City 11529, Taiwan; (D.-F.T.); (F.-L.Y.)
| | - Tung-Han Hsieh
- Research Center for Applied Sciences, Academia Sinica, No. 128, Academia Rd., Sec. 2, Nankang, Taipei City 11529, Taiwan; (D.-F.T.); (F.-L.Y.)
| | - Dian-Fu Tsai
- Research Center for Applied Sciences, Academia Sinica, No. 128, Academia Rd., Sec. 2, Nankang, Taipei City 11529, Taiwan; (D.-F.T.); (F.-L.Y.)
| | - Shien-Kuei Liaw
- Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Keelung Rd., Sec. 4, Da’an Dist., Taipei City 10607, Taiwan; (B.K.M.); (S.-K.L.)
| | - Fu-Liang Yang
- Research Center for Applied Sciences, Academia Sinica, No. 128, Academia Rd., Sec. 2, Nankang, Taipei City 11529, Taiwan; (D.-F.T.); (F.-L.Y.)
- Department of Electrical Engineering, National Taiwan University of Science and Technology, No. 43, Keelung Rd., Sec. 4, Da’an Dist., Taipei City 10607, Taiwan
| | - Sheng-Lung Huang
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City 10617, Taiwan;
| |
Collapse
|
9
|
Kok HP, Beck M, Löke DR, Helderman RFCPA, van Tienhoven G, Ghadjar P, Wust P, Crezee H. Locoregional peritoneal hyperthermia to enhance the effectiveness of chemotherapy in patients with peritoneal carcinomatosis: a simulation study comparing different locoregional heating systems. Int J Hyperthermia 2020; 37:76-88. [PMID: 31969039 DOI: 10.1080/02656736.2019.1710270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Introduction: Intravenous chemotherapy plus abdominal locoregional hyperthermia is explored as a noninvasive alternative to hyperthermic intraperitoneal chemotherapy (HIPEC) in treatment of peritoneal carcinomatosis (PC). First clinical results demonstrate feasibility, but survival data show mixed results and for pancreatic and gastric origin results are not better than expected for chemotherapy alone. In this study, computer simulations are performed to compare the effectiveness of peritoneal heating for five different locoregional heating systems.Methods: Simulations of peritoneal heating were performed for a phantom and two pancreatic cancer patients, using the Thermotron RF8, the AMC-4/ALBA-4D system, the BSD Sigma-60 and Sigma-Eye system, and the AMC-8 system. Specific absorption rate (SAR) distributions were optimized and evaluated. Next, to provide an indication of possible enhancement factors, the corresponding temperature distributions and thermal enhancement ratio (TER) of oxaliplatin were estimated.Results: Both phantom and patient simulations showed a relatively poor SAR coverage for the Thermotron RF8, a fairly good coverage for the AMC-4/ALBA-4D, Sigma-60, and Sigma-Eye systems, and the best and most homogeneous coverage for the AMC-8 system. In at least 50% of the peritoneum, 35-45 W/kg was predicted. Thermal simulations confirmed these favorable peritoneal heating properties of the AMC-8 system and TER values of ∼1.4-1.5 were predicted in at least 50% of the peritoneum.Conclusion: Locoregional peritoneal heating with the AMC-8 system yields more favorable heating patterns compared to other clinically used locoregional heating devices. Therefore, results of this study may promote the use of the AMC-8 system for locoregional hyperthermia in future multidisciplinary studies for treatment of PC.
Collapse
Affiliation(s)
- H Petra Kok
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcus Beck
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Daan R Löke
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Roxan F C P A Helderman
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Department for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular and Molecular Medicine (CEMM), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Geertjan van Tienhoven
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Pirus Ghadjar
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Wust
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Hans Crezee
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Role of Simulations in the Treatment Planning of Radiofrequency Hyperthermia Therapy in Clinics. JOURNAL OF ONCOLOGY 2019; 2019:9685476. [PMID: 31558904 PMCID: PMC6735211 DOI: 10.1155/2019/9685476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/20/2019] [Accepted: 07/28/2019] [Indexed: 12/26/2022]
Abstract
Hyperthermia therapy is a treatment modality in which tumor temperatures are elevated to higher temperatures to cause damage to cancerous tissues. Numerical simulations are integral in the development of hyperthermia treatment systems and in clinical treatment planning. In this study, simulations in radiofrequency hyperthermia therapy are reviewed in terms of their technical development and clinical aspects for effective clinical use. This review offers an overview of mathematical models and the importance of tissue properties; locoregional mild hyperthermia therapy, including phantom and realistic human anatomy models; phase array systems; tissue damage; thermal dose analysis; and thermoradiotherapy planning. This review details the improvements in numerical approaches in treatment planning and their application for effective clinical use. Furthermore, the modeling of thermoradiotherapy planning, which can be integrated with radiotherapy to provide combined hyperthermia and radiotherapy treatment planning strategies, are also discussed. This review may contribute to the effective development of thermoradiotherapy planning in clinics.
Collapse
|
11
|
Sumser K, Neufeld E, Verhaart RF, Fortunati V, Verduijn GM, Drizdal T, van Walsum T, Veenland JF, Paulides MM. Feasibility and relevance of discrete vasculature modeling in routine hyperthermia treatment planning. Int J Hyperthermia 2019; 36:801-811. [DOI: 10.1080/02656736.2019.1641633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Kemal Sumser
- Department of Radiation Oncology, University Medical Center Rotterdam, Erasmus MC – Cancer Institute, Rotterdam, The Netherlands
| | - Esra Neufeld
- Computational Life Sciences Group, Foundation for Research on Information Technologies in Society (IT’IS), Zurich, Switzerland
| | - René F. Verhaart
- Department of Radiation Oncology, University Medical Center Rotterdam, Erasmus MC – Cancer Institute, Rotterdam, The Netherlands
| | - Valerio Fortunati
- Department of Medical Informatics and Radiology, University Medical Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - Gerda M. Verduijn
- Department of Radiation Oncology, University Medical Center Rotterdam, Erasmus MC – Cancer Institute, Rotterdam, The Netherlands
| | - Tomas Drizdal
- Department of Radiation Oncology, University Medical Center Rotterdam, Erasmus MC – Cancer Institute, Rotterdam, The Netherlands
- Department of Biomedical Technology, Czech Technical University in Prague, Prague, Czech Republic
| | - Theo van Walsum
- Department of Medical Informatics and Radiology, University Medical Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - Jifke F. Veenland
- Department of Medical Informatics and Radiology, University Medical Center Rotterdam, Erasmus MC, Rotterdam, The Netherlands
| | - Margarethus M. Paulides
- Department of Radiation Oncology, University Medical Center Rotterdam, Erasmus MC – Cancer Institute, Rotterdam, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
12
|
Chen R, Lu F, Wu F, Jiang T, Xie L, Kong D. An analytical solution for temperature distributions in hepatic radiofrequency ablation incorporating the heat-sink effect of large vessels. Phys Med Biol 2018; 63:235026. [PMID: 30511647 DOI: 10.1088/1361-6560/aaeef9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fast prediction of the local thermal field induced by radiofrequency ablation (RFA) plays a critical role in hepatic RFA therapy. At present, it is still a challenging task to calculate and visualize the temperature distribution of RFA in real-time, especially when the heat-sink effect of adjacent large vessels is taken into account. To achieve this, the current investigation presented an analytical solution to calculate the temperature in RFA with an execution time of 0.05 s for three dimensional thermal field reconstruction. The presented temperature distribution is a combination of temperatures in homogeneous tissue and a quantification of the heat-sink effect of adjacent blood vessels. Temperatures in homogeneous tissue is calculated from a simplified Pennes bioheat equation, where several weighting parameters in the temperature expression are determined based on some reference point temperatures from the numerical simulation. The heat-sink effect is quantified based on a temperature factor, which measures the temperature difference between the vessel and the heated tissue, and a distance factor, which measures the distance to the vessel. The proposed method is validated to be able to gain similar temperature distributions to the numerical simulation but with its computational time being orders of magnitude smaller than that of numerical simulation, which improves the efficiency of interactive planning of RFA.
