1
|
Paschal HM(P, Kabat CN, Martin T, Saenz D, Myers P, Rasmussen K, Stathakis S, Bonnen M, Papanikolaou N, Kirby N. Dosimetric characterization of a new surface-conforming electron MLC prototype. J Appl Clin Med Phys 2024; 25:e14173. [PMID: 37858985 PMCID: PMC10860448 DOI: 10.1002/acm2.14173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
The purpose is to reduce normal tissue radiation toxicity for electron therapy through the creation of a surface-conforming electron multileaf collimator (SCEM). The SCEM combines the benefits of skin collimation, electron conformal radiotherapy, and modulated electron radiotherapy. An early concept for the SCEM was constructed. It consists of leaves that protrude towards the patient, allowing the leaves to conform closely to irregular patient surfaces. The leaves are made of acrylic to decrease bremsstrahlung, thereby decreasing the out-of-field dose. Water tank scans were performed with the SCEM in place for various field sizes for all available electron energies (6, 9, 12, and 15 MeV) with a 0.5 cm air gap to the water surface at 100 cm source-to-surface distance (SSD). These measurements were compared with Cerrobend cutouts with the field size-matched at 100 and 110 cm SSD. Output factor measurements were taken in solid water for each energy at dmax for both the cerrobend cutouts and SCEM at 100 cm SSD. Percent depth dose (PDD) curves for the SCEM shifted shallower for all energies and field sizes. The SCEM also produced a higher surface dose relative to Cerrobend cutouts, with the maximum being a 9.8% increase for the 3 cm × 9 cm field at 9 MeV. When compared to the Cerrobend cutouts at 110 cm SSD, the SCEM showed a significant decrease in the penumbra, particularly for lower energies (i.e., 6 and 9 MeV). The SCEM also showed reduced out-of-field dose and lower bremsstrahlung production than the Cerrobend cutouts. The SCEM provides significant improvement in the penumbra and out-of-field dose by allowing collimation close to the skin surface compared to Cerrobend cutouts. However, the added scatter from the SCEM increases shallow PDD values. Future work will focus on reducing this scatter while maintaining the penumbra and out-of-field benefits the SCEM has over conventional collimation.
Collapse
Affiliation(s)
- Holly M. (Parenica) Paschal
- Department of Radiation Oncology, School of MedicineThe University of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Christopher N. Kabat
- Department of Radiation Oncology, School of MedicineThe University of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Thomas Martin
- Department of Radiation Oncology, School of MedicineThe University of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Daniel Saenz
- Department of Radiation Oncology, School of MedicineThe University of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Pamela Myers
- Department of Radiation Oncology, School of MedicineThe University of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Karl Rasmussen
- Department of Radiation Oncology, School of MedicineThe University of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Sotirios Stathakis
- Department of Radiation Oncology, School of MedicineThe University of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Mark Bonnen
- Department of Radiation Oncology, School of MedicineThe University of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Nikos Papanikolaou
- Department of Radiation Oncology, School of MedicineThe University of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Neil Kirby
- Department of Radiation Oncology, School of MedicineThe University of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| |
Collapse
|
2
|
Madias JE. Right versus left breast radiation and coronary artery disease: is there a differential? Acta Cardiol 2023; 78:5-12. [PMID: 36378524 DOI: 10.1080/00015385.2022.2141431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is literature supporting the view that chest radiation (CR) for the management of primary or metastatic cancer of the mediastinum and chest, including breast cancer is associated with all types of heart disease, including coronary artery disease (CAD), manifesting during long-term follow-up. This review explores the literature about the association of CR for the management of cancer and CAD, particularly focussing on breast cancer, and further on the differential between CR for right versus left breast cancer. The balk of the literature suggests that there is higher incidence of CAD in patients undergoing left versus right-CR for breast cancer, and that cardiologists and oncologists need to become involved systematically in their assessment prior to CR and at subsequent follow-up.
Collapse
Affiliation(s)
- John E Madias
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Division of Cardiology, Elmhurst Hospital Center, Elmhurst, NY, USA
| |
Collapse
|
3
|
Ma P, Tian Y, Li M, Niu C, Song Y, Dai J. Delivery of intensity-modulated electron therapy by mechanical scanning: An algorithm study. Front Oncol 2022; 12:1063577. [PMID: 36505866 PMCID: PMC9730234 DOI: 10.3389/fonc.2022.1063577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Purpose In principle, intensity-modulated electron therapy (IMET) can be delivered through mechanical scanning, with a robotic arm mounting a linac. Materials and methods Here is a scanning algorithm to identify the back-and-forth, top-to-bottom (zigzag) pattern scan sequence. The algorithm includes generating beam positions with a uniform resolution according to the applicator size; adopting discrete energies to achieve the depth of 90% dose by compositing energies; selecting energy by locating the target's distal edge; and employing the energy-by-energy scan strategy for step-and-shoot discrete scanning. After a zigzag scan sequence is obtained, the delivery order of the scan spots is optimized by fast simulated annealing (FSA) to minimize the path length. For algorithm evaluation, scan sequences were generated using the computed tomography data of 10 patients with pancreatic cancer undergoing intraoperative radiotherapy, and the results were compared between the zigzag path and an optimized path. A simple calculation of the treatment delivery time, which comprises the irradiation time, the total robotic arm moving time, the time for energy switch, and the time to stop and restart the beam, was also made. Results In these clinical cases, FSA optimization shortened the path lengths by 12%-43%. Assuming the prescribed dose was 15 Gy, machine dose rate was 15 Gy/s, energy switch time was 2 s, stop and restart beam time was 20 ms, and robotic arm move speed was 50 mm/s, the average delivery time was 124±38 s. The largest reduction in path length yielded an approximately 10% reduction in the delivery time, which can be further reduced by increasing the machine dose rate and the robotic arm speed, decreasing the time for energy switch, and/or developing more efficient algorithms. Conclusion Mechanically scanning IMET is potentially feasible and worthy of further exploration.
