1
|
Xue S, Gafita A, Zhao Y, Mercolli L, Cheng F, Rauscher I, D'Alessandria C, Seifert R, Afshar-Oromieh A, Rominger A, Eiber M, Shi K. Pre-therapy PET-based voxel-wise dosimetry prediction by characterizing intra-organ heterogeneity in PSMA-directed radiopharmaceutical theranostics. Eur J Nucl Med Mol Imaging 2024; 51:3450-3460. [PMID: 38724653 PMCID: PMC11368979 DOI: 10.1007/s00259-024-06737-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/29/2024] [Indexed: 09/03/2024]
Abstract
BACKGROUND AND OBJECTIVE Treatment planning through the diagnostic dimension of theranostics provides insights into predicting the absorbed dose of RPT, with the potential to individualize radiation doses for enhancing treatment efficacy. However, existing studies focusing on dose prediction from diagnostic data often rely on organ-level estimations, overlooking intra-organ variations. This study aims to characterize the intra-organ theranostic heterogeneity and utilize artificial intelligence techniques to localize them, i.e. to predict voxel-wise absorbed dose map based on pre-therapy PET. METHODS 23 patients with metastatic castration-resistant prostate cancer treated with [177Lu]Lu-PSMA I&T RPT were retrospectively included. 48 treatment cycles with pre-treatment PET imaging and at least 3 post-therapeutic SPECT/CT imaging were selected. The distribution of PET tracer and RPT dose was compared for kidney, liver and spleen, characterizing intra-organ heterogeneity differences. Pharmacokinetic simulations were performed to enhance the understanding of the correlation. Two strategies were explored for pre-therapy voxel-wise dosimetry prediction: (1) organ-dose guided direct projection; (2) deep learning (DL)-based distribution prediction. Physical metrics, dose volume histogram (DVH) analysis, and identity plots were applied to investigate the predicted absorbed dose map. RESULTS Inconsistent intra-organ patterns emerged between PET imaging and dose map, with moderate correlations existing in the kidney (r = 0.77), liver (r = 0.5), and spleen (r = 0.58) (P < 0.025). Simulation results indicated the intra-organ pharmacokinetic heterogeneity might explain this inconsistency. The DL-based method achieved a lower average voxel-wise normalized root mean squared error of 0.79 ± 0.27%, regarding to ground-truth dose map, outperforming the organ-dose guided projection (1.11 ± 0.57%) (P < 0.05). DVH analysis demonstrated good prediction accuracy (R2 = 0.92 for kidney). The DL model improved the mean slope of fitting lines in identity plots (199% for liver), when compared to the theoretical optimal results of the organ-dose approach. CONCLUSION Our results demonstrated the intra-organ heterogeneity of pharmacokinetics may complicate pre-therapy dosimetry prediction. DL has the potential to bridge this gap for pre-therapy prediction of voxel-wise heterogeneous dose map.
Collapse
Affiliation(s)
- Song Xue
- Dept. Nuclear Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Andrei Gafita
- Dept. Nuclear Medicine, Technical University of Munich, Munich, Germany
| | - Yu Zhao
- Chair for Computer Aided Medical Procedures, School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Lorenzo Mercolli
- Dept. Nuclear Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fangxiao Cheng
- Dept. Nuclear Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Isabel Rauscher
- Dept. Nuclear Medicine, Technical University of Munich, Munich, Germany
| | | | - Robert Seifert
- Dept. Nuclear Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ali Afshar-Oromieh
- Dept. Nuclear Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Axel Rominger
- Dept. Nuclear Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Matthias Eiber
- Dept. Nuclear Medicine, Technical University of Munich, Munich, Germany
- Bavarian Cancer Research Center, (BZKF), Erlangen, Germany
| | - Kuangyu Shi
- Dept. Nuclear Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.
- Chair for Computer Aided Medical Procedures, School of Computation, Information and Technology, Technical University of Munich, Munich, Germany.
| |
Collapse
|
2
|
Yani S, Noviantoro YA, Husin AD, Rhani MF, Sumaryada T, Haryanto F. Verification of 3D-CRT dose distribution in ArcCheck phantom using Monte Carlo code. Radiat Phys Chem Oxf Engl 1993 2023; 210:111019. [DOI: 10.1016/j.radphyschem.2023.111019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
3
|
Small field output factor measurement and verification for CyberKnife robotic radiotherapy and radiosurgery system using 3D polymer gel, ionization chamber, diode, diamond and scintillator detectors, Gafchromic film and Monte Carlo simulation. Appl Radiat Isot 2023; 192:110576. [PMID: 36473319 DOI: 10.1016/j.apradiso.2022.110576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
The dosimetry of small fields has become tremendously important with the advent of intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery, where small field segments or very small fields are used to treat tumors. With high dose gradients in the stereotactic radiosurgery or radiotherapy treatment, small field dosimetry becomes challenging due to the lack of lateral electronic equilibrium in the field, x-ray source occlusion, and detector volume averaging. Small volume and tissue-equivalent detectors are recommended to overcome the challenges. With the lack of a perfect radiation detector, studies on available detectors are ongoing with reasonable disagreement and uncertainties. The joint IAEA and AAPM international code of practice (CoP) for small field dosimetry, TRS 483 (Alfonso et al., 2017) provides guidelines and recommendations for the dosimetry of small static fields in external beam radiotherapy. The CoP provides a methodology for field output factor (FOF) measurements and use of field output correction factors for a series of small field detectors and strongly recommends additional measurements, data collection and verification for CyberKnife (CK) robotic stereotactic radiotherapy/radiosurgery system using the listed detectors and more new detectors so that the FOFs can be implemented clinically. The present investigation is focused on using 3D gel along with some other commercially available detectors for the measurement and verification of field output factors (FOFs) for the small fields available in the CK system. The FOF verification was performed through a comparison with published data and Monte Carlo simulation. The results of this study have proved the suitability of an in-house developed 3D polymer gel dosimeter, several commercially available detectors, and Gafchromic films as a part of small field dosimetric measurements for the CK system.
Collapse
|
4
|
Tugrul T. Comparison of Monaco treatment planning system algorithms and Monte Carlo simulation for small fields in anthropomorphic RANDO phantom: The esophagus case. J Cancer Res Ther 2021; 17:1370-1375. [PMID: 34916367 DOI: 10.4103/jcrt.jcrt_1143_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background In this study, the dose distributions obtained by the algorithms used in Monaco treatment planning system (TPS) and Monte Carlo (MC) simulation were compared for small fields in the anthropomorphic RANDO phantom, and then, the results were analyzed using the gamma analysis method. Materials and Methods In the study, dose distributions obtained from the collapse cone algorithm, MC algorithm, and MC simulation were examined. The EGSnrc was utilized for MC simulation. Results In radiation fields smaller than 3 cm × 3 cm, the doses calculated by the CC algorithm are particularly high in the region of lung/soft-tissue interfaces. In the region of soft-tissue/vertebral interfaces, the doses calculated by the CC algorithm and the MC algorithm are compatible with the MC simulation. For each algorithm, the main reason for the non-overlapping dose curves in small fields compared to MC simulation is that the lateral electronic equilibrium loss is not taken into account by the algorithms. Conclusion The doses calculated by the algorithms used in TPS may differ, especially in environments where density changes are sharp. Even if the radiation dose from different angles is calculated similarly in the target area by the algorithms, the calculated doses in the tissues in each radiation field path may be different. Therefore, to increase the quality of radiotherapy and to protect critical organs more accurately, the accuracy of the algorithms in TPS should be checked before treatment, especially in multi-field treatments such as stereotactic body radiation therapy and intensity-modulated radiotherapy for tumors in the abdominal region.
Collapse
Affiliation(s)
- Taylan Tugrul
- Department of Radiation Oncology, Medicine Faculty of Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
5
|
Beam modeling and commissioning for Monte Carlo photon beam on an Elekta Versa HD LINAC. Appl Radiat Isot 2021; 180:110054. [PMID: 34875475 DOI: 10.1016/j.apradiso.2021.110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE This study aims at analyzing beam data commissioning along with verifying Monte Carlo-based treatment planning system on the basis of the manufacturer guidelines for Elekta Versa HD Linear Accelerator. Moreover, evaluating the beam match process in terms of quality index, photon profile and multi leaf collimator (MLC) offset is aimed as well. MATERIALS AND METHODS The process of collecting beam data for Monaco 5.51 Treatment Planning System commissioning was done based on the instructions provided by the manufacturer as well as AAPM TG-106. Monte Carlo analysis was done for output factors in water, percent depth dose and beam profiles. A set of eight static and intensity modulated radiation therapy fields were used to verify the MLC parameters. RESULTS The difference between the measured and modeled penetrative quality (D10) was achieved to be 0.54%. The output factors for 6 MV photon energy were measured and the difference between the measured and Monte Carlo output results was smaller than 1% for all the fields. The average percentage of passing the gamma criteria for commissioning test fields was (95+-4)%, however, the minimum agreement was 87.5% belonging to "7SEGA". Additionally, the agreement between both LINAC is 96%, however, the second LINAC reveals a positive offset in the point of approximately -4 cm on the x-axis at the crossplane. CONCLUSION Test commissioning was successfully verified using a homogeneous phantom for point dose measurements, post modelling MLC parameters and patient QA plans. All plan parameters pass the gamma criteria. 6 MV photon beam was successfully commissioned for Elekta VersaHD LINAC and is ready for clinical implementation.
Collapse
|
6
|
Thi Oanh L, Thanh Tai D, Thi Hong Loan T, Chow JCL. Calculation of Jaws-only IMRT (JO-IMRT) dose distributions based on the AAPM TG-119 test cases using Monte Carlo simulation and Prowess Panther treatment planning system. NUCLEAR ENGINEERING AND TECHNOLOGY 2021. [DOI: 10.1016/j.net.2021.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Alhamada H, Simon S, Gulyban A, Gastelblum P, Pauly N, VanGestel D, Reynaert N. Monte Carlo as quality control tool of stereotactic body radiation therapy treatment plans. Phys Med 2021; 84:205-213. [PMID: 33771442 DOI: 10.1016/j.ejmp.2021.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/20/2021] [Accepted: 02/24/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE/OBJECTIVE The objective of this study was to verify the accuracy of treatment plans of stereotactic body radiation therapy (SBRT) and to verify the feasibility of the use of Monte Carlo (MC) as quality control (QC) on a daily basis. MATERIAL/METHODS Using EGSnrc, a MC model of Agility™ linear accelerator was created. Various measurements (Percentage depth dose (PDD), Profiles and Output factors) were done for different fields sizes from 1x1 up to 40x40 (cm2). An iterative model optimization was performed to achieve adequate parameters of MC simulation. 40 SBRT patient's dosimetry plans were calculated by Monaco™ 3.1.1. CT images, RT-STRUCT and RT-PLAN files from Monaco™ being used as input for Moderato MC code. Finally, dose volume histogram (DVH) and paired t-tests for each contour were used for dosimetry comparison of the Monaco™ and MC. RESULTS Validation of MC model was successful, as <2% difference comparing to measurements for all field's sizes. The main energy of electron source incident on the target was 5.8 MeV, and the full width at half maximum (FWHM) of Gaussian electron source were 0.09 and 0.2 (cm) in X and Y directions, respectively. For 40 treatment plan comparisons, the minimum absolute difference of mean dose of planning treatment planning (PTV) was 0.1% while the maximum was 6.3%. The minimum absolute difference of Max dose of PTV was 0.2% while the maximum was 8.1%. CONCLUSION SBRT treatment plans of Monaco agreed with MC results. It possible to use MC for treatment plans verifications as independent QC tool.