Collapse
Affiliation(s)
- Rendong Chen
- School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, People's Republic of China
| | | | | | | | | | | |
Collapse
|
13
|
How does blood regulate cerebral temperatures during hypothermia? Sci Rep 2018; 8:7877. [PMID: 29777174 PMCID: PMC5959945 DOI: 10.1038/s41598-018-26063-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/27/2018] [Indexed: 11/30/2022] Open
Abstract
Macro-modeling of cerebral blood flow can help determine the impact of thermal intervention during instances of head trauma to mitigate tissue damage. This work presents a bioheat model using a 3D fluid-porous domain coupled with intersecting 1D arterial and venous vessel trees. This combined vascular porous (VaPor) model resolves both cerebral blood flow and energy equations, including heat generated by metabolism, using vasculature extracted from MRI data and is extended using a tree generation algorithm. Counter-current flows are expected to increase thermal transfer within the brain and are enforced using either the vascular structure or flow reversal, represented by a flow reversal constant, CR. These methods exhibit larger average brain cooling (from 0.56 °C ± <0.01 °C to 0.58 °C ± <0.01 °C) compared with previous models (0.39 °C) when scalp temperature is reduced. An greater reduction in core brain temperature is observed (from 0.29 °C ± <0.01 °C to 0.45 °C ± <0.01 °C) compared to previous models (0.11 °C) due to the inclusion of counter-current cooling effects. The VaPor model also predicts that a hypothermic average temperature (<36 °C) can be reached in core regions of neonatal models using scalp cooling alone.
Collapse
|
14
|
Kodera S, Gomez-Tames J, Hirata A. Temperature elevation in the human brain and skin with thermoregulation during exposure to RF energy. Biomed Eng Online 2018; 17:1. [PMID: 29310661 PMCID: PMC5759877 DOI: 10.1186/s12938-017-0432-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/26/2017] [Indexed: 12/03/2022] Open
Abstract
Background Two international guidelines/standards for human protection from electromagnetic fields define the specific absorption rate (SAR) averaged over 10 g of tissue as a metric for protection against localized radio frequency field exposure due to portable devices operating below 3–10 GHz. Temperature elevation is suggested to be a dominant effect for exposure at frequencies higher than 100 kHz. No previous studies have evaluated temperature elevation in the human head for local exposure considering thermoregulation. This study aims to discuss the temperature elevation in a human head model considering vasodilation, to discuss the conservativeness of the current limit. Methods This study computes the temperature elevations in an anatomical human head model exposed to radiation from a dipole antenna and truncated plane waves at 300 MHz–10GHz. The SARs in the human model are first computed using a finite-difference time-domain method. The temperature elevation is calculated by solving the bioheat transfer equation by considering the thermoregulation that simulates the vasodilation. Results The maximum temperature elevation in the brain appeared around its periphery. At exposures with higher intensity, the temperature elevation became larger and reached around 40 °C at the peak SAR of 100 W/kg, and became lower at higher frequencies. The temperature elevation in the brain at the current limit of 10 W/kg is at most 0.93 °C. The effect of vasodilation became notable for tissue temperature elevations higher than 1–2 °C and for an SAR of 10 W/kg. The temperature at the periphery was below the basal brain temperature (37 °C). Conclusions The temperature elevation under the current guideline for occupational exposure is within the ranges of brain temperature variability for environmental changes in daily life. The effect of vasodilation is significant, especially at higher frequencies where skin temperature elevation is dominant.
Collapse
Affiliation(s)
- Sachiko Kodera
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan.
| | - Jose Gomez-Tames
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan.
| |
Collapse
|
15
|
Kok HP, Korshuize-van Straten L, Bakker A, de Kroon – Oldenhof R, Westerveld GH, Versteijne E, Stalpers LJA, Crezee J. Feasibility of on-line temperature-based hyperthermia treatment planning to improve tumour temperatures during locoregional hyperthermia. Int J Hyperthermia 2017; 34:1082-1091. [DOI: 10.1080/02656736.2017.1400120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- H. P. Kok
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - L. Korshuize-van Straten
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - A. Bakker
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - R. de Kroon – Oldenhof
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - G. H. Westerveld
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - E. Versteijne
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - L. J. A. Stalpers
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - J. Crezee
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Kok HP, Kotte ANTJ, Crezee J. Planning, optimisation and evaluation of hyperthermia treatments. Int J Hyperthermia 2017; 33:593-607. [PMID: 28540779 DOI: 10.1080/02656736.2017.1295323] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Hyperthermia treatment planning using dedicated simulations of power and temperature distributions is very useful to assist in hyperthermia applications. This paper describes an advanced treatment planning software package for a wide variety of applications. METHODS The in-house developed C++ software package Plan2Heat runs on a Linux operating system. Modules are available to perform electric field and temperature calculations for many heating techniques. The package also contains optimisation routines, post-treatment evaluation tools and a sophisticated thermal model enabling to account for 3D vasculature based on an angiogram or generated artificially using a vessel generation algorithm. The use of the software is illustrated by a simulation of a locoregional hyperthermia treatment for a pancreatic cancer patient and a spherical tumour model heated by interstitial hyperthermia, with detailed 3D vasculature included. RESULTS The module-based set-up makes the software flexible and easy to use. The first example demonstrates that treatment planning can help to focus the heating to the tumour. After optimisation, the simulated absorbed power in the tumour increased with 50%. The second example demonstrates the impact of accurately modelling discrete vasculature. Blood at body core temperature entering the heated volume causes relatively cold tracks in the heated volume, where the temperature remains below 40 °C. CONCLUSIONS A flexible software package for hyperthermia treatment planning has been developed, which can be very useful in many hyperthermia applications. The object-oriented structure of the source code allows relatively easy extension of the software package with additional tools when necessary for future applications.
Collapse
Affiliation(s)
- H P Kok
- a Department of Radiation Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - A N T J Kotte
- b Department of Radiotherapy , University Medical Center Utrecht , Utrecht , The Netherlands
| | - J Crezee
- a Department of Radiation Oncology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
17
|
Schooneveldt G, Bakker A, Balidemaj E, Chopra R, Crezee J, Geijsen ED, Hartmann J, Hulshof MC, Kok HP, Paulides MM, Sousa-Escandon A, Stauffer PR, Maccarini PF. Thermal dosimetry for bladder hyperthermia treatment. An overview. Int J Hyperthermia 2016; 32:417-33. [DOI: 10.3109/02656736.2016.1156170] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
18
|
Kok HP, Wust P, Stauffer PR, Bardati F, van Rhoon GC, Crezee J. Current state of the art of regional hyperthermia treatment planning: a review. Radiat Oncol 2015; 10:196. [PMID: 26383087 PMCID: PMC4574087 DOI: 10.1186/s13014-015-0503-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/08/2015] [Indexed: 01/15/2023] Open
Abstract
Locoregional hyperthermia, i.e. increasing the tumor temperature to 40–45 °C using an external heating device, is a very effective radio and chemosensitizer, which significantly improves clinical outcome. There is a clear thermal dose-effect relation, but the pursued optimal thermal dose of 43 °C for 1 h can often not be realized due to treatment limiting hot spots in normal tissue. Modern heating devices have a large number of independent antennas, which provides flexible power steering to optimize tumor heating and minimize hot spots, but manual selection of optimal settings is difficult. Treatment planning is a very valuable tool to improve locoregional heating. This paper reviews the developments in treatment planning software for tissue segmentation, electromagnetic field calculations, thermal modeling and optimization techniques. Over the last decade, simulation tools have become more advanced. On-line use has become possible by implementing algorithms on the graphical processing unit, which allows real-time computations. The number of applications using treatment planning is increasing rapidly and moving on from retrospective analyses towards assisting prospective clinical treatment strategies. Some clinically relevant applications will be discussed.