Collapse
|
4
|
Azadegan N, Hassanpour M, Khandaker MU, Iqbal Faruque MR, Al-mugren K, Bradley D. Calculation of secondary radiation absorbed doses due to the proton therapy on breast cancer using MCNPX code. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Fadavi P, Ahmadi HK, Diba AAY, Jafari F, Alamolhoda M. Dosimetric comparison of left sided whole breast irradiation with Tangential wedge beam, electron boosted Tangential wedged beam and asymmetric technique. J Family Med Prim Care 2020; 9:6135-6139. [PMID: 33681053 PMCID: PMC7928138 DOI: 10.4103/jfmpc.jfmpc_1476_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/15/2020] [Accepted: 11/03/2020] [Indexed: 11/05/2022] Open
Abstract
Background: Irradiation of the adjacent critical structures is inevitable in breast cancer radiotherapy (RT). Our purpose is to assess the dose distribution across the breast tissue and adjacent organs with our institutional asymmetric technique for left-sided breast cancer compared to the standard tangential wedged beam (TWB) and electron-boosted TWB techniques. Materials and Methods: The three RT planning were created for 30 consecutive patients with a focus on proper coverage of the planning target volume (PTV). The irritated doses into the heart, ipsilateral lung, and left anterior descending artery (LAD) were evaluated. Results: No significant difference was found in the mean values of relative PTV irradiated to 47.5 Gy, PTV dose and the volume of PTV, and critical organs between the treatments. The mean dose (Dmean) irradiated to the heart and LAD was lowest with the electron-boosted TWB. The Dmean to the heart was comparable between the TWB and asymmetric RT techniques, while the Dmean to LAD was significantly reduced with asymmetric technique versus TWB. The heart volume receiving ≥25 Gy and the Dmean to the left lung were significantly decreased with the asymmetric technique compared with TWB. The mean relative lung volume irradiated to ≥20 Gy was comparable between all techniques. The mean central lung distance was also significantly increased from 18.03 ± 4.5 cm with asymmetric RT to 37.47 ± 5.6 cm with TWB and to 27.67 ± 3.8 cm with electron-boosted TWB techniques. Conclusion: The asymmetric technique is useful for patients with breast cancer on the left side, having acceptable PTV coverage and considerably reduced cardiopulmonary doses.
Collapse
Affiliation(s)
- Pedram Fadavi
- Department of Radiation Oncology, Shohadaye 7 Tir Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Helaleh Khoshbakht Ahmadi
- Department of Radiation Oncology, Shohadaye 7 Tir Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Yousefi Diba
- Department of Radiation Oncology, Shohadaye 7 Tir Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Jafari
- Radiation Oncology Research Center, Cancer Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Department of Radiation Oncology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboobeh Alamolhoda
- Department of Radiation Oncology, Shohadaye 7 Tir Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Wang X, Sawkey D, Wu Q. Technical Note: A dose calculation framework for dynamic electron arc radiotherapy (DEAR) using VirtuaLinac Monte Carlo simulation tool. Med Phys 2019; 47:164-170. [PMID: 31667858 DOI: 10.1002/mp.13882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Dynamic electron arc radiotherapy (DEAR) is a novel dynamic technique that achieves highly conformal dose through simultaneous couch and gantry motion during delivery. The purpose of this study is to develop a framework integrating a Monte Carlo dose engine (VirtuaLinac) to a treatment planning system (TPS, Eclipse) for DEAR. A quality assurance (QA) procedure is also developed. METHODS AND MATERIALS The interfaces include the following: computed tomography image export and conversion for VirtuaLinac; VirtuaLinac computation tasks management through application programming interface (API); and dose matrix processing and evaluation. The framework was validated with both static beam and DEAR plan with a 3 × 3 cm2 cutout for both 6 and 9 MeV electrons. Verification plans for DEAR were created on flat phantom and a hybrid dose calculation technique was developed which convolves precalculated small field kernel with the beam trajectory, and the resulting dose was compared with the full VirtuaLinac calculation and film measurement. RESULTS Excellent agreement between VirtuaLinac and eMC was observed with three-dimensional γ pass rate of 98% at 1%/1 mm criteria for both 6 and 9 MeV electrons. Film measurement shows two-dimensional (2D) γ passing rate of 99.8 % (6 MeV) and 97.1% (9 MeV) at 2%/2 mm criteria. For DEAR plans the comparison of VirtuaLinac and measurement shows the 2D γ passing rates of 94% at 2%/2 mm for 6 MeV. The dose distributions from hybrid method in phantom are identical to the full VirtuaLinac simulations, but can be done instantly. CONCLUSIONS A framework has been developed for DEAR dose calculation using VirtuaLinac Monte Carlo dose engine. The VirtuaLinac calculated dose was validated against measurement. A feasible and practical DEAR QA method has been developed for dose measurement in phantom. The hybrid dose calculation technique is efficient and suitable for DEAR QA purpose.
Collapse
Affiliation(s)
- Xiaorong Wang
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Daren Sawkey
- Varian Medical Systems, Palo Alto, CA, 94304, USA
| | - Qiuwen Wu
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
7
|
Renaud MA, Serban M, Seuntjens J. Robust mixed electron-photon radiation therapy optimization. Med Phys 2019; 46:1384-1396. [DOI: 10.1002/mp.13381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/10/2018] [Accepted: 12/29/2018] [Indexed: 01/24/2023] Open
Affiliation(s)
- Marc-André Renaud
- Department of Physics & Medical Physics Unit; McGill University; Montreal Canada
| | - Monica Serban
- Medical Physics Unit; McGill University Health Centre; Montreal Canada
| | - Jan Seuntjens
- Medical Physics Unit; McGill University and Research Institute of the McGill University Health Centre; Montreal Canada
| |
Collapse
|
8
|
Minimum breast distance largely explains individual variability in doses to contralateral breast from breast-cancer radiotherapy. Radiother Oncol 2019; 131:186-191. [DOI: 10.1016/j.radonc.2018.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 11/19/2022]
|
9
|
Dosimetric evaluation of a novel electron–photon mixed beam, produced by a medical linear accelerator. JOURNAL OF RADIOTHERAPY IN PRACTICE 2018. [DOI: 10.1017/s1460396917000711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractAimThis study deals with the characteristics of simultaneous photon and electron beams in homogenous and inhomogeneous phantoms by experimental and Monte Carlo dosimetry, for therapeutic purposes. Materials and methods: Both 16 and 20 MeV high-energy electron beams were used as the original beam to strike perforated lead sheets to produce the mixed beam. The dosimetry results were achieved by measurement in an ion chamber in a water phantom and film dosimetry in a Perspex nasal phantom, and then compared with those calculated through a simulation approach. To evaluate two-dimensional dose distribution in the inhomogeneous medium, the dose–area histogram was obtained.ResultsThe highest percentage of photon contribution in mixed beam was found to be 36% for 2-mm thickness of lead layer with holes diameter of 0·2 cm for a 20 MeV primary electron energy. For small fields, the percentage depth dose parameters variations were found to be similar to pure electron beam within ±2%. The most feasible flatness in beam profile was 11% for pure electron and 7% for the mixed beam. Penumbra changes as function of depth was about ten times better than in pure electron field.ConclusionsThe results present some dosimetric advantages that can make this study a platform for the production of simultaneous mixed beams in future linear accelerators (LINACs), which through redesign of the LINAC head, which could lead to setup error reduction and a decrease of intra-fractional tumour cells repair.