Collapse
Affiliation(s)
- Husein Alhamada
- Nuclear Metrology Department, Ecole Polytechnique, ULB, Brussels, Belgium.
| | - Stephane Simon
- Radiotherapy Department, Institute Jules Bordet, Brussels, Belgium.
| | - Akos Gulyban
- Radiotherapy Department, Institute Jules Bordet, Brussels, Belgium.
| | | | - Nicolas Pauly
- Nuclear Metrology Department, Ecole Polytechnique, ULB, Brussels, Belgium.
| | - Dirk VanGestel
- Radiotherapy Department, Institute Jules Bordet, Brussels, Belgium.
| | - Nick Reynaert
- Radiotherapy Department, Institute Jules Bordet, Brussels, Belgium.
| |
Collapse
|
8
|
Milder MTW, Alber M, Söhn M, Hoogeman MS. Commissioning and clinical implementation of the first commercial independent Monte Carlo 3D dose calculation to replace CyberKnife M6™ patient-specific QA measurements. J Appl Clin Med Phys 2020; 21:304-311. [PMID: 33103343 PMCID: PMC7700940 DOI: 10.1002/acm2.13046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 03/21/2020] [Accepted: 07/31/2020] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To report on the commissioning and clinical validation of the first commercially available independent Monte Carlo (MC) three-dimensional (3D) dose calculation for CyberKnife robotic radiosurgery system® (Accuray, Sunnyvale, CA). METHODS The independent dose calculation (IDC) by SciMoCa® (Scientific RT, Munich, Germany) was validated based on water measurements of output factors and dose profiles (unshielded diode, field-size dependent corrections). A set of 84 patient-specific quality assurance (QA) measurements for multi-leaf collimator (MLC) plans, using an Octavius two-dimensional SRS1000 array (PTW, Freiburg, Germany), was compared to results of respective calculations. Statistical process control (SPC) was used to detect plans outside action levels. RESULTS Of all output factors for the three collimator systems of the CyberKnife, 99% agreed within 2% and 81% within 1%, with a maximum deviation of 3.2% for a 5-mm fixed cone. The profiles were compared using a one-dimensional gamma evaluation with 2% dose difference and 0.5 mm distance-to-agreement (Γ(2,0.5)). The off-centre ratios showed an average pass rate >99% (92-100%). The agreement of the depth dose profiles depended on field size, with lowest pass rates for the smallest MLC field sizes. The average depth dose pass rate was 88% (35-99%). The IDCs showed a Γ(2,1) pass rate of 98%. Statistical process control detected six plans outside tolerance levels in the measurements, all of which could be attributed the measurement setup. Independent dose calculations showed problems in five plans, all due to differences in the algorithm between TPS and IDC. Based on these results changes were made in the class solution for treatment plans. CONCLUSION The first commercially available MC 3D dose IDC was successfully commissioned and validated for the CyberKnife and replaced all routine patient-specific QA measurements in our clinic.
Collapse
Affiliation(s)
- Maaike T W Milder
- Department of Radiotherapy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Markus Alber
- Section for Medical Physics, Department of Radiation Oncology, University Clinic Heidelberg, Heidelberg, Germany.,Scientific RT GmbH, Munich, Germany
| | | | - Mischa S Hoogeman
- Department of Radiotherapy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
9
|
Sarin B, Bindhu B, Saju B, Nair RK. Validation of PRIMO Monte Carlo Model of Clinac ®iX 6MV Photon Beam. J Med Phys 2020; 45:24-35. [PMID: 32355432 PMCID: PMC7185709 DOI: 10.4103/jmp.jmp_75_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 11/04/2022] Open
Abstract
Purpose This study aims to model 6MV photon of Clinac®iX linear accelerator using PRIMO Monte Carlo (MC) code and to assess PRIMO as an independent MC-based dose verification and quality assurance tool. Materials and Methods The modeling of Clinac®iX linear accelerator has been carried out by using PRIMO simulation software (Version 0.3.1.1681). The simulated beam parameters were compared against the measured beam data of the Clinac®iX machine. The PRIMO simulation model of Clinac®iX was also validated against Eclipse® Acuros XB dose calculations in the case of both homogenous and inhomogeneous mediums. The gamma analysis method with the acceptance criteria of 2%, 2 mm was used for the comparison of dose distributions. Results Gamma analysis shows a minimum pass percentage of 99% for depth dose curves and 95.4% for beam profiles. The beam quality index and output factors and absolute point dose show good agreement with measurements. The validation of PRIMO dose calculations, in both homogeneous and inhomogeneous medium, against Acuros® XB shows a minimum gamma analysis pass rate of 99%. Conclusions This study shows that the research software PRIMO can be used as a treatment planning system-independent quality assurance and dose verification tool in daily clinical practice. Further validation will be performed with different energies, complex multileaf collimators fields, and with dynamic treatment fields.
Collapse
Affiliation(s)
- B Sarin
- Department of Physics, Noorul Islam Centre For Higher Education, Kumaracoil, Kanyakumari, Tamil Nadu, India.,Division of Radiation Physics, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - B Bindhu
- Department of Physics, Noorul Islam Centre For Higher Education, Kumaracoil, Kanyakumari, Tamil Nadu, India
| | - B Saju
- Division of Radiation Physics, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| | - Raguram K Nair
- Division of Radiation Physics, Regional Cancer Centre, Thiruvananthapuram, Kerala, India
| |
Collapse
|
10
|
Study of efficiency in five-field and field-by-field intensity modulated radiation therapy (IMRT) plan using DOSXYZnrc Monte Carlo code. Rep Pract Oncol Radiother 2020; 25:428-435. [DOI: 10.1016/j.rpor.2020.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/26/2020] [Accepted: 03/25/2020] [Indexed: 11/23/2022] Open
|
11
|
Yani S, Rizkia I, Kamirul, Rhani MF, Haekal M, Haryanto F. EGSnrc application for IMRT planning. Rep Pract Oncol Radiother 2020; 25:217-226. [PMID: 32194347 DOI: 10.1016/j.rpor.2020.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 11/24/2019] [Accepted: 01/20/2020] [Indexed: 10/25/2022] Open
Abstract
The aim of this study was to describe a detailed instruction of intensity modulated radiotherapy (IMRT) planning simulation using BEAMnrc-DOSXYZnrc code system (EGSnrc package) and present a new graphical user interface based on MATLAB code (The MathWorks) to combine more than one. 3ddose file which were obtained from the IMRT plan. This study was performed in four phases: the commissioning of Varian Clinac iX6 MV, the simulation of IMRT planning in EGSnrc, the creation of in-house VDOSE GUI, and the analysis of the isodose contour and dose volume histogram (DVH) curve from several beam angles. The plan paramaters in sequence and control point files were extracted from the planning data in Tan Tock Seng Hospital Singapore (multileaf collimator (MLC) leaf positions - bank A and bank B, gantry angles, coordinate of isocenters, and MU indexes). VDOSE GUI which was created in this study can display the distribution dose curve in each slice and beam angle. Dose distributions from various MLC settings and beam angles yield different dose distributions even though they used the same number of simulated particles. This was due to the differences in the MLC leaf openings in every field. The value of the relative dose error between the two dose ditributions for "body" was 51.23 %. The Monte Carlo (MC) data was normalized with the maximum dose but the analytical anisotropic algorithm (AAA) data was normalized by the dose in the isocenter. In this study, we have presented a Monte Carlo simulation framework for IMRT dose calculation using DOSXYZnrc source 21. Further studies are needed in conducting IMRT simulations using EGSnrc to minimize the different dose error and dose volume histogram deviation.
Collapse
Affiliation(s)
- Sitti Yani
- Department of Physics, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University (IPB University), Jalan Meranti Kampus IPB Dramaga, Bogor 16680, Indonesia.,Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Coblong, Bandung, West Java, 40132, Indonesia
| | - Ilmi Rizkia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Coblong, Bandung, West Java, 40132, Indonesia
| | - Kamirul
- Indonesian National Institute of Aeronautics and Space, Jl. Goa Jepang, Sumberker, Samofa, Kabupaten Biak Numfor, Papua 98118, Indonesia
| | | | - Mohammad Haekal
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Coblong, Bandung, West Java, 40132, Indonesia
| | - Freddy Haryanto
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Coblong, Bandung, West Java, 40132, Indonesia
| |
Collapse
|
12
|
Ma CMC, Chetty IJ, Deng J, Faddegon B, Jiang SB, Li J, Seuntjens J, Siebers JV, Traneus E. Beam modeling and beam model commissioning for Monte Carlo dose calculation-based radiation therapy treatment planning: Report of AAPM Task Group 157. Med Phys 2019; 47:e1-e18. [PMID: 31679157 DOI: 10.1002/mp.13898] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 10/01/2019] [Accepted: 10/18/2019] [Indexed: 11/07/2022] Open
Abstract
Dose calculation plays an important role in the accuracy of radiotherapy treatment planning and beam delivery. The Monte Carlo (MC) method is capable of achieving the highest accuracy in radiotherapy dose calculation and has been implemented in many commercial systems for radiotherapy treatment planning. The objective of this task group was to assist clinical physicists with the potentially complex task of acceptance testing and commissioning MC-based treatment planning systems (TPS) for photon and electron beam dose calculations. This report provides an overview on the general approach of clinical implementation and testing of MC-based TPS with a specific focus on models of clinical photon and electron beams. Different types of beam models are described including those that utilize MC simulation of the treatment head and those that rely on analytical methods and measurements. The trade-off between accuracy and efficiency in the various source-modeling approaches is discussed together with guidelines for acceptance testing of MC-based TPS from the clinical standpoint. Specific recommendations are given on methods and practical procedures to commission clinical beam models for MC-based TPS.