Collapse
Affiliation(s)
- H P Kok
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - P Wust
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | - P R Stauffer
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - F Bardati
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Rome, Italy.
| | - G C van Rhoon
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - J Crezee
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Kyriakou A, Neufeld E, Werner B, Székely G, Kuster N. Full-wave acoustic and thermal modeling of transcranial ultrasound propagation and investigation of skull-induced aberration correction techniques: a feasibility study. J Ther Ultrasound 2015; 3:11. [PMID: 26236478 PMCID: PMC4521448 DOI: 10.1186/s40349-015-0032-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 07/05/2015] [Indexed: 01/09/2023] Open
Abstract
Background Transcranial focused ultrasound (tcFUS) is an attractive noninvasive modality for neurosurgical interventions. The presence of the skull, however, compromises the efficiency of tcFUS therapy, as its heterogeneous nature and acoustic characteristics induce significant distortion of the acoustic energy deposition, focal shifts, and thermal gain decrease. Phased-array transducers allow for partial compensation of skull-induced aberrations by application of precalculated phase and amplitude corrections. Methods An integrated numerical framework allowing for 3D full-wave, nonlinear acoustic and thermal simulations has been developed and applied to tcFUS. Simulations were performed to investigate the impact of skull aberrations, the possibility of extending the treatment envelope, and adverse secondary effects. The simulated setup comprised an idealized model of the ExAblate Neuro and a detailed MR-based anatomical head model. Four different approaches were employed to calculate aberration corrections (analytical calculation of the aberration corrections disregarding tissue heterogeneities; a semi-analytical ray-tracing approach compensating for the presence of the skull; two simulation-based time-reversal approaches with and without pressure amplitude corrections which account for the entire anatomy). These impact of these approaches on the pressure and temperature distributions were evaluated for 22 brain-targets Results While (semi-)analytical approaches failed to induced high pressure or ablative temperatures in any but the targets in the close vicinity of the geometric focus, simulation-based approaches indicate the possibility of considerably extending the treatment envelope (including targets below the transducer level and locations several centimeters off the geometric focus), generation of sharper foci, and increased targeting accuracy. While the prediction of achievable aberration correction appears to be unaffected by the detailed bone-structure, proper consideration of inhomogeneity is required to predict the pressure distribution for given steering parameters Conclusions Simulation-based approaches to calculate aberration corrections may aid in the extension of the tcFUS treatment envelope as well as predict and avoid secondary effects (standing waves, skull heating). Due to their superior performance, simulationbased techniques may prove invaluable in the amelioration of skull-induced aberration effects in tcFUS therapy. The next steps are to investigate shear-wave-induced effects in order to reliably exclude secondary hot-spots, and to develop comprehensive uncertainty assessment and validation procedures.
Collapse
Affiliation(s)
- Adamos Kyriakou
- Foundation for Research on Information Technologies in Society (IT'IS), Zeughausstrasse 43, Zürich, 8004 Switzerland ; Swiss Federal Institute of Technology (ETH) Zürich, Rämistrasse 101, Zürich, 8092 Switzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT'IS), Zeughausstrasse 43, Zürich, 8004 Switzerland
| | - Beat Werner
- Center for MR-Research, University Children's Hospital, Steinwiesstrasse 75, Zürich, 8032 Switzerland
| | - Gábor Székely
- Swiss Federal Institute of Technology (ETH) Zürich, Rämistrasse 101, Zürich, 8092 Switzerland
| | - Niels Kuster
- Foundation for Research on Information Technologies in Society (IT'IS), Zeughausstrasse 43, Zürich, 8004 Switzerland ; Swiss Federal Institute of Technology (ETH) Zürich, Rämistrasse 101, Zürich, 8092 Switzerland
| |
Collapse
|
20
|
Shrivastava D, Utecht L, Tian J, Hughes J, Vaughan JT. In vivo radiofrequency heating in swine in a 3T (123.2-MHz) birdcage whole body coil. Magn Reson Med 2014; 72:1141-50. [PMID: 24259413 PMCID: PMC4041852 DOI: 10.1002/mrm.24999] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 09/05/2013] [Accepted: 09/23/2013] [Indexed: 02/01/2023]
Abstract
PURPOSE To study in vivo radiofrequency (RF) heating produced due to power deposition from a 3T (Larmour frequency = 123.2 MHz), birdcage, whole body coil. METHODS The RF heating was simulated in a digital swine by solving the mechanistic generic bioheat transfer model (GBHTM) and the conventional, empirical Pennes bioheat transfer equation for two cases: 1) when the swine head was in the isocenter and 2) when the swine trunk was in the isocenter. The simulation results were validated by making direct fluoroptic temperature measurements in the skin, brain, simulated hot regions, and rectum of 10 swine (case 1: n = 5, mean animal weight = 84.03 ± 6.85 kg, whole body average SAR = 2.65 ± 0.22 W/kg; case 2: n = 5, mean animal weight = 81.59 ± 6.23 kg, whole body average SAR = 2.77 ± 0.26 W/kg) during 1 h of exposure to a turbo spin echo sequence. RESULTS The GBHTM simulated the RF heating more accurately compared with the Pennes equation. In vivo temperatures exceeded safe temperature thresholds with allowable SAR exposures. Hot regions may be produced deep inside the body, away from the skin. CONCLUSION SAR exposures that produce safe temperature thresholds need reinvestigation.
Collapse
Affiliation(s)
- Devashish Shrivastava
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | |
Collapse
|
21
|
Kok HP, Gellermann J, van den Berg CAT, Stauffer PR, Hand JW, Crezee J. Thermal modelling using discrete vasculature for thermal therapy: A review. Int J Hyperthermia 2013; 29:336-45. [PMID: 23738700 DOI: 10.3109/02656736.2013.801521] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reliable temperature information during clinical hyperthermia and thermal ablation is essential for adequate treatment control, but conventional temperature measurements do not provide 3D temperature information. Treatment planning is a very useful tool to improve treatment quality, and substantial progress has been made over the last decade. Thermal modelling is a very important and challenging aspect of hyperthermia treatment planning. Various thermal models have been developed for this purpose, with varying complexity. Since blood perfusion is such an important factor in thermal redistribution of energy in in vivo tissue, thermal simulations are most accurately performed by modelling discrete vasculature. This review describes the progress in thermal modelling with discrete vasculature for the purpose of hyperthermia treatment planning and thermal ablation. There has been significant progress in thermal modelling with discrete vasculature. Recent developments have made real-time simulations possible, which can provide feedback during treatment for improved therapy. Future clinical application of thermal modelling with discrete vasculature in hyperthermia treatment planning is expected to further improve treatment quality.