Collapse
|
10
|
Lee TF, Sung KC, Chao PJ, Huang YJ, Lan JH, Wu HY, Chang L, Ting HM. Relationships among patient characteristics, irradiation treatment planning parameters, and treatment toxicity of acute radiation dermatitis after breast hybrid intensity modulation radiation therapy. PLoS One 2018; 13:e0200192. [PMID: 30011291 PMCID: PMC6047778 DOI: 10.1371/journal.pone.0200192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 06/21/2018] [Indexed: 02/06/2023] Open
Abstract
To evaluate the relationships among patient characteristics, irradiation treatment planning parameters, and treatment toxicity of acute radiation dermatitis (RD) after breast hybrid intensity modulation radiation therapy (IMRT). The study cohort consisted of 95 breast cancer patients treated with hybrid IMRT. RD grade ≥2 (2+) toxicity was defined as clinically significant. Patient characteristics and the irradiation treatment planning parameters were used as the initial candidate factors. Prognostic factors were identified using the least absolute shrinkage and selection operator (LASSO)-based normal tissue complication probability (NTCP) model. A univariate cut-off dose NTCP model was developed to find the dose-volume limitation. Fifty-two (54.7%) of ninety-five patients experienced acute RD grade 2+ toxicity. The volume of skin receiving a dose >35 Gy (V35) was the most significant dosimetric predictor associated with RD grade 2+ toxicity. The NTCP model parameters for V35Gy were TV50 = 85.7 mL and γ50 = 0.77, where TV50 was defined as the volume corresponding to a 50% incidence of complications, and γ50 was the normalized slope of the volume-response curve. Additional potential predictive patient characteristics were energy and surgery, but the results were not statistically significant. To ensure a better quality of life and compliance for breast hybrid IMRT patients, the skin volume receiving a dose >35 Gy should be limited to <85.7 mL to keep the incidence of RD grade 2+ toxicities below 50%. To avoid RD toxicity, the volume of skin receiving a dose >35 Gy should follow sparing tolerance and the inherent patient characteristics should be considered.
Collapse
Affiliation(s)
- Tsair-Fwu Lee
- Medical Physics and Informatics Laboratory of Electronics Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, ROC.,Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC.,Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | - Kuo-Chiang Sung
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC.,Department of Electrical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, ROC
| | - Pei-Ju Chao
- Medical Physics and Informatics Laboratory of Electronics Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, ROC.,Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | - Yu-Jie Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | - Jen-Hong Lan
- Medical Physics and Informatics Laboratory of Electronics Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, ROC.,Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | - Horng-Yuan Wu
- Department of Electrical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, ROC
| | - Liyun Chang
- Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung, Taiwan, ROC
| | - Hui-Min Ting
- Medical Physics and Informatics Laboratory of Electronics Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, ROC.,Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| |
Collapse
|
11
|
Joosten A, Müller S, Henzen D, Volken W, Frei D, Aebersold DM, Manser P, Fix MK. A dosimetric evaluation of different levels of energy and intensity modulation for inversely planned multi-field MERT. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aabe40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
The feasibility of a heart block with an electron compensation as an alternative whole breast radiotherapy technique in patients with underlying cardiac or pulmonary disease. PLoS One 2017; 12:e0184137. [PMID: 28863179 PMCID: PMC5580979 DOI: 10.1371/journal.pone.0184137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 08/18/2017] [Indexed: 11/19/2022] Open
Abstract
PURPOSE We aimed to evaluate the feasibility of the heart block with electron compensation (HBE) technique, based on three-dimensional conformal radiotherapy (3D-CRT) in left-sided breast cancer patients with underlying cardiac or pulmonary disease. METHODS Twenty patients with left-sided breast cancer who were treated with whole breast radiotherapy (WBRT) were included in this study. Intensity-modulated radiotherapy (IMRT), 3D-CRT, and HBE treatment plans were generated for each patient. Based on the 3D-CRT plan, the HBE plan included a heart block from the medial tangential field to shield the heart and added an electron beam to compensate for the loss in target volume coverage. The dosimetric parameters for the heart and lung and the target volume between the three treatment types were compared. RESULTS Of the three plans, the HBE plan yielded the most significant reduction in the doses received by the heart and lung (heart Dmean: 5.1 Gy vs. 12.9 Gy vs. 4.0 Gy and lung Dmean: 11.4 Gy vs. 13.2 Gy vs. 10.5 Gy, for 3D-CRT, IMRT, and HBE, respectively). Target coverage with all three techniques was within the acceptable range (Dmean 51.0 Gy vs. 51.2 Gy vs. 50.6 Gy, for 3D-CRT, IMRT, and HBE, respectively). CONCLUSIONS The HBE plan effectively reduced the amount of radiation exposure to the heart and lung. It could be beneficial for patients who are vulnerable to radiation-related cardiac or pulmonary toxicities.