Collapse
Affiliation(s)
- Chang Ming Charlie Ma
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Indrin J Chetty
- Radiation Oncology Department, Henry Ford Health System, Detroit, MI, 48188, USA
| | - Jun Deng
- Department of Therapeutic Radiology, Yale University, New Haven, CT, 06032, USA
| | - Bruce Faddegon
- Department of Radiation Oncology, UCSF, San Francisco, CA, 94143, USA
| | - Steve B Jiang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - Jan Seuntjens
- Medical Physics Unit, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Jeffrey V Siebers
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Erik Traneus
- RaySearch Laboratories AB, SE-103 65, Stockholm, Sweden
| |
Collapse
|
13
|
Palanisamy M, David K, Durai M, Bhalla N, Puri A. Dosimetric impact of statistical uncertainty on Monte Carlo dose calculation algorithm in volumetric modulated arc therapy using Monaco TPS for three different clinical cases. Rep Pract Oncol Radiother 2019; 24:188-199. [PMID: 30820193 DOI: 10.1016/j.rpor.2019.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/25/2018] [Accepted: 01/27/2019] [Indexed: 11/19/2022] Open
Abstract
Aim To study the dosimetric impact of statistical uncertainty (SU) per plan on Monte Carlo (MC) calculation in Monaco™ treatment planning system (TPS) during volumetric modulated arc therapy (VMAT) for three different clinical cases. Background During MC calculation SU is an important factor to decide dose calculation accuracy and calculation time. It is necessary to evaluate optimal acceptance of SU for quality plan with reduced calculation time. Materials and methods Three different clinical cases as the lung, larynx, and prostate treated using VMAT technique were chosen. Plans were generated with Monaco™ V5.11 TPS with 2% statistical uncertainty. By keeping all other parameters constant, plans were recalculated by varying SU, 0.5%, 1%, 2%, 3%, 4%, and 5%. For plan evaluation, conformity index (CI), homogeneity index (HI), dose coverage to PTV, organ at risk (OAR) dose, normal tissue receiving dose ≥5 Gy and ≥10 Gy, integral dose (NTID), calculation time, gamma pass rate, calculation reproducibility and energy dependency were analyzed. Results CI and HI improve as SU increases from 0.5% to 5%. No significant dose difference was observed in dose coverage to PTV, OAR doses, normal tissue receiving dose ≥5 Gy and ≥10 Gy and NTID. Increase of SU showed decrease in calculation time, gamma pass rate and increase in PTV max dose. No dose difference was seen in calculation reproducibility and dependent on energy. Conclusion For VMAT plans, SU can be accepted from 1% to 3% per plan with reduced calculation time without compromising plan quality and deliverability by accepting variations in point dose within the target.
Collapse
Affiliation(s)
- Mohandass Palanisamy
- Department of Physics, School of Engineering and Technology, Karunya Institute of Technology and Sciences, Coimbatore, Tamilnadu, India
- Department of Radiation Oncology, Fortis Cancer Institute, Fortis Hospital, Mohali, Punjab, India
| | - Khanna David
- Department of Physics, School of Engineering and Technology, Karunya Institute of Technology and Sciences, Coimbatore, Tamilnadu, India
| | - Manigandan Durai
- Department of Radiotherapy, Medanta The Medicity Hospital, Gurgaon, Haryana, India
| | - Narendra Bhalla
- Department of Radiation Oncology, Fortis Cancer Institute, Fortis Hospital, Mohali, Punjab, India
| | - Abhishek Puri
- Department of Radiation Oncology, Fortis Cancer Institute, Fortis Hospital, Mohali, Punjab, India
| |
Collapse
|
14
|
Tai DT, Oanh LT, Son ND, Loan TTH, Chow JCL. Dosimetric and Monte Carlo verification of jaws-only IMRT plans calculated by the Collapsed Cone Convolution algorithm for head and neck cancers. Rep Pract Oncol Radiother 2019; 24:105-114. [PMID: 30532658 DOI: 10.1016/j.rpor.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/24/2018] [Accepted: 11/10/2018] [Indexed: 11/30/2022] Open
Abstract
AIM The aim of this study is to verify the Prowess Panther jaws-only intensity modulated radiation therapy (JO-IMRT) treatment planning (TP) by comparing the TP dose distributions for head-and-neck (H&N) cancer with the ones simulated by Monte Carlo (MC). BACKGROUND To date, dose distributions planned using JO-IMRT for H&N patients were found superior to the corresponding three-dimensional conformal radiotherapy (3D-CRT) plans. Dosimetry of the JO-IMRT plans were also experimentally verified using an ionization chamber, MapCHECK 2, and Octavius 4D and good agreements were shown. MATERIALS AND METHODS Dose distributions of 15 JO-IMRT plans of nasopharyngeal patients were recalculated using the EGSnrc Monte Carlo code. The clinical photon beams were simulated using the BEAMnrc. The absorbed dose to patients treated by fixed-field IMRT was computed using the DOSXYZnrc. The simulated dose distributions were then compared with the ones calculated by the Collapsed Cone Convolution (CCC) algorithm on the TPS, using the relative dose error comparison and the gamma index using global methods implemented in PTW-VeriSoft with 3%/3 mm, 2%/2 mm, 1%/1 mm criteria. RESULTS There is a good agreement between the MC and TPS dose. The average gamma passing rates were 93.3 ± 3.1%, 92.8 ± 3.2%, 92.4 ± 3.4% based on the 3%/3 mm, 2%/2 mm, 1%/1 mm criteria, respectively. CONCLUSIONS According to the results, it is concluded that the CCC algorithm was adequate for most of the IMRT H&N cases where the target was not immediately adjacent to the critical structures.
Collapse
Affiliation(s)
- Duong Thanh Tai
- Department of Radiation Oncology, Dong Nai General Hospital, Bien Hoa 810000, Viet Nam.,Faculty of Physics & Engineering Physics, VNUHCM-University of Science, Ho Chi Minh 749000, Viet Nam.,Faculty of Medicine, Nguyen Tat Thanh University, Ho Chi Minh 702000, Viet Nam
| | - Luong Thi Oanh
- Faculty of Medicine, Nguyen Tat Thanh University, Ho Chi Minh 702000, Viet Nam.,Faculty of Physics & Engineering Physics, VNUHCM-University of Science, Ho Chi Minh 749000, Viet Nam
| | - Nguyen Dong Son
- Chi Anh Medical Technology Co., Ltd., Ho Chi Minh 717066, Viet Nam
| | - Truong Thi Hong Loan
- Faculty of Physics & Engineering Physics, VNUHCM-University of Science, Ho Chi Minh 749000, Viet Nam
| | - James C L Chow
- Department of Radiation Oncology, University of Toronto, Toronto M5T 1P5, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto M5G 1Z5, Canada
| |
Collapse
|
15
|
Esposito A, Silva S, Oliveira J, Lencart J, Santos J. Primo software as a tool for Monte Carlo simulations of intensity modulated radiotherapy: a feasibility study. Radiat Oncol 2018; 13:91. [PMID: 29764449 PMCID: PMC5952624 DOI: 10.1186/s13014-018-1021-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/11/2018] [Indexed: 11/23/2022] Open
Abstract
Background IMRT provides higher dose conformation to the target and dose sparing to surrounding tissues than 3DCRT. Monte Carlo method in Medical Physics is not a novelty to approach dosimetric problems. A new PENELOPE based code named PRIMO recently was published. The most intriguing features of PRIMO are the user-friendly approach, the stand-alone property and the built-in definition of different linear accelerators models. Nevertheless, IMRT simulations are not yet implemented. Methods A Varian Trilogy with a Millennium120 MLC and a Varian Novalis with 120HD MLC were studied. A RW3 multi-slab phantom was irradiated with Gafchromic films inserted between slabs. An Expression 10000XL scanner (Seiko Epson Corp., Nagano, Japan) was used to digitalize the films. PTW-Verisoft software using the global Gamma Function (2%, 2 mm) was used to compare simulated and experimental results. The primary beam parameters were adjusted to best match reference data previously obtained in a water phantom. Static MLC simulations were performed to validate the MLC models in use. Two Dynamic IMRT preliminary tests were performed with leaves moving with constant and variable speed. A further test of an in phantom delivery of a real IMRT field allowed simulating a clinical-like MLC modulation. Results Simulated PDD, X- and Y-profiles in reference conditions showed respectively 100.0%, 100.0% and 99.4% of Gamma points < 1 (2%, 2 mm). Static MLC simulations showed 100.0% of Gamma points < 1 with the 120HD MLC and 99.1% with the Millennium compared with the scanned images. The fixed speed test showed 99.5 and 98.9% of Gamma points < 1 respectively with two different MLC configuration-sampling algorithms when the 120HD MLC was used. The higher modulation MLC motion simulation showed 99.1% of Gamma points < 1 with respect to the experimental. This result depends on the number of the fields to reproduce the MLC motion, as well as calculation time. The clinical-like simulation showed 96.2% of Gamma points < 1 using the same analysis conditions. Conclusions The numerical model of the Varian Trilogy and Novalis in the PRIMO software was validated. The algorithms to simulate MLC motion were considered reliable. A clinical-like procedure was successfully simulated.
Collapse
Affiliation(s)
- Alessandro Esposito
- Radiation Oncology Department, Princess Alexandra Hospital, Brisbane, Australia.
| | - Sofia Silva
- Medical Physics, Radiobiology and Radiation Protection Group, IPO Porto, Porto, Portugal.,Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Medical Physics Department, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Jorge Oliveira
- Medical Physics, Radiobiology and Radiation Protection Group, IPO Porto, Porto, Portugal.,Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - Joana Lencart
- Medical Physics, Radiobiology and Radiation Protection Group, IPO Porto, Porto, Portugal.,Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Medical Physics Department, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal
| | - João Santos
- Medical Physics, Radiobiology and Radiation Protection Group, IPO Porto, Porto, Portugal.,Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Medical Physics Department, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
16
|
Mishra S, Dixit PK, Selvam TP, Yavalkar SS, Deshpande DD. Monte Carlo Investigation of Photon Beam Characteristics and its Variation with Incident Electron Beam Parameters for Indigenous Medical Linear Accelerator. J Med Phys 2018; 43:1-8. [PMID: 29628627 PMCID: PMC5879818 DOI: 10.4103/jmp.jmp_125_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Purpose A Monte Carlo model of a 6 MV medical linear accelerator (linac) unit built indigenously was developed using the BEAMnrc user code of the EGSnrc code system. The model was benchmarked against the measurements. Monte Carlo simulations were carried out for different incident electron beam parameters in the study. Materials and Methods Simulation of indigenously developed linac unit has been carried out using the Monte Carlo based BEAMnrc user-code of the EGSnrc code system. Using the model, percentage depth dose (PDD), and lateral dose profiles were studied using the DOSXYZnrc user code. To identify appropriate electron parameters, three different distributions of electron beam intensity were investigated. For each case, the kinetic energy of the incident electron was varied from 6 to 6.5 MeV (0.1 MeV increment). The calculated dose data were compared against the measurements using the PTW, Germany make RFA dosimetric system (water tank MP3-M and 0.125 cm3 ion chamber). Results The best fit of incident electron beam parameter was found for the combination of beam energy of 6.2 MeV and circular Gaussian distributed source in X and Y with FWHM of 1.0 mm. PDD and beam profiles (along both X and Y directions) were calculated for the field sizes from 5 cm × 5 cm to 25 cm × 25 cm. The dose difference between the calculated and measured PDD and profile values were under 1%, except for the penumbra region where the maximum deviation was found to be around 2%. Conclusions A Monte Carlo model of indigenous linac (6 MV) has been developed and benchmarked against the measured data.