Collapse
Affiliation(s)
- H Petra Kok
- Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
22
|
Kok HP, van den Berg CAT, Bel A, Crezee J. Fast thermal simulations and temperature optimization for hyperthermia treatment planning, including realistic 3D vessel networks. Med Phys 2013; 40:103303. [DOI: 10.1118/1.4821544] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
23
|
Paulides MM, Stauffer PR, Neufeld E, Maccarini PF, Kyriakou A, Canters RAM, Diederich CJ, Bakker JF, Van Rhoon GC. Simulation techniques in hyperthermia treatment planning. Int J Hyperthermia 2013; 29:346-57. [PMID: 23672453 PMCID: PMC3711016 DOI: 10.3109/02656736.2013.790092] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract Clinical trials have shown that hyperthermia (HT), i.e. an increase of tissue temperature to 39-44 °C, significantly enhance radiotherapy and chemotherapy effectiveness [1]. Driven by the developments in computational techniques and computing power, personalised hyperthermia treatment planning (HTP) has matured and has become a powerful tool for optimising treatment quality. Electromagnetic, ultrasound, and thermal simulations using realistic clinical set-ups are now being performed to achieve patient-specific treatment optimisation. In addition, extensive studies aimed to properly implement novel HT tools and techniques, and to assess the quality of HT, are becoming more common. In this paper, we review the simulation tools and techniques developed for clinical hyperthermia, and evaluate their current status on the path from 'model' to 'clinic'. In addition, we illustrate the major techniques employed for validation and optimisation. HTP has become an essential tool for improvement, control, and assessment of HT treatment quality. As such, it plays a pivotal role in the quest to establish HT as an efficacious addition to multi-modality treatment of cancer.
Collapse
Affiliation(s)
- Margarethus M Paulides
- Hyperthermia Unit, Department of Radiation Oncology, Daniel den Hoed Cancer Centre, Erasmus Medical Centre, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Prakash P, Salgaonkar VA, Diederich CJ. Modelling of endoluminal and interstitial ultrasound hyperthermia and thermal ablation: applications for device design, feedback control and treatment planning. Int J Hyperthermia 2013; 29:296-307. [PMID: 23738697 PMCID: PMC4087028 DOI: 10.3109/02656736.2013.800998] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Endoluminal and catheter-based ultrasound applicators are currently under development and are in clinical use for minimally invasive hyperthermia and thermal ablation of various tissue targets. Computational models play a critical role in device design and optimisation, assessment of therapeutic feasibility and safety, devising treatment monitoring and feedback control strategies, and performing patient-specific treatment planning with this technology. The critical aspects of theoretical modelling, applied specifically to endoluminal and interstitial ultrasound thermotherapy, are reviewed. Principles and practical techniques for modeling acoustic energy deposition, bioheat transfer, thermal tissue damage, and dynamic changes in the physical and physiological state of tissue are reviewed. The integration of these models and applications of simulation techniques in identification of device design parameters, development of real time feedback-control platforms, assessing the quality and safety of treatment delivery strategies, and optimisation of inverse treatment plans are presented.
Collapse
Affiliation(s)
- Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA.
| | | | | |
Collapse
|
25
|
|
26
|
Canters RAM, Paulides MM, Franckena MF, van der Zee J, van Rhoon GC. Implementation of treatment planning in the routine clinical procedure of regional hyperthermia treatment of cervical cancer: An overview and the Rotterdam experience. Int J Hyperthermia 2012; 28:570-81. [DOI: 10.3109/02656736.2012.675630] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Sassaroli E, Li KCP, O'Neill BE. Modeling focused ultrasound exposure for the optimal control of thermal dose distribution. ScientificWorldJournal 2012; 2012:252741. [PMID: 22593669 PMCID: PMC3349131 DOI: 10.1100/2012/252741] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/02/2012] [Indexed: 11/17/2022] Open
Abstract
Preclinical studies indicate that focused ultrasound at exposure conditions close to the threshold for thermal damage can increase drug delivery at the focal region. Although these results are promising, the optimal control of temperature still remains a challenge. To address this issue, computer-simulated ultrasound treatments have been performed. When the treatments are delivered without taking into account the cooling effect exerted by the blood flow, the resulting thermal dose is highly variable with regions of thermal damage, regions of underdosage close to the vessels, and areas in between these two extremes. When the power deposition is adjusted so that the peak thermal dose remains close to the threshold for thermal damage, the thermal dose is more uniformly distributed but under-dosage is still visible around the thermally significant vessels. The results of these simulations suggest that, for focused ultrasound, as for other delivery methods, the only way to control temperature is to adjust the average energy deposition to compensate for the presence of thermally significant vessels in the target area. By doing this, we have shown that it is possible to reduce the temperature heterogeneity observed in focused ultrasound thermal treatments.
Collapse
Affiliation(s)
- E. Sassaroli
- Department of Radiology, The Methodist Hospital Research Institute, Weill Medical College of Cornell University, 6565 Fannin Street, MS B5-011, Houston, TX 77030, USA
| | - K. C. P. Li
- Department of Radiology, The Methodist Hospital Research Institute, Weill Medical College of Cornell University, 6565 Fannin Street, MS B5-011, Houston, TX 77030, USA
| | - B. E. O'Neill
- Department of Radiology, The Methodist Hospital Research Institute, Weill Medical College of Cornell University, 6565 Fannin Street, MS B5-011, Houston, TX 77030, USA
| |
Collapse
|
28
|
Kyriakou A, Christ A, Neufeld E, Kuster N. Local tissue temperature increase of a generic implant compared to the basic restrictions defined in safety guidelines. Bioelectromagnetics 2011; 33:366-74. [DOI: 10.1002/bem.21695] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 10/09/2011] [Indexed: 11/08/2022]
|
29
|
Bakker JF, Paulides MM, Neufeld E, Christ A, Kuster N, van Rhoon GC. Children and adults exposed to electromagnetic fields at the ICNIRP reference levels: theoretical assessment of the induced peak temperature increase. Phys Med Biol 2011; 56:4967-89. [PMID: 21772085 DOI: 10.1088/0031-9155/56/15/020] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels. Restrictions on induced whole-body-averaged specific absorption rate (SAR(wb)) are provided to keep the whole-body temperature increase (T(body, incr)) under 1 °C during 30 min. Additional restrictions on the peak 10 g spatial-averaged SAR (SAR(10g)) are provided to prevent excessive localized tissue heating. The objective of this study is to assess the localized peak temperature increase (T(incr, max)) in children upon exposure at the reference levels. Finite-difference time-domain modeling was used to calculate T(incr, max) in six children and two adults exposed to orthogonal plane-wave configurations. We performed a sensitivity study and Monte Carlo analysis to assess the uncertainty of the results. Considering the uncertainties in the model parameters, we found that a peak temperature increase as high as 1 °C can occur for worst-case scenarios at the ICNIRP reference levels. Since the guidelines are deduced from temperature increase, we used T(incr, max) as being a better metric to prevent excessive localized tissue heating instead of localized peak SAR. However, we note that the exposure time should also be considered in future guidelines. Hence, we advise defining limits on T(incr, max) for specified durations of exposure.