Collapse
|
13
|
Thyroid V50 Highly Predictive of Hypothyroidism in Head-and-Neck Cancer Patients Treated With Intensity-modulated Radiotherapy (IMRT). Am J Clin Oncol 2017; 40:413-417. [DOI: 10.1097/coc.0000000000000165] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Míguez C, Jiménez-Ortega E, Palma BA, Miras H, Ureba A, Arráns R, Carrasco-Peña F, Illescas-Vacas A, Leal A. Clinical implementation of combined modulated electron and photon beams with conventional MLC for accelerated partial breast irradiation. Radiother Oncol 2017. [DOI: 10.1016/j.radonc.2017.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Rahimy E, Hong JC, Gross CP, Hu X, Soulos PR, Shafman T, Connor HJ, Ross R, Yu JB, Dosoretz A, Evans SB. Increased Number of Beam Angles Is Associated With Higher Cardiac Dose in Adjuvant Fixed Gantry Intensity Modulated Radiation Therapy of Left-Sided Breast Cancer. Int J Radiat Oncol Biol Phys 2017; 99:1137-1145. [PMID: 28864402 DOI: 10.1016/j.ijrobp.2017.06.2451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/09/2017] [Accepted: 06/19/2017] [Indexed: 01/16/2023]
Abstract
PURPOSE To analyze the relationship between angle number and mean heart dose (MHD) in adjuvant fixed gantry intensity modulated radiation therapy (FG-IMRT) treatment of left-sided breast cancer as is currently practiced in the community. METHODS AND MATERIALS We performed a retrospective, multi-institutional review of women with left-sided breast cancer receiving adjuvant FG-IMRT between 2012 and 2014, encompassing 85 centers in 15 states. Bivariate and multivariate regression analyses were done to identify factors associated with MHD. Long-term cardiac risk was estimated according to a previously published model. RESULTS Of the 538 women included, 284 had >2 gantry angle treatment plans (multi-angle), and 254 had 2 gantry angle (standard) plans. Median MHD was higher in patients with multi-angle plans compared with standard (median 475 vs 203 cGy). Number of gantry angles was significantly associated with MHD, with multi-angle plans independently increasing MHD by 229 cGy. Absolute risk of acute coronary events 20 years after treatment was estimated as 7 excess events per 1000 women for standard plans, compared with 12 excess events for multi-angle plans. CONCLUSIONS Fixed gantry IMRT breast treatment plans with >2 gantry angles were associated with increased MHD, which translated to an increased cardiac risk. Clinicians should account for this potential drawback in treatment technique when assessing overall plan quality.
Collapse
Affiliation(s)
- Elham Rahimy
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut.
| | - Julian C Hong
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - Cary P Gross
- Cancer Outcomes, Public Policy and Effectiveness Research Center, Yale School of Medicine, New Haven, Connecticut; Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Xin Hu
- Cancer Outcomes, Public Policy and Effectiveness Research Center, Yale School of Medicine, New Haven, Connecticut
| | - Pamela R Soulos
- Cancer Outcomes, Public Policy and Effectiveness Research Center, Yale School of Medicine, New Haven, Connecticut
| | - Timothy Shafman
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut; 21st Century Oncology, Fort Myers, Florida
| | - Henry J Connor
- Cancer Outcomes, Public Policy and Effectiveness Research Center, Yale School of Medicine, New Haven, Connecticut; Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Rudi Ross
- 21st Century Oncology, Fort Myers, Florida
| | - James B Yu
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut; Cancer Outcomes, Public Policy and Effectiveness Research Center, Yale School of Medicine, New Haven, Connecticut
| | - Arie Dosoretz
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut; 21st Century Oncology, Fort Myers, Florida
| | - Suzanne B Evans
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut; Cancer Outcomes, Public Policy and Effectiveness Research Center, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
16
|
Eldib A, Jin L, Martin J, Fan J, Li J, Chibani O, Veltchev I, Price R, Galloway T, Ma CMC. Investigating the dosimetric benefits of modulated electron radiation therapy (MERT) for partial scalp patients. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa70ab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Sung W, Park JI, Kim JI, Carlson J, Ye SJ, Park JM. Monte Carlo simulation for scanning technique with scattering foil free electron beam: A proof of concept study. PLoS One 2017; 12:e0177380. [PMID: 28493940 PMCID: PMC5426680 DOI: 10.1371/journal.pone.0177380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/26/2017] [Indexed: 11/18/2022] Open
Abstract
This study investigated the potential of a newly proposed scattering foil free (SFF) electron beam scanning technique for the treatment of skin cancer on the irregular patient surfaces using Monte Carlo (MC) simulation. After benchmarking of the MC simulations, we removed the scattering foil to generate SFF electron beams. Cylindrical and spherical phantoms with 1 cm boluses were generated and the target volume was defined from the surface to 5 mm depth. The SFF scanning technique with 6 MeV electrons was simulated using those phantoms. For comparison, volumetric modulated arc therapy (VMAT) plans were also generated with two full arcs and 6 MV photon beams. When the scanning resolution resulted in a larger separation between beams than the field size, the plan qualities were worsened. In the cylindrical phantom with a radius of 10 cm, the conformity indices, homogeneity indices and body mean doses of the SFF plans (scanning resolution = 1°) vs. VMAT plans were 1.04 vs. 1.54, 1.10 vs. 1.12 and 5 Gy vs. 14 Gy, respectively. Those of the spherical phantom were 1.04 vs. 1.83, 1.08 vs. 1.09 and 7 Gy vs. 26 Gy, respectively. The proposed SFF plans showed superior dose distributions compared to the VMAT plans.