Collapse
Affiliation(s)
- Subhalaxmi Mishra
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - P K Dixit
- Radiological Safety Division, Atomic Energy Regulatory Board, Anushaktinagar, Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - T Palani Selvam
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Sanket S Yavalkar
- Technology Innovation Department, Society for Applied Microwave Electronics Engineering and Research, Mumbai, India
| | - D D Deshpande
- Department of Medical Physics, Tata Memorial Hospital, Mumbai, India
| |
Collapse
|
17
|
Hirata M, Monzen H, Hanaoka K, Nishimura Y. MEASUREMENT OF ABSORPTION DOSE OUTSIDE IRRADIATION FIELD IN IMRT. RADIATION PROTECTION DOSIMETRY 2017; 176:425-433. [PMID: 28338869 DOI: 10.1093/rpd/ncx027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/15/2017] [Indexed: 06/06/2023]
Abstract
The absorption dose outside the irradiation field for prostate intensity-modulated radiation therapy was measured and evaluated by comparison with calculated values of radiation treatment planning system (TPS). The values of TPS calculated were using Varian CLINAC21EX/Eclipse and TomoTherapy Planning System for constant irradiation time. The absorption dose was measured by placing a glass-element dosemeter in a human-bone enclosure phantom with a planning target volume inside the irradiation field. The organs at risk were the rectum, spinal cord, thyroid, eyeball and the left lung. The calculated values of TPS, Varian CLINAC21EX/Eclipse and TomoTherapy Planning System were calculated, up to 17 and 55 cm from the isocenter, respectively. The absorbed dose outside the irradiation field diverged with increased distance from the isocenter (Varian/Eclipse: p = 0.03, TomoTherapy Planning System: p = 0.25). The calculated values for the absorbed dose outside the irradiation field were underestimated.
Collapse
Affiliation(s)
- Makoto Hirata
- Department of Medical Physics, Graduate School of Medical Science, Kindai University, Osaka, Japan
- Department of Radiology, Otsu Red Cross Hospital, Otsu, Shiga, Japan
| | - Hajime Monzen
- Department of Medical Physics, Graduate School of Medical Science, Kindai University, Osaka, Japan
| | - Kohei Hanaoka
- Department of Medical Physics, Graduate School of Medical Science, Kindai University, Osaka, Japan
| | - Yasumasa Nishimura
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
18
|
Jabbari K, Akbari M, Tavakoli MB, Amouheidari A. Dosimetry and evaluating the effect of treatment parameters on the leakage of multi leaf collimators in ONCOR linear accelerators. Adv Biomed Res 2017; 5:193. [PMID: 28217631 PMCID: PMC5221412 DOI: 10.4103/2277-9175.190986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/16/2015] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND One of the standard equipment in medical linear accelerators is multi-leaf collimators (MLCs); which is used as a replacement for lead shielding. MLC's advantages are a reduction of the treatment time, the simplicity of treatment, and better dose distribution. The main disadvantage of MLC is the radiation leakages from the edges and between the leaves. The purpose of this study was to determine the effect of various treatment parameters in the magnitude of MLC leakage in linear accelerators. MATERIALS AND METHODS This project was performed with ONCOR Siemens linear accelerators. The amount of radiation leakage was determined by film dosimetry method. The films were Kodak-extended dose range-2, and the beams were 6 MV and 18 MV photons. In another part of the experiment, the fluctuation of the leakage was measured at various depths and fields. RESULTS The amount of leakage was generally up to 1.5 ± 0.2% for both energies. The results showed that the level of the leakage and the amount of dose fluctuation depends on the field size and depth of measurement. The amount of the leakage fluctuations in all energies was decreased with increasing of field size. The variation of the leakage versus field size was similar to the inverse of scattering collimator factor. CONCLUSIONS The amount of leakage was more for 18 MV compare to 6 MV The percentage of the leakage for both energies is less than the 5% value which is recommended by protocols. The fluctuation of the MLC leakage reduced by increasing the field size and depth.
Collapse
Affiliation(s)
- Keyvan Jabbari
- Department of Medical Physics and Medical Engineering, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Muhaddeseh Akbari
- Department of Medical Physics and Medical Engineering, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohamad Bagher Tavakoli
- Department of Medical Physics and Medical Engineering, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
19
|
Tian Z, Li Y, Hassan-Rezaeian N, Jiang SB, Jia X. Moving GPU-OpenCL-based Monte Carlo dose calculation toward clinical use: Automatic beam commissioning and source sampling for treatment plan dose calculation. J Appl Clin Med Phys 2017; 18:69-84. [PMID: 28300376 PMCID: PMC5689963 DOI: 10.1002/acm2.12049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 11/17/2016] [Accepted: 12/20/2016] [Indexed: 11/24/2022] Open
Abstract
We have previously developed a GPU‐based Monte Carlo (MC) dose engine on the OpenCL platform, named goMC, with a built‐in analytical linear accelerator (linac) beam model. In this paper, we report our recent improvement on goMC to move it toward clinical use. First, we have adapted a previously developed automatic beam commissioning approach to our beam model. The commissioning was conducted through an optimization process, minimizing the discrepancies between calculated dose and measurement. We successfully commissioned six beam models built for Varian TrueBeam linac photon beams, including four beams of different energies (6 MV, 10 MV, 15 MV, and 18 MV) and two flattening‐filter‐free (FFF) beams of 6 MV and 10 MV. Second, to facilitate the use of goMC for treatment plan dose calculations, we have developed an efficient source particle sampling strategy. It uses the pre‐generated fluence maps (FMs) to bias the sampling of the control point for source particles already sampled from our beam model. It could effectively reduce the number of source particles required to reach a statistical uncertainty level in the calculated dose, as compared to the conventional FM weighting method. For a head‐and‐neck patient treated with volumetric modulated arc therapy (VMAT), a reduction factor of ~2.8 was achieved, accelerating dose calculation from 150.9 s to 51.5 s. The overall accuracy of goMC was investigated on a VMAT prostate patient case treated with 10 MV FFF beam. 3D gamma index test was conducted to evaluate the discrepancy between our calculated dose and the dose calculated in Varian Eclipse treatment planning system. The passing rate was 99.82% for 2%/2 mm criterion and 95.71% for 1%/1 mm criterion. Our studies have demonstrated the effectiveness and feasibility of our auto‐commissioning approach and new source sampling strategy for fast and accurate MC dose calculations for treatment plans.
Collapse
Affiliation(s)
- Zhen Tian
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yongbao Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,School of Astronautics, Beihang University, Beijing, 100191, China
| | - Nima Hassan-Rezaeian
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Steve B Jiang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xun Jia
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
20
|
Yang YM, Svatos M, Zankowski C, Bednarz B. Concurrent Monte Carlo transport and fluence optimization with fluence adjusting scalable transport Monte Carlo. Med Phys 2016; 43:3034-3048. [PMID: 27277051 DOI: 10.1118/1.4950711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The future of radiation therapy will require advanced inverse planning solutions to support single-arc, multiple-arc, and "4π" delivery modes, which present unique challenges in finding an optimal treatment plan over a vast search space, while still preserving dosimetric accuracy. The successful clinical implementation of such methods would benefit from Monte Carlo (MC) based dose calculation methods, which can offer improvements in dosimetric accuracy when compared to deterministic methods. The standard method for MC based treatment planning optimization leverages the accuracy of the MC dose calculation and efficiency of well-developed optimization methods, by precalculating the fluence to dose relationship within a patient with MC methods and subsequently optimizing the fluence weights. However, the sequential nature of this implementation is computationally time consuming and memory intensive. Methods to reduce the overhead of the MC precalculation have been explored in the past, demonstrating promising reductions of computational time overhead, but with limited impact on the memory overhead due to the sequential nature of the dose calculation and fluence optimization. The authors propose an entirely new form of "concurrent" Monte Carlo treat plan optimization: a platform which optimizes the fluence during the dose calculation, reduces wasted computation time being spent on beamlets that weakly contribute to the final dose distribution, and requires only a low memory footprint to function. In this initial investigation, the authors explore the key theoretical and practical considerations of optimizing fluence in such a manner. METHODS The authors present a novel derivation and implementation of a gradient descent algorithm that allows for optimization during MC particle transport, based on highly stochastic information generated through particle transport of very few histories. A gradient rescaling and renormalization algorithm, and the concept of momentum from stochastic gradient descent were used to address obstacles unique to performing gradient descent fluence optimization during MC particle transport. The authors have applied their method to two simple geometrical phantoms, and one clinical patient geometry to examine the capability of this platform to generate conformal plans as well as assess its computational scaling and efficiency, respectively. RESULTS The authors obtain a reduction of at least 50% in total histories transported in their investigation compared to a theoretical unweighted beamlet calculation and subsequent fluence optimization method, and observe a roughly fixed optimization time overhead consisting of ∼10% of the total computation time in all cases. Finally, the authors demonstrate a negligible increase in memory overhead of ∼7-8 MB to allow for optimization of a clinical patient geometry surrounded by 36 beams using their platform. CONCLUSIONS This study demonstrates a fluence optimization approach, which could significantly improve the development of next generation radiation therapy solutions while incurring minimal additional computational overhead.
Collapse
Affiliation(s)
- Y M Yang
- Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, Wisconsin 53703
| | - M Svatos
- Varian Medical Systems, 3120 Hansen Way, Palo Alto, California 94304
| | - C Zankowski
- Varian Medical Systems, 3120 Hansen Way, Palo Alto, California 94304
| | - B Bednarz
- Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, Wisconsin 53703
| |
Collapse
|
21
|
Mundayadan Chandroth M, Venning A, Chick B, Waller B. Effects of contrast materials in IMRT and VMAT of prostate using a commercial Monte Carlo algorithm. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2016; 39:547-56. [PMID: 26913727 DOI: 10.1007/s13246-016-0427-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 02/05/2016] [Indexed: 12/25/2022]
|
22
|
Dosimetric study of the AAA algorithm for the VMAT technique using an anthropomorphic phantom in the pelvic region. JOURNAL OF RADIOTHERAPY IN PRACTICE 2015. [DOI: 10.1017/s1460396914000508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractPurposeThe objective of this work was to investigate the accuracy of AAA dose calculation algorithm for RapidArc volumetric modulated technique (VMAT) in the presence of anatomical heterogeneities in the pelvic region.Material and methodsAn anthropomorphic phantom was used to simulate a prostate case, delineating planning target volumes (PTVs) and organs at risk. VMAT plans were optimised in eclipse (v10·0) treatment planning system (TPS). The dose distributions were calculated by the AAA dose calculation algorithm. A total of 49 thermoluminiscent dosimeters were inserted into the anthropomorphic phantom and dose measurements were compared with the predicted TPS doses.ResultsThe average dose variation was −1·5% for planning target volume corresponding to the prostate and −0·3% for planning target volume corresponding to the pelvic nodes, −0·2% for the rectum, +2·4% for the bladder, −2·0% for the femoral heads and +1·0% for the intestinal package.ConclusionAAA is a reliable dose calculation for the treatment with VMAT in the anatomy of the pelvis.