Collapse
Affiliation(s)
- J F Bakker
- Erasmus MC-Daniel den Hoed Cancer Center, Department of Radiation Oncology, Section Hyperthermia, PO Box 5201, NL-3008 AE, Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
30
|
van den Bergen B, Klomp DWJ, Raaijmakers AJE, de Castro CA, Boer VO, Kroeze H, Luijten PR, Lagendijk JJW, van den Berg CAT. Uniform prostate imaging and spectroscopy at 7 T: comparison between a microstrip array and an endorectal coil. NMR IN BIOMEDICINE 2011; 24:358-365. [PMID: 20960577 DOI: 10.1002/nbm.1599] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 06/21/2010] [Accepted: 07/09/2010] [Indexed: 05/30/2023]
Abstract
An endorectal coil and an eight-element microstrip array were compared for prostate imaging at 7 T. An extensive radiofrequency safety assessment was performed with the use of finite difference time domain simulations to determine safe scan parameters. These simulations showed that the endorectal coil can deliver substantially more B(1)(+) to the prostate than can the microstrip array within the specific absorption rate safety guidelines. However, the B(1)(+) field of the endorectal coil is very inhomogeneous, which makes the use of adiabatic pulses compulsory for T(1) - or T(2) -weighted imaging. As a consequence, a full prostate examination is only possible in a feasible amount of time when the microstrip array is used for T(1) - and T(2) -weighted imaging, whereas the endorectal coil is required for spectroscopic imaging. The pulse parameters were optimised within the specific absorption rate guidelines and thereafter used to provide a good illustration of the possibilities of prostate imaging at 7 T.
Collapse
Affiliation(s)
- Bob van den Bergen
- University Medical Centre Utrecht, Department of Radiotherapy, the Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Schwarz M, Krueger MW, Busch HJ, Benk C, Heilmann C. Model-based assessment of tissue perfusion and temperature in deep hypothermic patients. IEEE Trans Biomed Eng 2010; 57:1577-86. [PMID: 20442040 DOI: 10.1109/tbme.2010.2048324] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Deep hypothermic circulatory arrest is necessary for some types of cardiac and aortic surgery. Perfusion of the brain can be maintained using a heart-lung machine and unilateral antegrade cerebral perfusion. Cooling rates during extracorporeal circulation depend on local perfusion. A core temperature of 24 degrees C-25 degrees C is aimed at to extend ischemic tolerance of tissues. Information on cerebral perfusion and temperature is important for the safety of patients, but hardly accessible to measurement. A combined simulation model of hemodynamics and temperature is presented in this paper. The hemodynamics model employs the transmission-line approach and integrates the Circle of Willis (CoW). This allows for parameterization of individual aberrations. Simulation results of cerebral perfusion are shown for two configurations of the CoW. The temperature model provides spatial information on temperature fields. It considers heat transfer in the various tissues retrieving data of local tissue perfusion from the hemodynamics model. The combined model is evaluated by retrospective simulation of two aortic operations.
Collapse
|
32
|
Payne A, Vyas U, Blankespoor A, Christensen D, Roemer R. Minimisation of HIFU pulse heating and interpulse cooling times. Int J Hyperthermia 2010; 26:198-208. [DOI: 10.3109/02656730903436459] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Canters RAM, Wust P, Bakker JF, Van Rhoon GC. A literature survey on indicators for characterisation and optimisation of SAR distributions in deep hyperthermia, a plea for standardisation. Int J Hyperthermia 2010; 25:593-608. [PMID: 19848621 DOI: 10.3109/02656730903110539] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE To evaluate the predictive value of SAR indicators by assessing the correlation of a SAR indicator with the corresponding predicted temperature. Ultimately, this should lead to a number of verified SAR indicators for characterization and optimization of a predicted SAR distribution. METHODS A literature survey is followed by an evaluation of the SAR indicators on their functionality, using a set of heuristic classification criteria. To obtain an objective assessment of the predictive value for SAR characterisation, all SAR indicators are evaluated by correlating the value of the SAR indicator to the predicted target temperature when heated with the BSD2000 Sigma 60 applicator. Two methods were followed. First, the specificity of the SAR indicator to target temperature was assessed for each of the 36 patient-specific models, using 30 randomly chosen phase and amplitude settings. Secondly, each SAR indicator was used as a goal function to assess its suitability for optimisation purposes. RESULTS Only a selected number of SAR indicators correlate well with tumour/target-temperature. Hence, for target-related properties, an adequate set of SAR indicators is found in the literature. For hotspots, modifications are desirable. For optimisation purposes, improved objective functions have been defined. CONCLUSIONS From the correlation of the SAR indicators with tumour temperature, a preferred set of SAR indicators is derived: For target heating, 'average SAR ratio', 'Hotspot-target SAR ratio', and 'homogeneity coefficient' provide suitable objective criteria, while for hotspot reduction, 'Hotspot-target SAR ratio' is considered the most useful indicator. For optimisation procedures, 'Hotspot-target SAR ratio' is currently the most suitable objective function.
Collapse
Affiliation(s)
- R A M Canters
- Erasmus Medical Center, Radiation Oncology Department, Hyperthermia Unit, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
34
|
Liu YJ, Qiao AK, Nan Q, Yang XY. Thermal characteristics of microwave ablation in the vicinity of an arterial bifurcation. Int J Hyperthermia 2009; 22:491-506. [PMID: 16971369 DOI: 10.1080/02656730600905686] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
PURPOSE The objective of this research was to reveal the thermal characteristics of microwave ablations in the vicinity of an arterial bifurcation. METHODS The temperature distribution after microwave heating of a liver-like material in the close proximity of an arterial bifurcation was simulated using the finite element method. Coupled fluid flow and solid heat transfer were taken into consideration and a three-dimensional analysis was performed. An experimentally determined SAR (specific absorption rate) generated by the absorption of microwaves in liver-like material was used in the analysis instead of utilizing electromagnetic calculations. Several different tests of time-controlled ablations with varying distances between the microwave antenna and the bifurcation were performed and detailed temperature distributions near the bifurcation were obtained. RESULTS The interaction between the recirculation flow in the bifurcation and the heat transfer in the surrounding tissue makes the temperature distribution near the bifurcation complicated. Most importantly, after a period of continuous heating with constant microwave output power, the maximum temperatures caused by the ablation did not always increase with the distance between the antenna and the bifurcation. CONCLUSION It can be concluded that inadequate ablations can be the result not only from a close proximity between the antenna and the blood vessel, but also from a complicated blood flow in large vessels whose structure causes recirculation flow.
Collapse
Affiliation(s)
- Y J Liu
- Center of Biomedical Engineering, Beijing University of Technology, Beijing, PR China.
| | | | | | | |
Collapse
|
35
|
J. B. Van De Kamer, A. A. C. De Lee. Development of a regional hyperthermia treatment planning system. Int J Hyperthermia 2009. [DOI: 10.1080/02656730120302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
36
|
Neufeld E, Kühn S, Szekely G, Kuster N. Measurement, simulation and uncertainty assessment of implant heating during MRI. Phys Med Biol 2009; 54:4151-69. [PMID: 19521007 DOI: 10.1088/0031-9155/54/13/012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The heating of tissues around implants during MRI can pose severe health risks, and careful evaluation is required for leads to be labeled as MR conditionally safe. A recent interlaboratory comparison study has shown that different groups can produce widely varying results (sometimes with more than a factor of 5 difference) when performing measurements according to current guidelines. To determine the related difficulties and to derive optimized procedures, two different generic lead structures have been investigated in this study by using state-of-the-art temperature and dosimetric probes, as well as simulations for which detailed uncertainty budgets have been determined. The agreement between simulations and measurements is well within the combined uncertainty. The study revealed that the uncertainty can be kept below 17% if appropriate instrumentation and procedures are applied. Optimized experimental assessment techniques can be derived from the findings presented herein.