Collapse
Affiliation(s)
- Wonmo Sung
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Seoul National University Graduate School of Convergence Science and Technology, Seoul, Republic of Korea
| | - Jong In Park
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Seoul National University Graduate School of Convergence Science and Technology, Seoul, Republic of Korea
| | - Jung-in Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Joel Carlson
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Seoul National University Graduate School of Convergence Science and Technology, Seoul, Republic of Korea
| | - Sung-Joon Ye
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Seoul National University Graduate School of Convergence Science and Technology, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jong Min Park
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute for Smart System, Robotics Research Laboratory for Extreme Environments, Advanced Institutes of Convergence Technology, Suwon, Republic of Korea
- * E-mail:
| |
Collapse
|
18
|
Shah C, Banda B, Chandra R, Vicini F. Minimizing toxicity in breast irradiation. Expert Rev Anticancer Ther 2017; 17:187-189. [PMID: 28110574 DOI: 10.1080/14737140.2017.1285231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chirag Shah
- a Department of Radiation Oncology , Cleveland Clinic, Taussig Cancer Institute , Cleveland , OH , USA
| | - Bhanu Banda
- a Department of Radiation Oncology , Cleveland Clinic, Taussig Cancer Institute , Cleveland , OH , USA.,b Northeast Ohio Medical University , Rootstown , OH , USA
| | - Rohit Chandra
- a Department of Radiation Oncology , Cleveland Clinic, Taussig Cancer Institute , Cleveland , OH , USA.,b Northeast Ohio Medical University , Rootstown , OH , USA
| | - Frank Vicini
- c 21st Century Oncology, Michigan Healthcare Professionals , Farmington Hills , MI , USA
| |
Collapse
|
19
|
Lloyd SAM, Gagne IM, Bazalova-Carter M, Zavgorodni S. Measured and Monte Carlo simulated electron backscatter to the monitor chamber for the Varian TrueBeam Linac. Phys Med Biol 2016; 61:8779-8793. [PMID: 27897141 DOI: 10.1088/1361-6560/61/24/8779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To accurately simulate therapeutic electron beams using Monte Carlo methods, backscatter from jaws into the monitor chamber must be accounted for via the backscatter factor, S b. Measured and simulated values of S b for the TrueBeam are investigated. Two approaches for measuring S b are presented. Both require service mode operation with the dose and pulse forming networking servos turned off in order to assess changes in dose rate with field size. The first approach samples an instantaneous dose rate, while the second approach times the delivery of a fixed number of monitor units to assess dose rate. Dose rates were measured for 6, 12 and 20 MeV electrons for jaw- or MLC-shaped apertures between [Formula: see text] and [Formula: see text] cm2. The measurement techniques resulted in values of S b that agreed within 0.21% for square and asymmetric fields collimated by the jaws. Measured values of S b were used to calculate the forward dose component in a virtual monitor chamber using BEAMnrc. Based on this forward component, simulated values of S b were calculated and compared to measurement and Varian's VirtuaLinac simulations. BEAMnrc results for jaw-shaped fields agreed with measurements and with VirtuaLinac simulations within 0.2%. For MLC-shaped fields, the respective measurement techniques differed by as much as 0.41% and BEAMnrc results differed with measurement by as much as 0.4%, however, all measured and simulated values agreed within experimental uncertainty. Measurement sensitivity was not sufficient to capture the small backscatter effect due to the MLC, and Monte Carlo predicted backscatter from the MLC to be no more than 0.3%. Backscatter from the jaws changed the electron dose rate by up to 2.6%. This reinforces the importance of including a backscatter factor in simulations of electron fields shaped with secondary collimating jaws, but presents the option of ignoring it when jaws are retracted and collimation is done with the MLC.
Collapse
Affiliation(s)
- Samantha A M Lloyd
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | | | | | | |
Collapse
|
20
|
Lloyd SAM, Gagne IM, Bazalova-Carter M, Zavgorodni S. Validation of Varian TrueBeam electron phase-spaces for Monte Carlo simulation of MLC-shaped fields. Med Phys 2016; 43:2894-2903. [PMID: 27277038 DOI: 10.1118/1.4949000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE This work evaluates Varian's electron phase-space sources for Monte Carlo simulation of the TrueBeam for modulated electron radiation therapy (MERT) and combined, modulated photon and electron radiation therapy (MPERT) where fields are shaped by the photon multileaf collimator (MLC) and delivered at 70 cm SSD. METHODS Monte Carlo simulations performed with EGSnrc-based BEAMnrc/DOSXYZnrc and penelope-based PRIMO are compared against diode measurements for 5 × 5, 10 × 10, and 20 × 20 cm(2) MLC-shaped fields delivered with 6, 12, and 20 MeV electrons at 70 cm SSD (jaws set to 40 × 40 cm(2)). Depth dose curves and profiles are examined. In addition, EGSnrc-based simulations of relative output as a function of MLC-field size and jaw-position are compared against ion chamber measurements for MLC-shaped fields between 3 × 3 and 25 × 25 cm(2) and jaw positions that range from the MLC-field size to 40 × 40 cm(2). RESULTS Percent depth dose curves generated by BEAMnrc/DOSXYZnrc and PRIMO agree with measurement within 2%, 2 mm except for PRIMO's 12 MeV, 20 × 20 cm(2) field where 90% of dose points agree within 2%, 2 mm. Without the distance to agreement, differences between measurement and simulation are as large as 7.3%. Characterization of simulated dose parameters such as FWHM, penumbra width and depths of 90%, 80%, 50%, and 20% dose agree within 2 mm of measurement for all fields except for the FWHM of the 6 MeV, 20 × 20 cm(2) field which falls within 2 mm distance to agreement. Differences between simulation and measurement exist in the profile shoulders and penumbra tails, in particular for 10 × 10 and 20 × 20 cm(2) fields of 20 MeV electrons, where both sets of simulated data fall short of measurement by as much as 3.5%. BEAMnrc/DOSXYZnrc simulated outputs agree with measurement within 2.3% except for 6 MeV MLC-shaped fields. Discrepancies here are as great as 5.5%. CONCLUSIONS TrueBeam electron phase-spaces available from Varian have been implemented in two distinct Monte Carlo simulation packages to produce dose distributions and outputs that largely reflect measurement. Differences exist in the profile shoulders and penumbra tails for the 20 MeV phase-space off-axis and in the outputs for the 6 MeV phase-space.