Collapse
|
23
|
Jabbari I, Monadi S. Development and validation of MCNPX-based Monte Carlo treatment plan verification system. J Med Phys 2015; 40:80-9. [PMID: 26170554 PMCID: PMC4478649 DOI: 10.4103/0971-6203.158678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 11/10/2022] Open
Abstract
A Monte Carlo treatment plan verification (MCTPV) system was developed for clinical treatment plan verification (TPV), especially for the conformal and intensity-modulated radiotherapy (IMRT) plans. In the MCTPV, the MCNPX code was used for particle transport through the accelerator head and the patient body. MCTPV has an interface with TiGRT planning system and reads the information which is needed for Monte Carlo calculation transferred in digital image communications in medicine-radiation therapy (DICOM-RT) format. In MCTPV several methods were applied in order to reduce the simulation time. The relative dose distribution of a clinical prostate conformal plan calculated by the MCTPV was compared with that of TiGRT planning system. The results showed well implementation of the beams configuration and patient information in this system. For quantitative evaluation of MCTPV a two-dimensional (2D) diode array (MapCHECK2) and gamma index analysis were used. The gamma passing rate (3%/3 mm) of an IMRT plan was found to be 98.5% for total beams. Also, comparison of the measured and Monte Carlo calculated doses at several points inside an inhomogeneous phantom for 6- and 18-MV photon beams showed a good agreement (within 1.5%). The accuracy and timing results of MCTPV showed that MCTPV could be used very efficiently for additional assessment of complicated plans such as IMRT plan.
Collapse
Affiliation(s)
- Iraj Jabbari
- Department of Nuclear Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Shahram Monadi
- Department of Medical Physics, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
24
|
Meier G, Besson R, Nanz A, Safai S, Lomax AJ. Independent dose calculations for commissioning, quality assurance and dose reconstruction of PBS proton therapy. Phys Med Biol 2015; 60:2819-36. [DOI: 10.1088/0031-9155/60/7/2819] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Nelson CL, Mason BE, Robinson RC, Kisling KD, Kirsner SM. Commissioning results of an automated treatment planning verification system. J Appl Clin Med Phys 2014; 15:4838. [PMID: 25207567 PMCID: PMC5711088 DOI: 10.1120/jacmp.v15i5.4838] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 05/28/2014] [Accepted: 05/06/2014] [Indexed: 11/23/2022] Open
Abstract
A dose calculation verification system (VS) was acquired and commissioned as a second check on the treatment planning system (TPS). This system reads DICOM CT datasets, RT plans, RT structures, and RT dose from the TPS and automatically, using its own collapsed cone superposition/convolution algorithm, computes dose on the same CT dataset. The system was commissioned by extracting basic beam parameters for simple field geometries and dose verification for complex treatments. Percent depth doses (PDD) and profiles were extracted for field sizes using jaw settings 3 × 3 cm2 - 40 × 40 cm2 and compared to measured data, as well as our TPS model. Smaller fields of 1 × 1 cm2 and 2 × 2 cm2 generated using the multileaf collimator (MLC) were analyzed in the same fashion as the open fields. In addition, 40 patient plans consisting of both IMRT and VMAT were computed and the following comparisons were made: 1) TPS to the VS, 2) VS to measured data, and 3) TPS to measured data where measured data is both ion chamber (IC) and film measurements. Our results indicated for all field sizes using jaw settings PDD errors for the VS on average were less than 0.87%, 1.38%, and 1.07% for 6x, 15x, and 18x, respectively, relative to measured data. PDD errors for MLC field sizes were less than 2.28%, 1.02%, and 2.23% for 6x, 15x, and 18x, respectively. The infield profile analysis yielded results less than 0.58% for 6x, 0.61% for 15x, and 0.77% for 18x for the VS relative to measured data. Analysis of the penumbra region yields results ranging from 66.5% points, meeting the DTA criteria to 100% of the points for smaller field sizes for all energies. Analysis of profile data for field sizes generated using the MLC saw agreement with infield DTA analysis ranging from 68.8%-100% points passing the 1.5%/1.5 mm criteria. Results from the dose verification for IMRT and VMAT beams indicated that, on average, the ratio of TPS to IC and VS to IC measurements was 100.5 ± 1.9% and 100.4 ± 1.3%, respectively, while our TPS to VS was 100.1 ± 1.0%. When comparing the TPS and VS to film measurements, the average percentage pixels passing a 3%/3mm criteria based gamma analysis were 96.6 ± 4.2% and 97 ± 5.6%, respectively. When the VS was compared to the TPS, on average 98.1 ± 5.3% of pixels passed the gamma analysis. Based upon these preliminary results, the VS system should be able to calculate dose adequately as a verification tool of our TPS.
Collapse
|
26
|
Bergman AM, Gete E, Duzenli C, Teke T. Monte Carlo modeling of HD120 multileaf collimator on Varian TrueBeam linear accelerator for verification of 6X and 6X FFF VMAT SABR treatment plans. J Appl Clin Med Phys 2014; 15:4686. [PMID: 24892341 PMCID: PMC5711057 DOI: 10.1120/jacmp.v15i3.4686] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 02/07/2014] [Accepted: 02/03/2014] [Indexed: 12/20/2022] Open
Abstract
A Monte Carlo (MC) validation of the vendor-supplied Varian TrueBeam 6 MV flattened (6X) phase-space file and the first implementation of the Siebers-Keall MC MLC model as applied to the HD120 MLC (for 6X flat and 6X flattening filter-free (6X FFF) beams) are described. The MC model is validated in the context of VMAT patient-specific quality assurance. The Monte Carlo commissioning process involves: 1) validating the calculated open-field percentage depth doses (PDDs), profiles, and output factors (OF), 2) adapting the Siebers-Keall MLC model to match the new HD120-MLC geometry and material composition, 3) determining the absolute dose conversion factor for the MC calculation, and 4) validating this entire linac/MLC in the context of dose calculation verification for clinical VMAT plans. MC PDDs for the 6X beams agree with the measured data to within 2.0% for field sizes ranging from 2 × 2 to 40 × 40 cm2. Measured and MC profiles show agreement in the 50% field width and the 80%-20% penumbra region to within 1.3 mm for all square field sizes. MC OFs for the 2 to 40 cm2 square fields agree with measurement to within 1.6%. Verification of VMAT SABR lung, liver, and vertebra plans demonstrate that measured and MC ion chamber doses agree within 0.6% for the 6X beam and within 2.0% for the 6X FFF beam. A 3D gamma factor analysis demonstrates that for the 6X beam, > 99% of voxels meet the pass criteria (3%/3 mm). For the 6X FFF beam, > 94% of voxels meet this criteria. The TrueBeam accelerator delivering 6X and 6X FFF beams with the HD120 MLC can be modeled in Monte Carlo to provide an independent 3D dose calculation for clinical VMAT plans. This quality assurance tool has been used clinically to verify over 140 6X and 16 6X FFF TrueBeam treatment plans.
Collapse
|
27
|
Conneely E, Alexander A, Ruo R, Chung E, Seuntjens J, Foley MJ. Monte Carlo investigation of collapsed versus rotated IMRT plan verification. J Appl Clin Med Phys 2014; 15:4681. [PMID: 24892340 PMCID: PMC5711068 DOI: 10.1120/jacmp.v15i3.4681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 01/03/2014] [Accepted: 12/27/2013] [Indexed: 11/23/2022] Open
Abstract
IMRT QA requires, among other tests, a time-consuming process of measuring the absorbed dose, at least to a point, in a high-dose, low-dose-gradient region. Some clinics use a technique of measuring this dose with all beams delivered at a single gantry angle (collapsed delivery), as opposed to the beams delivered at the planned gantry angle (rotated delivery). We examined, established, and optimized Monte Carlo simulations of the dosimetry for IMRT verification of treatment plans for these two different delivery modes (collapsed versus rotated). The results of the simulations were compared to the treatment planning system dose calculations for the two delivery modes, as well as to measurements taken. This was done in order to investigate the validity of the use of a collapsed delivery technique for IMRT QA. The BEAMnrc, DOSXYZnrc, and egs_chamber codes were utilized for the Monte Carlo simulations along with the MMCTP system. A number of different plan complexity metrics were also used in the analysis of the dose distributions in a bid to qualify why verification in a collapsed delivery may or may not be optimal for IMRT QA. Following the Alfonso et al. formalism, the kfclin,frefQclin,Q correction factor was calculated to correct the deviation of small fields from the reference conditions used for beam calibration. We report on the results obtained for a cohort of 20 patients. The plan complexity was investigated for each plan using the complexity metrics of homogeneity index, conformity index, modulation complexity score, and the fraction of beams from a particular plan that intersect the chamber when performing the QA. Rotated QA gives more consistent results than the collapsed QA technique. The kfclin,frefQclin,Qfactor deviates less from 1 for rotated QA than for collapsed QA. If the homogeneity index is less than 0.05 then the kfclin,frefQclin,Q factor does not deviate from unity by more than 1%. A value this low for the homogeneity index can only be obtained with the rotated QA technique.
Collapse
|
28
|
Gibbons JP, Antolak JA, Followill DS, Huq MS, Klein EE, Lam KL, Palta JR, Roback DM, Reid M, Khan FM. Monitor unit calculations for external photon and electron beams: Report of the AAPM Therapy Physics Committee Task Group No. 71. Med Phys 2014; 41:031501. [PMID: 24593704 PMCID: PMC5148083 DOI: 10.1118/1.4864244] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 01/02/2014] [Accepted: 01/07/2014] [Indexed: 11/07/2022] Open
Abstract
A protocol is presented for the calculation of monitor units (MU) for photon and electron beams, delivered with and without beam modifiers, for constant source-surface distance (SSD) and source-axis distance (SAD) setups. This protocol was written by Task Group 71 of the Therapy Physics Committee of the American Association of Physicists in Medicine (AAPM) and has been formally approved by the AAPM for clinical use. The protocol defines the nomenclature for the dosimetric quantities used in these calculations, along with instructions for their determination and measurement. Calculations are made using the dose per MU under normalization conditions, D'0, that is determined for each user's photon and electron beams. For electron beams, the depth of normalization is taken to be the depth of maximum dose along the central axis for the same field incident on a water phantom at the same SSD, where D'0 = 1 cGy/MU. For photon beams, this task group recommends that a normalization depth of 10 cm be selected, where an energy-dependent D'0 ≤ 1 cGy/MU is required. This recommendation differs from the more common approach of a normalization depth of dm, with D'0 = 1 cGy/MU, although both systems are acceptable within the current protocol. For photon beams, the formalism includes the use of blocked fields, physical or dynamic wedges, and (static) multileaf collimation. No formalism is provided for intensity modulated radiation therapy calculations, although some general considerations and a review of current calculation techniques are included. For electron beams, the formalism provides for calculations at the standard and extended SSDs using either an effective SSD or an air-gap correction factor. Example tables and problems are included to illustrate the basic concepts within the presented formalism.