Collapse
Affiliation(s)
- E Neufeld
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland. Computer Vision Laboratory, Swiss Federal Institute of Technology (ETHZ), Zurich, Switzerland.
| | | | | | | |
Collapse
|
37
|
Bakker JF, Paulides MM, Obdeijn IM, van Rhoon GC, van Dongen KWA. An ultrasound cylindrical phased array for deep heating in the breast: theoretical design using heterogeneous models. Phys Med Biol 2009; 54:3201-15. [DOI: 10.1088/0031-9155/54/10/016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
38
|
Kim C, O'Rourke AP, Will JA, Mahvi DM, Webster JG. Finite-element analysis of hepatic cryoablation around a large blood vessel. IEEE Trans Biomed Eng 2008; 55:2087-93. [PMID: 18632371 DOI: 10.1109/tbme.2008.919837] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cryoablation is a minimally invasive ablation technique for primary and metastatic hepatic tumors. Inadequate freezing around large blood vessels due to the warm blood flow can lead to local recurrence, and thus, necessitates close application of a cryoprobe to the large blood vessels. In this study, we constructed a perfusion model with an ex vivo bovine liver and ablated the tissue around a large blood vessel with one or two cryoprobes applied to the side of the vessel. The finite-element computer model developed in our previous study was modified to include a blood vessel and its convective heat transfer to the vicinity of the blood vessel. We compared the predicted simulation results to those acquired from this ex vivo perfusion model. The results indicate that blood vessels act as a heat source and generate steep temperature profiles in the area next to the large blood vessel. After validation, the maximum allowable distance between the cryoprobe and the large blood vessel for successful cryoablation was presented. The results of this study should be considered when placing cryoprobes in the vicinity of large blood vessels.
Collapse
Affiliation(s)
- Cheolkyun Kim
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
39
|
Neufeld E, Chavannes N, Samaras T, Kuster N. Novel conformal technique to reduce staircasing artifacts at material boundaries for FDTD modeling of the bioheat equation. Phys Med Biol 2007; 52:4371-81. [PMID: 17634638 DOI: 10.1088/0031-9155/52/15/001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The modeling of thermal effects, often based on the Pennes Bioheat Equation, is becoming increasingly popular. The FDTD technique commonly used in this context suffers considerably from staircasing errors at boundaries. A new conformal technique is proposed that can easily be integrated into existing implementations without requiring a special update scheme. It scales fluxes at interfaces with factors derived from the local surface normal. The new scheme is validated using an analytical solution, and an error analysis is performed to understand its behavior. The new scheme behaves considerably better than the standard scheme. Furthermore, in contrast to the standard scheme, it is possible to obtain with it more accurate solutions by increasing the grid resolution.
Collapse
Affiliation(s)
- E Neufeld
- Foundation for Research on Information Technologies in Society (IT'IS), ETH Zurich, 8092 Zurich, Switzerland.
| | | | | | | |
Collapse
|
40
|
Tang K, Choy V, Chopra R, Bronskill MJ. Conformal thermal therapy using planar ultrasound transducers and adaptive closed-loop MR temperature control: demonstration in gel phantoms andex vivotissues. Phys Med Biol 2007; 52:2905-19. [PMID: 17473359 DOI: 10.1088/0031-9155/52/10/018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
MRI-guided transurethral ultrasound therapy offers a minimally invasive approach for the treatment of localized prostate cancer. Integrating a multi-element planar transducer with active MR temperature feedback can enable three-dimensional conformal thermal therapy of a target region within the prostate gland while sparing surrounding normal tissues. Continuous measurement of the temperature distribution in tissue enables dynamic compensation for unknown changes in blood flow and tissue properties during treatment. The main goal of this study was to evaluate the feasibility of using active temperature feedback on a clinical 1.5 T MR imager for conformal thermal therapy. MR thermometry was performed during heating in both gel phantoms and excised tissue with a transurethral heating applicator, and the rotation rate and power were varied based on the thermal measurements. The capability to produce a region of thermal damage that matched a target boundary was evaluated. The influence of a cooling gradient (to simulate cooling of the rectum or urethra) on the desired pattern of thermal damage was also investigated in gel phantoms. Results showed high correlation between the desired target boundary and the 55 degrees C isotherm generated during heating with an average distance error of 0.9 mm +/- 0.4 mm (n = 6) in turkey breasts, 1.4 mm +/- 0.6 mm (n = 4) in gel phantoms without rectal cooling and 1.4 mm +/- 0.6 mm (n = 3) in gel phantoms with rectal cooling. The results were obtained using a temporal update rate of 5 s, a spatial resolution of 3 x 3 x 10 mm for the control point, and a temperature uncertainty of approximately 1 degrees C. The performance of the control algorithm under these conditions was comparable to that of simulations conducted previously by our group. Overall, the feasibility of generating targeted regions of thermal damage with a transurethral heating applicator and active MR temperature feedback has been demonstrated experimentally. This method of treatment appears capable of accounting for unpredictable and varying tissue properties during the treatment.
Collapse
Affiliation(s)
- K Tang
- Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto, ON M4N 3M5, Canada
| | | | | | | |
Collapse
|
41
|
Flyckt VMM, Raaymakers BW, Kroeze H, Lagendijk JJW. Calculation of SAR and temperature rise in a high-resolution vascularized model of the human eye and orbit when exposed to a dipole antenna at 900, 1500 and 1800 MHz. Phys Med Biol 2007; 52:2691-701. [PMID: 17473345 DOI: 10.1088/0031-9155/52/10/004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The eye is considered to be a critical organ when determining safety standards for radiofrequency radiation. With a detailed anatomy of the human eye and orbit inserted in a whole-head model, the specific absorption rates (SARs) and thermal effects were determined under exposure to a dipole antenna representing a mobile phone operating at 900, 1500 and 1800 MHz with an output power of 1 W. The temperature rise was calculated by taking the blood flow into account either by the Pennes bioheat model or by including the discrete vasculature (DIVA). In addition, a simple spherical model using constant heat transfer coefficients was used. Peak SARs in the humour are 4.5, 7.7 and 8.4 W kg(-1) for 900, 1500 and 1800 MHz respectively. Averaged over the whole eyeball, the SARs are 1.7, 2.5 and 2.2 W kg(-1). The maximum temperature rises in the eye due to the exposure are 0.22, 0.27 and 0.25 degrees C for exposure of 900, 1500 and 1800 MHz, respectively, calculated with DIVA. For the Pennes bioheat model, the temperature rises are slightly lower: 0.19, 0.24, 0.22 degrees C respectively. For the simple spherical model, the maximum temperature rises are 0.15, 0.22 and 0.20 degrees C. The peak temperature is located in the anterior part of the lens for 900 MHz and deeper in the eye for higher frequencies, and in the posterior part of the lens for 1500 MHz and close to the centre of the eyeball for 1800 MHz. For these RF safety applications, both DIVA and the Pennes bioheat model could be used to relate the SAR distributions to the resulting temperature distributions. Even though, for these artificial exposure conditions, the SAR values are not in compliance with safety guidelines, the maximum temperature rises in the eye are too small to give harmful effects. The temperature in the eye also remains below body core temperature.
Collapse
Affiliation(s)
- V M M Flyckt
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
42
|
Stańczyk M, Van Leeuwen GMJ, Van Steenhoven AA. Discrete vessel heat transfer in perfused tissue--model comparison. Phys Med Biol 2007; 52:2379-91. [PMID: 17440241 DOI: 10.1088/0031-9155/52/9/004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this paper is to compare two methods of calculating heat transfer in perfused biological tissue using a discrete vessel description. The methods differ in two important aspects: the representation of the vascular system and the algorithm for calculating the heat flux between tissue and blood vessels. The first method was developed at the University of Utrecht between 1994 and 1998 and has been used in several clinical applications. The second method has been proposed by the first author. The methods are briefly described, their assumptions and limitations are discussed. Finally, the test simulation is introduced and the results produced by both methods are compared. The test indicates that the simpler, and less computationally intensive method proposed by the present author for calculating 2D problems containing countercurrent blood vessel systems can reproduce quite well some features of the solution obtained by the more complex 3D method. The observed discrepancies could be explained on physical grounds.