Collapse
Affiliation(s)
- Samantha A M Lloyd
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8P 3P6 5C2, Canada
| | - Isabelle M Gagne
- Department of Medical Physics, BC Cancer Agency-Vancouver Island Centre, Victoria, British Columbia V8R 6V5, Canada and Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6 5C2, Canada
| | - Magdalena Bazalova-Carter
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6 5C2, Canada
| | - Sergei Zavgorodni
- Department of Medical Physics, BC Cancer Agency-Vancouver Island Centre, Victoria, British Columbia V8R 6V5, Canada and Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6 5C2, Canada
| |
Collapse
|
21
|
Dosimetric Predictors of Hypothyroidism After Radical Intensity-modulated Radiation Therapy for Non-metastatic Nasopharyngeal Carcinoma. Clin Oncol (R Coll Radiol) 2016; 28:e52-60. [PMID: 27235379 DOI: 10.1016/j.clon.2016.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/25/2016] [Accepted: 04/06/2016] [Indexed: 11/23/2022]
Abstract
AIMS To investigate dosimetric predictors of hypothyroidism after radical intensity-modulated radiation therapy (IMRT) for non-metastatic nasopharyngeal carcinoma (NPC). MATERIALS AND METHODS Patients with non-metastatic NPC treated with radical IMRT from 2008 to 2013 were reviewed. Serum thyroid function tests before and after IMRT were regularly monitored. Univariable and multivariable analyses were carried out for predictors of biochemical and clinical hypothyroidism. RESULTS In total, 149 patients were recruited. After a median follow-up duration of 3.1 years, 33 (22.1%) and 21 (14.1%) patients developed biochemical and clinical hypothyroidism, respectively. Eight (24.2%) patients who had biochemical hypothyroidism developed clinical hypothyroidism later. Univariable and multivariable analyses revealed that the volume of the thyroid (P=0.002, multivariable), VS60 (the absolute thyroid volume spared from 60 Gy or less) (P<0.001, multivariable) and VS45 (P<0.001, multivariable) of the thyroid were significant predictors of biochemical hypothyroidism. The freedom from biochemical hypothyroidism was longer for those whose VS60 ≥ 10 cm(3) (mean 90.9 versus 62.6 months; P<0.001) and VS45 ≥ 5 cm(3) (mean 91.9 versus 65.2 months; P=0.001). Similarly multivariable analyses revealed that VS60 (P=0.001) and VS45 (P=0.003) were significant predictors of clinical hypothyroidism. The freedom from clinical hypothyroidism was longer for those whose VS60 ≥ 10 cm(3) (91.5 versus 73.3 months; P=0.002) and VS45 ≥ 5 cm(3) (91.5 versus 75.9 months; P=0.007). CONCLUSIONS VS60 and VS45 of the thyroid should be considered important dose constraints against hypothyroidism without compromising target coverage during IMRT optimisation for NPC.
Collapse
|
22
|
Taylor C, Kirby A. Cardiac Side-effects From Breast Cancer Radiotherapy. Clin Oncol (R Coll Radiol) 2015; 27:621-9. [DOI: 10.1016/j.clon.2015.06.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/31/2015] [Accepted: 06/06/2015] [Indexed: 11/15/2022]
|
23
|
Assessing radiation exposure of the left anterior descending artery, heart and lung in patients with left breast cancer: A dosimetric comparison between multicatheter accelerated partial breast irradiation and whole breast external beam radiotherapy. Radiother Oncol 2015; 117:459-66. [PMID: 26328940 DOI: 10.1016/j.radonc.2015.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/20/2015] [Accepted: 08/09/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND PURPOSE This study aims to quantify dosimetric reduction to the left anterior descending (LAD) artery, heart and lung when comparing whole breast external beam radiotherapy (WBEBRT) with multicatheter accelerated partial breast irradiation (MCABPI) for early stage left breast cancer. MATERIALS AND METHODS Planning CT data sets of 15 patients with left breast cancer receiving multicatheter brachytherapy post breast conserving surgery were used to create two independent treatment plans - WBEBRT prescribed to 50 Gy/25 fractions and MCABPI prescribed to 34 Gy/10 fractions. Dose parameters for (i) LAD artery, (ii) heart, and (iii) ipsilateral lung were calculated and compared between the two treatment modalities. RESULTS After adjusting for Equivalent Dose in 2 Gy fractions(EQD2), and comparing MCAPBI with WBEBRT, the largest dose reduction was for the LAD artery whose mean dose differed by a factor of 7.7, followed by the ipsilateral lung and heart with a factor of 4.6 and 2.6 respectively. Compared to WBEBRT, the mean MCAPBI LAD was significantly lower compared to WBEBRT (6.0 Gy vs 45.9 Gy; p<0.01). Mean MCAPBI heart D(0.1cc) (representing the dose received by the most highly exposed 0.1 cc of the risk organ, i.e. the dose peak) was significantly lower (16.3 Gy vs 50.6 Gy; p<0.01). Likewise, the mean heart dose (MHD) was significantly lower (2.3 Gy vs 6.0 Gy; p<0.01). Peak dose and mean lung dose (MLD) for ipsilateral lung was also lower for MCAPBI compared to WBEBRT (Peak dose: 22.2 Gy vs 52.0 Gy; p<0.01; MLD: 2.3 Gy vs 10.7 Gy; p<0.01). CONCLUSION Compared to WBEBRT, MCAPBI showed a significant reduction in radiation dose for the LAD, heart and lung. This may translate into better cardiac and pulmonary toxicities for patients undergoing MCAPBI.
Collapse
|
24
|
Yoganathan SA, Das KJM, Raj DG, Kumar S. Dosimetric verification of gated delivery of electron beams using a 2D ion chamber array. J Med Phys 2015; 40:68-73. [PMID: 26170552 PMCID: PMC4478647 DOI: 10.4103/0971-6203.158671] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 12/25/2022] Open
Abstract
The purpose of this study was to compare the dosimetric characteristics; such as beam output, symmetry and flatness between gated and non-gated electron beams. Dosimetric verification of gated delivery was carried for all electron beams available on Varian CL 2100CD medical linear accelerator. Measurements were conducted for three dose rates (100 MU/min, 300 MU/min and 600 MU/min) and two respiratory motions (breathing period of 4s and 8s). Real-time position management (RPM) system was used for the gated deliveries. Flatness and symmetry values were measured using Imatrixx 2D ion chamber array device and the beam output was measured using plane parallel ion chamber. These detector systems were placed over QUASAR motion platform which was programmed to simulate the respiratory motion of target. The dosimetric characteristics of gated deliveries were compared with non-gated deliveries. The flatness and symmetry of all the evaluated electron energies did not differ by more than 0.7 % with respect to corresponding non-gated deliveries. The beam output variation of gated electron beam was less than 0.6 % for all electron energies except for 16 MeV (1.4 %). Based on the results of this study, it can be concluded that Varian CL2100 CD is well suitable for gated delivery of non-dynamic electron beams.