Collapse
Affiliation(s)
- John P Gibbons
- Department of Physics, Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana 70809
| | - John A Antolak
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota 55905
| | - David S Followill
- Department of Radiation Physics, UT M.D. Anderson Cancer Center, Houston, Texas 77030
| | - M Saiful Huq
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232
| | - Eric E Klein
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Kwok L Lam
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109
| | - Jatinder R Palta
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Donald M Roback
- Department of Radiation Oncology, Cancer Centers of North Carolina, Raleigh, North Carolina 27607
| | - Mark Reid
- Department of Medical Physics, Fletcher-Allen Health Care, Burlington, Vermont 05401
| | - Faiz M Khan
- Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
29
|
Commissioning of 6 MV medical linac for dynamic MLC-based IMRT on Monte Carlo code GEANT4. Radiol Phys Technol 2014; 7:246-53. [PMID: 24510472 DOI: 10.1007/s12194-014-0256-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 01/18/2014] [Accepted: 01/19/2014] [Indexed: 10/25/2022]
Abstract
Monte Carlo simulation is the most accurate tool for calculating dose distributions. In particular, the Electron Gamma shower computer code has been widely used for multi-purpose research in radiotherapy, but Monte Carlo GEANT4 (GEometry ANd Tracking) is rare for radiotherapy with photon beams and needs to be verified further under various irradiation conditions, particularly multi-leaf collimator-based intensity-modulated radiation therapy (MLC-based IMRT). In this study, GEANT4 was used for modeling of a 6 MV linac for dynamic MLC-based IMRT. To verify the modeling of our linac, we compared the calculated data with the measured depth-dose for a 10 × 10 cm(2) field and the measured dose profile for a 35 × 35 cm(2) field. Moreover, 120 MLCs were modeled on the GEANT4. Five tests of MLC modeling were performed: (I) MLC transmission, (II) MLC transmission profile including intra- and inter-leaf leakage, (III) tongue-and-groove leakage, (IV) a simple field with different field sizes by use of MLC and (V) a dynamic MLC-based IMRT field. For all tests, the calculations were compared with measurements of an ionization chamber and radiographic film. The calculations agreed with the measurements: MLC transmissions by calculations and measurements were 1.76 ± 0.01 and 1.87 ± 0.01 %, respectively. In gamma evaluation method (3 %/3 mm), the pass rates of the (IV) and (V) tests were 98.5 and 97.0 %, respectively. Furthermore, tongue-and-groove leakage could be calculated by GEANT4, and it agreed with the film measurements. The procedure of commissioning of dynamic MLC-based IMRT for GEANT4 is proposed in this study.
Collapse
|
30
|
Dosimetric algorithm to reproduce isodose curves obtained from a LINAC. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2014; 2014:849505. [PMID: 25045398 PMCID: PMC4087291 DOI: 10.1155/2014/849505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 05/14/2014] [Indexed: 11/17/2022]
Abstract
In this work isodose curves are obtained by the use of a new dosimetric algorithm using numerical data from percentage depth dose (PDD) and the maximum absorbed dose profile, calculated by Monte Carlo in a 18 MV LINAC. The software allows reproducing the absorbed dose percentage in the whole irradiated volume quickly and with a good approximation. To validate results an 18 MV LINAC with a whole geometry and a water phantom were constructed. On this construction, the distinct simulations were processed by the MCNPX code and then obtained the PDD and profiles for the whole depths of the radiation beam. The results data were used by the code to produce the dose percentages in any point of the irradiated volume. The absorbed dose for any voxel's size was also reproduced at any point of the irradiated volume, even when the voxels are considered to be of a pixel's size. The dosimetric algorithm is able to reproduce the absorbed dose induced by a radiation beam over a water phantom, considering PDD and profiles, whose maximum percent value is in the build-up region. Calculation time for the algorithm is only a few seconds, compared with the days taken when it is carried out by Monte Carlo.
Collapse
|
31
|
Usmani MN, Masai N, Oh RJ, Shiomi H, Tatsumi D, Miura H, Inoue T, Koizumi M. Comparison of Absorbed Dose to Medium and Absorbed Dose to Water for Spine IMRT Plans Using a Commercial Monte Carlo Treatment Planning System. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ijmpcero.2014.31010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Independent calculation-based verification of IMRT plans using a 3D dose-calculation engine. Med Dosim 2013; 38:376-84. [PMID: 23790325 DOI: 10.1016/j.meddos.2013.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 11/17/2022]
Abstract
Independent monitor unit verification of intensity-modulated radiation therapy (IMRT) plans requires detailed 3-dimensional (3D) dose verification. The aim of this study was to investigate using a 3D dose engine in a second commercial treatment planning system (TPS) for this task, facilitated by in-house software. Our department has XiO and Pinnacle TPSs, both with IMRT planning capability and modeled for an Elekta-Synergy 6MV photon beam. These systems allow the transfer of computed tomography (CT) data and RT structures between them but do not allow IMRT plans to be transferred. To provide this connectivity, an in-house computer programme was developed to convert radiation therapy prescription (RTP) files as generated by many planning systems into either XiO or Pinnacle IMRT file formats. Utilization of the technique and software was assessed by transferring 14 IMRT plans from XiO and Pinnacle onto the other system and performing 3D dose verification. The accuracy of the conversion process was checked by comparing the 3D dose matrices and dose volume histograms (DVHs) of structures for the recalculated plan on the same system. The developed software successfully transferred IMRT plans generated by 1 planning system into the other. Comparison of planning target volume (TV) DVHs for the original and recalculated plans showed good agreement; a maximum difference of 2% in mean dose, - 2.5% in D95, and 2.9% in V95 was observed. Similarly, a DVH comparison of organs at risk showed a maximum difference of +7.7% between the original and recalculated plans for structures in both high- and medium-dose regions. However, for structures in low-dose regions (less than 15% of prescription dose) a difference in mean dose up to +21.1% was observed between XiO and Pinnacle calculations. A dose matrix comparison of original and recalculated plans in XiO and Pinnacle TPSs was performed using gamma analysis with 3%/3mm criteria. The mean and standard deviation of pixels passing gamma tolerance for XiO-generated IMRT plans was 96.1 ± 1.3, 96.6 ± 1.2, and 96.0 ± 1.5 in axial, coronal, and sagittal planes respectively. Corresponding results for Pinnacle-generated IMRT plans were 97.1 ± 1.5, 96.4 ± 1.2, and 96.5 ± 1.3 in axial, coronal, and sagittal planes respectively.
Collapse
|
33
|
The use of non-standard CT conversion ramps for Monte Carlo verification of 6 MV prostate IMRT plans. Phys Med 2013; 29:357-67. [DOI: 10.1016/j.ejmp.2012.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 11/24/2022] Open
|
34
|
Asuni G, van Beek TA, Venkataraman S, Popescu IA, McCurdy BMC. A Monte Carlo tool for evaluating VMAT and DIMRT treatment deliveries including planar detectors. Phys Med Biol 2013; 58:3535-50. [DOI: 10.1088/0031-9155/58/11/3535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Lin MH, Li J, Price RA, Wang L, Lee CC, Ma CM. The dosimetric impact of dental implants on head-and-neck volumetric modulated arc therapy. Phys Med Biol 2013; 58:1027-40. [DOI: 10.1088/0031-9155/58/4/1027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Altman MB, Jin JY, Kim S, Wen N, Liu D, Siddiqui MS, Ajlouni MI, Movsas B, Chetty IJ. Practical methods for improving dose distributions in Monte Carlo-based IMRT planning of lung wall-seated tumors treated with SBRT. J Appl Clin Med Phys 2012; 13:4007. [PMID: 23149794 PMCID: PMC5718552 DOI: 10.1120/jacmp.v13i6.4007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 06/25/2012] [Accepted: 07/22/2012] [Indexed: 12/31/2022] Open
Abstract
Current commercially available planning systems with Monte Carlo (MC)‐based final dose calculation in IMRT planning employ pencil‐beam (PB) algorithms in the optimization process. Consequently, dose coverage for SBRT lung plans can feature cold‐spots at the interface between lung and tumor tissue. For lung wall (LW)‐seated tumors, there can also be hot spots within nearby normal organs (example: ribs). This study evaluated two different practical approaches to limiting cold spots within the target and reducing high doses to surrounding normal organs in MC‐based IMRT planning of LW‐seated tumors. First, “iterative reoptimization”, where the MC calculation (with PB‐based optimization) is initially performed. The resultant cold spot is then contoured and used as a simultaneous boost volume. The MC‐based dose is then recomputed. The second technique uses noncoplanar beam angles with limited path through lung tissue. Both techniques were evaluated against a conventional coplanar beam approach with a single MC calculation. In all techniques the prescription dose was normalized to cover 95% of the PTV. Fifteen SBRT lung cases with LW‐seated tumors were planned. The results from iterative reoptimization showed that conformity index (CI) and/or PTV dose uniformity (UPTV) improved in 12/15 plans. Average improvement was 13%, and 24%, respectively. Nonimproved plans had PTVs near the skin, trachea, and/or very small lung involvement. The maximum dose to 1cc volume (D1cc) of surrounding OARs decreased in 14/15 plans (average 10%). Using noncoplanar beams showed an average improvement of 7% in 10/15 cases and 11% in 5/15 cases for CI and UPTV, respectively. The D1cc was reduced by an average of 6% in 10/15 cases to surrounding OARs. Choice of treatment planning technique did not statistically significantly change lung V5. The results showed that the proposed practical approaches enhance dose conformity in MC‐based IMRT planning of lung tumors treated with SBRT, improving target dose coverage and potentially reducing toxicities to surrounding normal organs. PACS numbers: 87.55.de, 87.55.kh
Collapse
Affiliation(s)
- Michael B Altman
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ma CM, Lin MH, Dai XF, Koren S, Klayton T, Wang L, Li JS, Chen L, Price RA. Investigation of pulsed low dose rate radiotherapy using dynamic arc delivery techniques. Phys Med Biol 2012; 57:4613-26. [PMID: 22750648 DOI: 10.1088/0031-9155/57/14/4613] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There has been no consensus standard of care to treat recurrent cancer patients who have previously been irradiated. Pulsed low dose rate (PLDR) external beam radiotherapy has the potential to reduce normal tissue toxicities while still providing significant tumor control for recurrent cancers. This work investigates the dosimetry feasibility of PLDR treatment using dynamic arc delivery techniques. Five treatment sites were investigated in this study including breast, pancreas, prostate, head and neck, and lung. Dynamic arc plans were generated using the Varian Eclipse system and the RapidArc delivery technique with 6 and 10 MV photon beams. Each RapidArc plan consisted of two full arcs and the plan was delivered five times to achieve a daily dose of 200 cGy. The dosimetry requirement was to deliver approximately 20 cGy/arc with a 3 min interval to achieve an effective dose rate of 6.7 cGy min⁻¹. Monte Carlo simulations were performed to calculate the actual dose delivered to the planning target volume (PTV) per arc taking into account beam attenuation/scattering and intensity modulation. The maximum, minimum and mean doses to the PTV were analyzed together with the dose volume histograms and isodose distributions. The dose delivery for the five plans was validated using solid water phantoms inserted with an ionization chamber and film, and a cylindrical detector array. Two intensity-modulated arcs were used to efficiently deliver the PLDR plans that provided conformal dose distributions for treating complex recurrent cancers. For the five treatment sites, the mean PTV dose ranged from 18.9 to 22.6 cGy/arc. For breast, the minimum and maximum PTV dose was 8.3 and 35.2 cGy/arc, respectively. The PTV dose varied between 12.9 and 27.5 cGy/arc for pancreas, 12.6 and 28.3 cGy/arc for prostate, 12.1 and 30.4 cGy/arc for H&N, and 16.2 and 27.6 cGy/arc for lung. Advanced radiation therapy can provide superior target coverage and normal tissue sparing for PLDR reirradiation of recurrent cancers, which can be delivered using dynamic arc delivery techniques with ten full arcs and an effective dose rate of 6.7 ± 4.0 cGy min⁻¹.