Collapse
Affiliation(s)
- Maciej Stańczyk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland.
| | | | | |
Collapse
|
43
|
Yang X, Du J, Liu Y. Advances in hyperthermia technology. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2005:6766-9. [PMID: 17281827 DOI: 10.1109/iembs.2005.1616058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Hyperthermia is a type of cancer treatment in which body tissue is exposed to high temperatures. Research has shown that high temperatures can damage and kill cancer cells, usually with minimal injury to normal tissues. In the clinical application of hyperthermia, three methods can be distinguished: local, regional and whole-body hyperthermia. Hyperthermia is under study in clinical trials and is not widely available. So further technological improvements will need to contribute to an easier and better controlled adequate application of hyperthermia.
Collapse
Affiliation(s)
- Xiaoyong Yang
- Biomedical Engineering Center, Beijing, University of Technology, Beijing, China
| | | | | |
Collapse
|
44
|
Flyckt VMM, Raaymakers BW, Lagendijk JJW. Modelling the impact of blood flow on the temperature distribution in the human eye and the orbit: fixed heat transfer coefficients versus the Pennes bioheat model versus discrete blood vessels. Phys Med Biol 2006; 51:5007-21. [PMID: 16985284 DOI: 10.1088/0031-9155/51/19/018] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prediction of the temperature distribution in the eye depends on how the impact of the blood flow is taken into account. Three methods will be compared: a simplified eye anatomy that applies a single heat transfer coefficient to describe all heat transport mechanisms between the sclera and the body core, a detailed eye anatomy in which the blood flow is accounted for either by the bioheat approach, or by including the discrete vasculature in the eye and the orbit. The comparison is done both for rabbit and human anatomies, normo-thermally and when exposed to homogeneous power densities. The first simplified model predicts much higher temperatures than the latter two. It was shown that the eye is very hard to heat when taking physiological perfusion correctly into account. It was concluded that the heat transfer coefficient describing the heat transport from the sclera to the body core reported in the literature for the first simplified model is too low. The bioheat approach is appropriate for a first-order approximation of the temperature distribution in the eye when exposed to a homogeneous power density, but the discrete vasculature down to 0.2 mm in diameter needs to be taken into account when the heterogeneity of the temperature distribution at a mm scale is of interest.
Collapse
Affiliation(s)
- V M M Flyckt
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | | | | |
Collapse
|
45
|
Shrivastava D, Roemer RB. Readdressing the issue of thermally significant blood vessels using a countercurrent vessel network. J Biomech Eng 2006; 128:210-6. [PMID: 16524332 DOI: 10.1115/1.2165693] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A physiologically realistic arterio-venous countercurrent vessel network model consisting of ten branching vessel generations, where the diameter of each generation of vessels is smaller than the previous ones, has been created and used to determine the thermal significance of different vessel generations by investigating their ability to exchange thermal energy with the tissue. The temperature distribution in the 3D network (8178 vessels; diameters from 10 to 1000 microm) is obtained by solving the conduction equation in the tissue and the convective energy equation with a specified Nusselt number in the vessels. The sensitivity of the exchange of energy between the vessels and the tissue to changes in the network parameters is studied for two cases; a high temperature thermal therapy case when tissue is heated by a uniformly distributed source term and the network cools the tissue, and a hypothermia related case, when tissue is cooled from the surface and the blood heats the tissue. Results show that first, the relative roles of vessels of different diameters are strongly determined by the inlet temperatures to those vessels (e.g., as affected by changing mass flow rates), and the surrounding tissue temperature, but not by their diameter. Second, changes in the following do not significantly affect the heat transfer rates between tissue and vessels; (a) the ratio of arterial to venous vessel diameter, (b) the diameter reduction coefficient (the ratio of diameters of successive vessel generations), and (c) the Nusselt number. Third, both arteries and veins play significant roles in the exchange of energy between tissue and vessels, with arteries playing a more significant role. These results suggest that the determination of which diameter vessels are thermally important should be performed on a case-by-case, problem dependent basis. And, that in the development of site-specific vessel network models, reasonable predictions of the relative roles of different vessel diameters can be obtained by using any physiologically realistic values of Nusselt number and the diameter reduction coefficient.
Collapse
Affiliation(s)
- Devashish Shrivastava
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84102, USA
| | | |
Collapse
|
46
|
Van den Berg CAT, Van de Kamer JB, De Leeuw AAC, Jeukens CRLPN, Raaymakers BW, van Vulpen M, Lagendijk JJW. Towards patient specific thermal modelling of the prostate. Phys Med Biol 2006; 51:809-25. [PMID: 16467580 DOI: 10.1088/0031-9155/51/4/004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The application of thermal modelling for hyperthermia and thermal ablation is severely hampered by lack of information about perfusion and vasculature. However, recently, with the advent of sophisticated angiography and dynamic contrast enhanced (DCE) imaging techniques, it has become possible to image small vessels and blood perfusion bringing the ultimate goal of patient specific thermal modelling closer within reach. In this study dynamic contrast enhanced multi-slice CT imaging techniques are employed to investigate the feasibility of this concept for regional hyperthermia treatment of the prostate. The results are retrospectively compared with clinical thermometry data of a patient group from an earlier trial. Furthermore, the role of the prostate vasculature in the establishment of the prostate temperature distribution is studied. Quantitative 3D perfusion maps of the prostate were constructed for five patients using a distributed-parameter tracer kinetics model to analyse dynamic CT data. CT angiography was applied to construct a discrete vessel model of the pelvis. Additionally, a discrete vessel model of the prostate vasculature was constructed of a prostate taken from a human corpse. Three thermal modelling schemes with increasing inclusion of the patient specific physiological information were used to simulate the temperature distribution of the prostate during regional hyperthermia. Prostate perfusion was found to be heterogeneous and T3 prostate carcinomas are often characterized by a strongly elevated tumour perfusion (up to 70-80 ml 100 g(-1) min(-1)). This elevated tumour perfusion leads to 1-2 degrees C lower tumour temperatures than thermal simulations based on a homogeneous prostate perfusion. Furthermore, the comparison has shown that the simulations with the measured perfusion maps result in consistently lower prostate temperatures than clinically achieved. The simulations with the discrete vessel model indicate that significant pre-heating takes place in the prostate capsule vasculature which forms a possible explanation for the discrepancy. Pre-heating in the larger pelvic vessels is very moderate, approximately 0.1-0.3 degrees C. In conclusion, perfusion imaging provides important input for thermal modelling and can be used to obtain a lower limit on the prostate and tumour temperature in regional hyperthermia. However, it is not sufficient to calculate in detail the prostate temperature distribution in individual patients. The prostate vasculature plays such a crucial role that a patient specific discrete vessel model of the prostate vasculature is required.