Collapse
Affiliation(s)
- S A Yoganathan
- Department of Radiotherapy, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - K J Maria Das
- Department of Radiotherapy, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - D Gowtham Raj
- Department of Radiotherapy, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Shaleen Kumar
- Department of Radiotherapy, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
25
|
Combined photon-electron beams in the treatment of the supraclavicular lymph nodes in breast cancer: A novel technique that achieves adequate coverage while reducing lung dose. Med Dosim 2015; 40:210-7. [PMID: 25595492 DOI: 10.1016/j.meddos.2014.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 11/05/2014] [Accepted: 12/03/2014] [Indexed: 12/25/2022]
Abstract
Radiation pneumonitis is a well-documented side effect of radiation therapy for breast cancer. The purpose of this study was to compare combined photon-electron, photon-only, and electron-only plans in the radiation treatment of the supraclavicular lymph nodes. In total, 13 patients requiring chest wall and supraclavicular nodal irradiation were planned retrospectively using combined photon-electron, photon-only, and electron-only supraclavicular beams. A dose of 50Gy over 25 fractions was prescribed. Chest wall irradiation parameters were fixed for all plans. The goal of this planning effort was to cover 95% of the supraclavicular clinical target volume (CTV) with 95% of the prescribed dose and to minimize the volume receiving ≥ 105% of the dose. Comparative end points were supraclavicular CTV coverage (volume covered by the 95% isodose line), hotspot volume, maximum radiation dose, contralateral breast dose, mean total lung dose, total lung volume percentage receiving at least 20 Gy (V(20 Gy)), heart volume percentage receiving at least 25 Gy (V(25 Gy)). Electron and photon energies ranged from 8 to 18 MeV and 4 to 6 MV, respectively. The ratio of photon-to-electron fractions in combined beams ranged from 5:20 to 15:10. Supraclavicular nodal coverage was highest in photon-only (mean = 96.2 ± 3.5%) followed closely by combined photon-electron (mean = 94.2 ± 2.5%) and lowest in electron-only plans (mean = 81.7 ± 14.8%, p < 0.001). The volume of tissue receiving ≥ 105% of the prescription dose was higher in the electron-only (mean = 69.7 ± 56.1 cm(3)) as opposed to combined photon-electron (mean = 50.8 ± 40.9 cm(3)) and photon-only beams (mean = 32.2 ± 28.1 cm(3), p = 0.114). Heart V(25 Gy) was not statistically different among the plans (p = 0.999). Total lung V(20 Gy) was lowest in electron-only (mean = 10.9 ± 2.3%) followed by combined photon-electron (mean = 13.8 ± 2.3%) and highest in photon-only plans (mean = 16.2 ± 3%, p < 0.001). As expected, photon-only plans demonstrated the highest target coverage and total lung V(20 Gy). The superiority of electron-only beams, in terms of decreasing lung dose, is set back by the dosimetric hotspots associated with such plans. Combined photon-electron treatment is a feasible technique for supraclavicular nodal irradiation and results in adequate target coverage, acceptable dosimetric hotspot volume, and slightly reduced lung dose.
Collapse
|
26
|
Henzen D, Manser P, Frei D, Volken W, Neuenschwander H, Born EJ, Joosten A, Lössl K, Aebersold DM, Chatelain C, Stampanoni MFM, Fix MK. Beamlet based direct aperture optimization for MERT using a photon MLC. Med Phys 2014; 41:121711. [DOI: 10.1118/1.4901638] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
27
|
Rudat V, Nour A, Alaradi AA, Mohamed A, Altuwaijri S. In vivo surface dose measurement using GafChromic film dosimetry in breast cancer radiotherapy: comparison of 7-field IMRT, tangential IMRT and tangential 3D-CRT. Radiat Oncol 2014; 9:156. [PMID: 25022449 PMCID: PMC4120005 DOI: 10.1186/1748-717x-9-156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/09/2014] [Indexed: 01/03/2023] Open
Abstract
Purpose The purpose of this study was to compare the surface dose of 7-field IMRT (7 F-IMRT), tangential beam IMRT (TB-IMRT), and tangential beam 3D-CRT (3D-CRT) of breast cancer patients receiving adjuvant radiotherapy by means of in vivo GafChromic film dosimetry. Material and methods Breast cancer patients receiving adjuvant radiotherapy of the whole breast or the chest wall were eligible for the study. Study patients were treated with a treatment plan using two different radiotherapy techniques (first patient series, 3D-CRT followed by TB-IMRT; second patient series, TB-IMRT followed by 7 F-IMRT). The surface dose was evaluated on three consecutive treatment fractions per radiotherapy technique using in vivo GafChromic film dosimetry. The paired t-test was used to assess the difference of in vivo GafChromic film readings or calculated plan parameters of the compared pairs of radiation techniques for statistical significance. Results Forty-five unselected breast cancer patients were analysed in this study. 7 F-IMRT significantly reduced the surface dose compared to TB-IMRT. Differences were greatest in the central and lateral breast or chest wall region and amounted to a dose reduction of -11.8% to -18.8%. No significant difference of the surface dose was observed between TB-IMRT and 3D-CRT. A corresponding observation was obtained for the calculated skin dose derived from dose-volume histograms. Conclusions In adjuvant breast cancer radiotherapy, 7 F-IMRT offers a significantly reduced surface dose compared to TB-IMRT or 3D-CRT.
Collapse
Affiliation(s)
- Volker Rudat
- Department of Radiation Oncology, Saad Specialist Hospital, P,O, Box 30353, Al Khobar 31952, Saudi Arabia.
| | | | | | | | | |
Collapse
|
28
|
Connell T, Alexander A, Papaconstadopoulos P, Serban M, Devic S, Seuntjens J. Delivery validation of an automated modulated electron radiotherapy plan. Med Phys 2014; 41:061715. [DOI: 10.1118/1.4876297] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
29
|
Shah C, Badiyan S, Berry S, Khan AJ, Goyal S, Schulte K, Nanavati A, Lynch M, Vicini FA. Cardiac dose sparing and avoidance techniques in breast cancer radiotherapy. Radiother Oncol 2014; 112:9-16. [PMID: 24813095 DOI: 10.1016/j.radonc.2014.04.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/06/2014] [Accepted: 04/18/2014] [Indexed: 12/12/2022]
Abstract
Breast cancer radiotherapy represents an essential component in the overall management of both early stage and locally advanced breast cancer. As the number of breast cancer survivors has increased, chronic sequelae of breast cancer radiotherapy become more important. While recently published data suggest a potential for an increase in cardiac events with radiotherapy, these studies do not consider the impact of newer radiotherapy techniques commonly utilized. Therefore, the purpose of this review is to evaluate cardiac dose sparing techniques in breast cancer radiotherapy. Current options for cardiac protection/avoidance include (1) maneuvers that displace the heart from the field such as coordinating the breathing cycle or through prone patient positioning, (2) technological advances such as intensity modulated radiation therapy (IMRT) or proton beam therapy (PBT), and (3) techniques that treat a smaller volume around the lumpectomy cavity such as accelerated partial breast irradiation (APBI), or intraoperative radiotherapy (IORT). While these techniques have shown promise dosimetrically, limited data on late cardiac events exist due to the difficulties of long-term follow up. Future studies are required to validate the efficacy of cardiac dose sparing techniques and may use surrogates for cardiac events such as biomarkers or perfusion imaging.