Collapse
Affiliation(s)
- C-M Ma
- Radiation Oncology Department, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Goetzfried T, Rickhey M, Treutwein M, Koelbl O, Bogner L. Monte Carlo simulations to replace film dosimetry in IMRT verification. Z Med Phys 2012; 21:19-25. [PMID: 20888202 DOI: 10.1016/j.zemedi.2010.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 04/01/2010] [Accepted: 05/21/2010] [Indexed: 11/25/2022]
Abstract
Patient-specific verification of intensity-modulated radiation therapy (IMRT) plans can be done by dosimetric measurements or by independent dose or monitor unit calculations. The aim of this study was the clinical evaluation of IMRT verification based on a fast Monte Carlo (MC) program with regard to possible benefits compared to commonly used film dosimetry. 25 head-and-neck IMRT plans were recalculated by a pencil beam based treatment planning system (TPS) using an appropriate quality assurance (QA) phantom. All plans were verified both by film and diode dosimetry and compared to MC simulations. The irradiated films, the results of diode measurements and the computed dose distributions were evaluated, and the data were compared on the basis of gamma maps and dose-difference histograms. Average deviations in the high-dose region between diode measurements and point dose calculations performed with the TPS and MC program were 0.7 ± 2.7% and 1.2 ± 3.1%, respectively. For film measurements, the mean gamma values with 3% dose difference and 3mm distance-to-agreement were 0.74 ± 0.28 (TPS as reference) with dose deviations up to 10%. Corresponding values were significantly reduced to 0.34 ± 0.09 for MC dose calculation. The total time needed for both verification procedures is comparable, however, by far less labor intensive in the case of MC simulations. The presented study showed that independent dose calculation verification of IMRT plans with a fast MC program has the potential to eclipse film dosimetry more and more in the near future. Thus, the linac-specific QA part will necessarily become more important. In combination with MC simulations and due to the simple set-up, point-dose measurements for dosimetric plausibility checks are recommended at least in the IMRT introduction phase.
Collapse
Affiliation(s)
- Thomas Goetzfried
- Department of Radiotherapy, Regensburg University Medical Center, Regensburg, Germany.
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Belec J, Ploquin N, La Russa DJ, Clark BG. Position-probability-sampled Monte Carlo calculation of VMAT, 3DCRT, step-shoot IMRT, and helical tomotherapy dose distributions using BEAMnrc/DOSXYZnrc. Med Phys 2011; 38:948-60. [PMID: 21452731 DOI: 10.1118/1.3538922] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The commercial release of volumetric modulated arc therapy techniques using a conventional linear accelerator and the growing number of helical tomotherapy users have triggered renewed interest in dose verification methods, and also in tools for exploring the impact of machine tolerance and patient motion on dose distributions without the need to approximate time-varying parameters such as gantry position, MLC leaf motion, or patient motion. To this end we have developed a Monte Carlo-based calculation method capable of simulating a wide variety of treatment techniques without the need to resort to discretization approximations. METHODS The ability to perform complete position-probability-sampled Monte Carlo dose calculations was implemented in the BEAMnrc/DOSXZYnrc user codes of EGSnrc. The method includes full accelerator head simulations of our tomotherapy and Elekta linacs, and a realistic representation of continous motion via the sampling of a time variable. The functionality of this algorithm was tested via comparisons with both measurements and treatment planning dose distributions for four types of treatment techniques: 3D conformal, step-shoot intensity modulated radiation therapy, helical tomotherapy, and volumetric modulated are therapy. RESULTS For static fields, the absolute dose agreement between the EGSnrc Monte Carlo calculations and measurements is within 2%/1 mm. Absolute dose agreement between Monte Carlo calculations and treatment planning system for the four different treatment techniques is within 3%/3 mm. Discrepancies with the tomotherapy TPS on the order of 10%/5 mm were observed for the extreme example of a small target located 15 cm off-axis and planned with a low modulation factor. The increase in simulation time associated with using position-probability sampling, as opposed to the discretization approach, was less than 2% in most cases. CONCLUSIONS A single Monte Carlo simulation method can be used to calculate patient dose distribution for various types of treatment techniques delivered with either tomotherapy or a conventional linac. The method simplifies the simulation process, improves dose calculation accuracy, and involves an acceptably small change in computation time.
Collapse
Affiliation(s)
- Jason Belec
- Department of Medical Physics, The Ottawa Hospital Cancer Centre, 501 Smyth Road, Box 927, Ottawa, Ontario K1H 8L6, Canada.
| | | | | | | |
Collapse
|
41
|
Ma CM, Li J. Dose specification for radiation therapy: dose to water or dose to medium? Phys Med Biol 2011; 56:3073-89. [DOI: 10.1088/0031-9155/56/10/012] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Hissoiny S, Ozell B, Bouchard H, Després P. GPUMCD: A new GPU-oriented Monte Carlo dose calculation platform. Med Phys 2011; 38:754-64. [DOI: 10.1118/1.3539725] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
43
|
Affiliation(s)
- Jin Sheng Li
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.
| | | | | | | | | |
Collapse
|
44
|
Mukumoto N, Tsujii K, Saito S, Yasunaga M, Takegawa H, Yamamoto T, Numasaki H, Teshima T. A preliminary study of in-house Monte Carlo simulations: an integrated Monte Carlo verification system. Int J Radiat Oncol Biol Phys 2009; 75:571-9. [PMID: 19735883 DOI: 10.1016/j.ijrobp.2009.02.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 02/18/2009] [Accepted: 02/27/2009] [Indexed: 11/17/2022]
Abstract
PURPOSE To develop an infrastructure for the integrated Monte Carlo verification system (MCVS) to verify the accuracy of conventional dose calculations, which often fail to accurately predict dose distributions, mainly due to inhomogeneities in the patient's anatomy, for example, in lung and bone. METHODS AND MATERIALS The MCVS consists of the graphical user interface (GUI) based on a computational environment for radiotherapy research (CERR) with MATLAB language. The MCVS GUI acts as an interface between the MCVS and a commercial treatment planning system to import the treatment plan, create MC input files, and analyze MC output dose files. The MCVS consists of the EGSnrc MC codes, which include EGSnrc/BEAMnrc to simulate the treatment head and EGSnrc/DOSXYZnrc to calculate the dose distributions in the patient/phantom. In order to improve computation time without approximations, an in-house cluster system was constructed. RESULTS The phase-space data of a 6-MV photon beam from a Varian Clinac unit was developed and used to establish several benchmarks under homogeneous conditions. The MC results agreed with the ionization chamber measurements to within 1%. The MCVS GUI could import and display the radiotherapy treatment plan created by the MC method and various treatment planning systems, such as RTOG and DICOM-RT formats. Dose distributions could be analyzed by using dose profiles and dose volume histograms and compared on the same platform. With the cluster system, calculation time was improved in line with the increase in the number of central processing units (CPUs) at a computation efficiency of more than 98%. CONCLUSIONS Development of the MCVS was successful for performing MC simulations and analyzing dose distributions.
Collapse
Affiliation(s)
- Nobutaka Mukumoto
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Bednarz B, Hancox C, Xu XG. Calculated organ doses from selected prostate treatment plans using Monte Carlo simulations and an anatomically realistic computational phantom. Phys Med Biol 2009; 54:5271-86. [PMID: 19671968 PMCID: PMC3376897 DOI: 10.1088/0031-9155/54/17/013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is growing concern about radiation-induced second cancers associated with radiation treatments. Particular attention has been focused on the risk to patients treated with intensity-modulated radiation therapy (IMRT) due primarily to increased monitor units. To address this concern we have combined a detailed medical linear accelerator model of the Varian Clinac 2100 C with anatomically realistic computational phantoms to calculate organ doses from selected treatment plans. This paper describes the application to calculate organ-averaged equivalent doses using a computational phantom for three different treatments of prostate cancer: a 4-field box treatment, the same box treatment plus a 6-field 3D-CRT boost treatment and a 7-field IMRT treatment. The equivalent doses per MU to those organs that have shown a predilection for second cancers were compared between the different treatment techniques. In addition, the dependence of photon and neutron equivalent doses on gantry angle and energy was investigated. The results indicate that the box treatment plus 6-field boost delivered the highest intermediate- and low-level photon doses per treatment MU to the patient primarily due to the elevated patient scatter contribution as a result of an increase in integral dose delivered by this treatment. In most organs the contribution of neutron dose to the total equivalent dose for the 3D-CRT treatments was less than the contribution of photon dose, except for the lung, esophagus, thyroid and brain. The total equivalent dose per MU to each organ was calculated by summing the photon and neutron dose contributions. For all organs non-adjacent to the primary beam, the equivalent doses per MU from the IMRT treatment were less than the doses from the 3D-CRT treatments. This is due to the increase in the integral dose and the added neutron dose to these organs from the 18 MV treatments. However, depending on the application technique and optimization used, the required MU values for IMRT treatments can be two to three times greater than 3D CRT. Therefore, the total equivalent dose in most organs would be higher from the IMRT treatment compared to the box treatment and comparable to the organ doses from the box treatment plus the 6-field boost. This is the first time when organ dose data for an adult male patient of the ICRP reference anatomy have been calculated and documented. The tools presented in this paper can be used to estimate the second cancer risk to patients undergoing radiation treatment.