Collapse
Affiliation(s)
- Cornelis A T Van den Berg
- Department of Radiotherapy, University Medical Center Utrecht, PO Box 85500, HP Q.00.118 3508 GA Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
47
|
Tsafnat N, Tsafnat G, Lambert TD, Jones SK. Modelling heating of liver tumours with heterogeneous magnetic microsphere deposition. Phys Med Biol 2005; 50:2937-53. [PMID: 15930612 DOI: 10.1088/0031-9155/50/12/014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ferromagnetic embolization hyperthermia (FEH) is a novel treatment for liver cancer. Magnetic microspheres are injected into the hepatic artery and cluster in the periphery of tumours and are heated with externally applied magnetic fields. In order to more accurately simulate FEH, we modelled a three-dimensional heterogeneous distribution of heat sources. We constructed a fractal model of the vasculature in the periphery of a tumour. We used this model to compute the spatial distribution of the microspheres that lodge in capillaries. We used the distribution model as input to a finite-element heat transfer model of the FEH treatment. The overall appearance of the vascular tree is subjectively similar to that of the disorganized vascular network which encapsulates tumours. The microspheres are distributed in the tumour periphery in similar patterns to experimental observations. We expect the vasculature and microsphere deposition models to also be of interest to researchers of any targeted cancer therapies such as localized intra-arterial chemotherapy and selective internal radiotherapy. Our results show that heterogeneous microsphere distributions give significantly different results to those for a homogeneous model and thus are preferable when accurate results are required.
Collapse
Affiliation(s)
- N Tsafnat
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, Australia.
| | | | | | | |
Collapse
|
48
|
Hulshof MCCM, Raaymakers BW, Lagendijk JJW, Koot RW, Crezee H, Stalpers LJA, González González D. A feasibility study of interstitial hyperthermia plus external beam radiotherapy in glioblastoma multiforme using the Multi ELectrode Current Source (MECS) system. Int J Hyperthermia 2005; 20:451-63. [PMID: 15277019 DOI: 10.1080/02656730410001668357] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
PURPOSE Thermoradiotherapy has been shown in several randomized trials to increase local control compared to radiotherapy alone. The first randomized study of interstitial hyperthermia in glioblastoma multiforme showed a survival benefit for hyperthermia, though small. Improvement of the heating technique could lead to improved results. The purpose of this feasibility study is to present the clinical and thermal data of application of an improved interstitial hyperthermia system. METHODS AND MATERIALS Six patients with a glioblastoma multiforme were treated with interstitial hyperthermia using the Multi Electrode Current Source Interstitial Hyperthermia (MECS-IHT) system. The MECS-IHT system has the capability of spatial monitoring of temperature and individually steering of heating electrodes. Three sessions were given aiming at a steady state temperature of 42 degrees C for 1 h, with an interval of 3-4 days, during an external irradiation scheme of 60 Gy in 6 weeks. Hyperthermia was delivered with a mean of 10 catheters, 18 heating electrodes and 38 thermal probes per patient. RESULTS Sub-optimal temperatures were encountered in the first two patients leading to adjustments in technique thereafter with subsequent improvement of thermal data. With a catheter spacing of 11-12 mm, measurements yielded a mean T(90), T(50) and T(10) of 39.9, 43.7 and 45.2 degrees C, respectively, over three sessions in the last patient. The power per electrode to reach this temperature distribution varied from 25-100% of full power in each of the last four patients. Thermal data were reproducible over the three sessions. Acute toxicity was minimal. CONCLUSIONS Despite the spatial steering capabilities of the MECS-IHT system, a large temperature heterogeneity was encountered. The heterogeneity was the reason to limit the catheter spacing to 11-12 mm, thus making only small tumour volumes feasible for interstitial heating.
Collapse
Affiliation(s)
- M C C M Hulshof
- Department of Radiotherapy, Academic Medical Center at the University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
49
|
Raaymakers BW, Van Vulpen M, Lagendijk JJ, De Leeuw AA, Crezee J, Battermann JJ. Determination and validation of the actual 3D temperature distribution during interstitial hyperthermia of prostate carcinoma. Phys Med Biol 2001; 46:3115-31. [PMID: 11768495 DOI: 10.1088/0031-9155/46/12/304] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
To determine the thermal dose of a hyperthermia treatment, knowledge of the three-dimensional (3D) temperature distribution is mandatory. The aim of this paper is to validate an interstitial hyperthermia treatment planning system with which the full 3D temperature distribution can be obtained in individual patients. Within a phase I study, 12 patients with prostate cancer were treated with interstitial hyperthermia using our multi electrode current source interstitial hyperthermia treatment (MECS IHT) system. The temperature distribution was measured from within the heating devices and by additional thermometry. The perfusion level was estimated and the heating implant reconstructed. The steady-state temperature distribution was calculated using our interstitial hyperthermia treatment planning system. The simulated temperature distribution was validated by individually comparing the measured and simulated thermo-sensors, both for the thermometry integrated with the heating applicators and the additional thermometry. The entire procedure was also performed on a no-flow agar-agar phantom. It was shown that the calculated temperature distribution of an individual patient during MECS interstitial hyperthermia is very heterogeneous. The validation indicates that the calculated temperature elevations match the measurements within approximately 1 degrees C. Possible improvements are more precise reconstruction, incorporation of discrete vasculature and using a temperature-dependent, heterogeneous perfusion distribution. Further technical improvements of the MECS-IHT system may also result in better temperature calculations.
Collapse
Affiliation(s)
- B W Raaymakers
- Department of Radiotherapy, University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
50
|
Craciunescu OI, Raaymakers BW, Kotte AN, Das SK, Samulski TV, Lagendijk JJ. Discretizing large traceable vessels and using DE-MRI perfusion maps yields numerical temperature contours that match the MR noninvasive measurements. Med Phys 2001; 28:2289-96. [PMID: 11764035 DOI: 10.1118/1.1408619] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The success of hyperthermia treatments is dependent on thermal dose distribution. However, the three-dimensional temperature distribution remains largely unknown. Without this knowledge, the relationship between thermal dose and outcome is noisy, and therapy cannot be optimized. Accurate computations of thermal distribution can contribute to an optimized therapy. The hyperthermia modeling group in the Department of Radiotherapy, University Medical Center Utrecht devised a Discrete Vasculature [Kotte et al., Phys. Med. Biol. 41, 865-884 (1996)] model that accounts for the presence of vessel trees in the computational domain. The vessel tree geometry is tracked using magnetic resonance (MR) angiograms to a minimum diameter between 0.6 and 1 mm. However, smaller vessels (0.2-0.6 mm) are known to account for significant heat transfer. The hyperthermia group at Duke University Medical Center has proposed using perfusion maps derived from dynamic-enhanced magnetic resonance imaging to account for the tissue perfusion heterogeneity [Craciunescu et al., Int. J. Hyperthermia 17, 221-239 (2001)]. In addition, techniques for noninvasive temperature measurements have been devised to measure temperatures in vivo [Samulski et al., Int. J. Hypertherminal, 819-829 (1992)]. In this work, a patient with high-grade sarcoma has been retrospectively modeled to determine the temperature distribution achieved during a hyperthermia treatment. Available for this model were MR depicted geometry, angiograms, perfusion maps, as necessary for accurate thermal modeling, as well as MR thermometry data for validation purposes. The vasculature assembly through modifiable potential program [Van Leeuwen et al., IEEE Trans. Biomed. Eng. 45, 596-604 (1998)] was used in order to incorporate the traceable large vessels. Temperature simulations were made using different approaches to describe perfusion. The simulated cases were the bioheat equation with constant perfusion rates per tissue type, perfusion maps alone, tracked vessel tree and perfusion maps, and generated vessel tree. The results were compared with MR thermometry data for a single patient data set, concluding that a combination between large traceable vessels and perfusion map yields the best results for this particular patient. The technique has to be repeated on several patients, first with the same type of malignancy, and after that, on patients having malignancies at other different sites.
Collapse
Affiliation(s)
- O I Craciunescu
- Department of Radiation Oncology, Duke University Medical Center, PO. Box 3185, Durham, North Carolina 27710, USA.
| | | | | | | | | | | |
Collapse
|