Collapse
Affiliation(s)
- Bryan Bednarz
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 01208, USA.
| | | | | |
Collapse
|
46
|
Dogan N, Mihaylov I, Wu Y, Keall PJ, Siebers JV, Hagan MP. Monte Carlo dose verification of prostate patients treated with simultaneous integrated boost intensity modulated radiation therapy. Radiat Oncol 2009; 4:18. [PMID: 19527515 PMCID: PMC2701954 DOI: 10.1186/1748-717x-4-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 06/15/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To evaluate the dosimetric differences between Superposition/Convolution (SC) and Monte Carlo (MC) calculated dose distributions for simultaneous integrated boost (SIB) prostate cancer intensity modulated radiotherapy (IMRT) compared to experimental (film) measurements and the implications for clinical treatments. METHODS Twenty-two prostate patients treated with an in-house SIB-IMRT protocol were selected. SC-based plans used for treatment were re-evaluated with EGS4-based MC calculations for treatment verification. Accuracy was evaluated with-respect-to film-based dosimetry. Comparisons used gamma (gamma)-index, distance-to-agreement (DTA), and superimposed dose distributions. The treatment plans were also compared based on dose-volume indices and 3-D gamma index for targets and critical structures. RESULTS Flat-phantom comparisons demonstrated that the MC algorithm predicted measurements better than the SC algorithm. The average PTVprostate D98 agreement between SC and MC was 1.2% +/- 1.1. For rectum, the average differences in SC and MC calculated D50 ranged from -3.6% to 3.4%. For small bowel, there were up to 30.2% +/- 40.7 (range: 0.2%, 115%) differences between SC and MC calculated average D50 index. For femurs, the differences in average D50 reached up to 8.6% +/- 3.6 (range: 1.2%, 14.5%). For PTVprostate and PTVnodes, the average gamma scores were >95.0%. CONCLUSION MC agrees better with film measurements than SC. Although, on average, SC-calculated doses agreed with MC calculations within the targets within 2%, there were deviations up to 5% for some patient's treatment plans. For some patients, the magnitude of such deviations might decrease the intended target dose levels that are required for the treatment protocol, placing the patients in different dose levels that do not satisfy the protocol dose requirements.
Collapse
Affiliation(s)
- Nesrin Dogan
- Radiation Oncology Department, Virginia Commonwealth University Medical Center, Richmond, Virginia 23298, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Sadagopan R, Bencomo JA, Martin RL, Nilsson G, Matzen T, Balter PA. Characterization and clinical evaluation of a novel IMRT quality assurance system. J Appl Clin Med Phys 2009; 10:104-119. [PMID: 19458595 PMCID: PMC5720456 DOI: 10.1120/jacmp.v10i2.2928] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Accepted: 12/10/2008] [Indexed: 11/23/2022] Open
Abstract
Intensity-modulated radiation therapy (IMRT) is a complex procedure that involves the delivery of complex intensity patterns from various gantry angles. Due to the complexity of the treatment plans, the standard-of-care is to perform measurement based patient-specific quality assurance (QA). IMRT QA is traditionally done with film for relative dose in a plane and an ion chamber for absolute dose. This is a laborious and time-consuming process. In this work, we characterized, commissioned, and evaluated the QA capabilities of a novel commercial IMRT device Delta4, (Scandidos, Uppsala, Sweden). This device consists of diode matrices in 2 orthogonal planes inserted in a cylindrical acrylic phantom that is 22 cm in diameter. Although the system has detectors in only 2 planes, it provides a novel interpolation algorithm that is capable of estimating doses at points where no detectors are present. Each diode is sampled per beam pulse so that the dose distribution can be evaluated on segment-by-segment, beam-by-beam, or as a composite plan from a single set of measurements. The end user can calibrate the system to perform absolute dosimetry eliminating the need for additional ion chamber measurements. The patient's IMRT plan is imported into the device over the hospital LAN and the results of measurements can be displayed as gamma profiles, distance-to-agreement maps, dose difference maps, or the measured dose distribution can be superimposed of the patient's anatomy to display an as-delivered plan. We evaluated the system's reproducibility, stability, pulse-rate dependence, dose-rate dependence, angular dependence, linearity of dose response and energy response using carefully planned measurements. We also validated the system's interpolation algorithm by measuring a complex dose distribution from an IMRT treatment. Several simple and complex isodose distributions planned using a treatment planning system were delivered to the QA device; the planned and measured dose distributions were then compared and analyzed. In addition, the dose distributions measured by conventional IMRT QA, which uses an ion chamber and film, were compared. We found that this device is accurate and reproducible and that its interpolation algorithm is valid. In addition the supplied software and network interface allow a streamlined IMRT QA process.
Collapse
Affiliation(s)
- Ramaswamy Sadagopan
- Department of Radiation Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, U.S.A
| | - Jose A Bencomo
- Department of Radiation Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, U.S.A
| | - Rafael L Martin
- Department of Physics, Universidad Central de Venezuela, Caracas, Venezuela
| | | | | | - Peter A Balter
- Department of Radiation Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, U.S.A
| |
Collapse
|
48
|
Davidson SE, Popple RA, Ibbott GS, Followill DS. Technical note: Heterogeneity dose calculation accuracy in IMRT: study of five commercial treatment planning systems using an anthropomorphic thorax phantom. Med Phys 2009; 35:5434-9. [PMID: 19175103 DOI: 10.1118/1.3006353] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The purpose of this study was to determine the accuracy of five commonly used intensity-modulated radiation therapy (IMRT) treatment planning systems (TPSs), 3 using convolution superposition algorithms or the analytical anisotropic algorithm (CSA/AAAs) and 2 using pencil beam algorithms (PBAs), in calculating the absorbed dose within a low-density, heterogeneous region when compared with measurements made in an anthropomorphic thorax phantom. The dose predicted in the target center met the test criteria (5% of the dose normalization point or 3 mm distance to agreement) for all TPSs tested; however, at the tumor-lung interface and at the peripheral lung in the vicinity of the tumor, the CSA/AAAs performed better than the PBAs (85% and 50%, respectively, of pixels meeting the 5%/3-mm test criteria), and thus should be used to determine dose in heterogeneous regions.
Collapse
Affiliation(s)
- Scott E Davidson
- Department of Radiation Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
49
|
Gibbons JP, Smith K, Cheek D, Rosen I. Independent calculation of dose from a helical TomoTherapy unit. J Appl Clin Med Phys 2009; 10:103-119. [PMID: 19223830 PMCID: PMC5720509 DOI: 10.1120/jacmp.v10i1.2772] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Accepted: 10/06/2008] [Indexed: 11/23/2022] Open
Abstract
A new calculation algorithm has been developed for independently verifying doses calculated by the TomoTherapy Hi.Art treatment planning system (TPS). The algorithm is designed to confirm the dose to a point in a high dose, low dose-gradient region. Patient data used by the algorithm include the radiological depth to the point for each projection angle and the treatment sinogram file controlling the leaf opening time for each projection. The algorithm uses common dosimetric functions [tissue phantom ratio (TPR) and output factor (Scp)] for the central axis combined with lateral and longitudinal beam profile data to quantify the off-axis dose dependence. Machine data for the dosimetric functions were measured on the Hi.Art machine and simulated using the TPS. Point dose calculations were made for several test phantoms and for 97 patient treatment plans using the simulated machine data. Comparisons with TPS-predicted point doses for the phantom treatment plans demonstrated agreement within 2% for both on-axis and off-axis planning target volumes (PTVs). Comparisons with TPS-predicted point doses for the patient treatment plans also showed good agreement. For calculations at sites other than lung and superficial PTVs, agreement between the calculations was within 2% for 94% of the patient calculations (64 of 68). Calculations within lung and superficial PTVs overestimated the dose by an average of 3.1% (sigma=2.4%) and 3.2% (sigma=2.2%), respectively. Systematic errors within lung are probably due to the weakness of the algorithm in correcting for missing tissue and/or tissue density heterogeneities. Errors encountered within superficial PTVs probably result from the algorithm overestimating the scatter dose within the patient. Our results demonstrate that for the majority of cases, the algorithm could be used without further refinement to independently verify patient treatment plans.
Collapse
Affiliation(s)
- John P Gibbons
- Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana, U.S.A.,Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, Louisiana, U.S.A
| | - Koren Smith
- Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, Louisiana, U.S.A
| | - Dennis Cheek
- Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana, U.S.A
| | - Isaac Rosen
- Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana, U.S.A.,Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, Louisiana, U.S.A
| |
Collapse
|
50
|
Mihaylov IB, Siebers JV. Evaluation of dose prediction errors and optimization convergence errors of deliverable-based head-and-neck IMRT plans computed with a superposition/convolution dose algorithm. Med Phys 2008; 35:3722-7. [PMID: 18777931 DOI: 10.1118/1.2956710] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The purpose of this study is to evaluate dose prediction errors (DPEs) and optimization convergence errors (OCEs) resulting from use of a superposition/convolution dose calculation algorithm in deliverable intensity-modulated radiation therapy (IMRT) optimization for head-and-neck (HN) patients. Thirteen HN IMRT patient plans were retrospectively reoptimized. The IMRT optimization was performed in three sequential steps: (1) fast optimization in which an initial nondeliverable IMRT solution was achieved and then converted to multileaf collimator (MLC) leaf sequences; (2) mixed deliverable optimization that used a Monte Carlo (MC) algorithm to account for the incident photon fluence modulation by the MLC, whereas a superposition/convolution (SC) dose calculation algorithm was utilized for the patient dose calculations; and (3) MC deliverable-based optimization in which both fluence and patient dose calculations were performed with a MC algorithm. DPEs of the mixed method were quantified by evaluating the differences between the mixed optimization SC dose result and a MC dose recalculation of the mixed optimization solution. OCEs of the mixed method were quantified by evaluating the differences between the MC recalculation of the mixed optimization solution and the final MC optimization solution. The results were analyzed through dose volume indices derived from the cumulative dose-volume histograms for selected anatomic structures. Statistical equivalence tests were used to determine the significance of the DPEs and the OCEs. Furthermore, a correlation analysis between DPEs and OCEs was performed. The evaluated DPEs were within +/- 2.8% while the OCEs were within 5.5%, indicating that OCEs can be clinically significant even when DPEs are clinically insignificant. The full MC-dose-based optimization reduced normal tissue dose by as much as 8.5% compared with the mixed-method optimization results. The DPEs and the OCEs in the targets had correlation coefficients greater than 0.71, and there was no correlation for the organs at risk. Because full MC-based optimization results in lower normal tissue doses, this method proves advantageous for HN IMRT optimization.
Collapse
Affiliation(s)
- I B Mihaylov
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | |
Collapse
|