Collapse
Affiliation(s)
- Chirag Shah
- Department of Radiation Oncology, Summa Health System, Akron, United States
| | - Shahed Badiyan
- Department of Radiation Oncology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, United States
| | - Sameer Berry
- Department of Radiation Oncology, Summa Health System, Akron, United States
| | - Atif J Khan
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey & Rutgers Robert Wood Johnson Medical School, New Brunswick, United States
| | - Sharad Goyal
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey & Rutgers Robert Wood Johnson Medical School, New Brunswick, United States
| | - Kevin Schulte
- Department of Radiation Oncology, Summa Health System, Akron, United States
| | - Anish Nanavati
- Department of Oncology, Georgetown University School of Medicine, Washington DC United States
| | - Melanie Lynch
- Department of Radiation Oncology, Summa Health System, Akron, United States
| | - Frank A Vicini
- Michigan Healthcare Professionals/21st Century Oncology, Farmington Hills, United States.
| |
Collapse
|
30
|
Connell T, Seuntjens J. Design and validation of novel scattering foils for modulated electron radiation therapy. Phys Med Biol 2014; 59:2381-91. [DOI: 10.1088/0031-9155/59/10/2381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
Henzen D, Manser P, Frei D, Volken W, Neuenschwander H, Born EJ, Lössl K, Aebersold DM, Stampanoni MFM, Fix MK. Forward treatment planning for modulated electron radiotherapy (MERT) employing Monte Carlo methods. Med Phys 2014; 41:031712. [DOI: 10.1118/1.4866227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
32
|
Henzen D, Manser P, Frei D, Volken W, Neuenschwander H, Born EJ, Vetterli D, Chatelain C, Stampanoni MFM, Fix MK. Monte Carlo based beam model using a photon MLC for modulated electron radiotherapy. Med Phys 2014; 41:021714. [DOI: 10.1118/1.4861711] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
33
|
Jin L, Eldib A, Li J, Emam I, Fan J, Wang L, Ma CM. Measurement and Monte Carlo simulation for energy- and intensity-modulated electron radiotherapy delivered by a computer-controlled electron multileaf collimator. J Appl Clin Med Phys 2014; 15:4506. [PMID: 24423848 PMCID: PMC5711222 DOI: 10.1120/jacmp.v15i1.4506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 09/25/2013] [Accepted: 09/15/2013] [Indexed: 11/23/2022] Open
Abstract
The dosimetric advantage of modulated electron radiotherapy (MERT) has been explored by many investigators and is considered to be an advanced radiation therapy technique in the utilization of electrons. A computer‐controlled electron multileaf collimator (MLC) prototype, newly designed to be added onto a Varian linac to deliver MERT, was investigated both experimentally and by Monte Carlo simulations. Four different electron energies, 6, 9, 12, and 15 MeV, were employed for this investigation. To ensure that this device was capable of delivering the electron beams properly, measurements were performed to examine the electron MLC (eMLC) leaf leakage and to determine the appropriate jaw positioning for an eMLC‐shaped field in order to eliminate a secondary radiation peak that could otherwise appear outside of an intended radiation field in the case of inappropriate jaw positioning due to insufficient radiation blockage from the jaws. Phase space data were obtained by Monte Carlo (MC) simulation and recorded at the plane just above the jaws for each of the energies (6, 9, 12, and 15 MeV). As an input source, phase space data were used in MC dose calculations for various sizes of the eMLC shaped field (10×10 cm2, 3.4×3.4 cm2, and 2×2 cm2) with respect to a water phantom at source‐to‐surface distance (SSD)=94cm, while the jaws, eMLC leaves, and some accessories associated with the eMLC assembly as well were modeled as modifiers in the calculations. The calculated results were then compared with measurements from a water scanning system. The results showed that jaw settings with 5 mm margins beyond the field shaped by the eMLC were appropriate to eliminate the secondary radiation peak while not widening the beam penumbra; the eMLC leaf leakage measurements ranged from 0.3% to 1.8% for different energies based on in‐phantom measurements, which should be quite acceptable for MERT. Comparisons between MC dose calculations and measurements showed agreement within 1%/1mm based on percentage depth doses (PDDs) and off‐axis dose profiles for a range of field sizes for each of the electron energies. Our current work has demonstrated that the eMLC and other relevant components in the linac were correctly modeled and simulated via our in‐house MC codes, and the eMLC is capable of accurately delivering electron beams for various eMLC‐shaped field sizes with appropriate jaw settings. In the next stage, patient‐specific verification with a full MERT plan should be performed. PACS number: 87.55.ne
Collapse
|
34
|
Rodrigues A, Yin FF, Wu Q. Dynamic electron arc radiotherapy (DEAR): a feasibility study. Phys Med Biol 2013; 59:327-45. [DOI: 10.1088/0031-9155/59/2/327] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Swanson T, Grills IS, Ye H, Entwistle A, Teahan M, Letts N, Yan D, Duquette J, Vicini FA. Six-year experience routinely using moderate deep inspiration breath-hold for the reduction of cardiac dose in left-sided breast irradiation for patients with early-stage or locally advanced breast cancer. Am J Clin Oncol 2013; 36:24-30. [PMID: 22270108 PMCID: PMC3375337 DOI: 10.1097/coc.0b013e31823fe481] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Moderate deep inspiration breath-hold (mDIBH), using an Active Breathing Control device, has been used in our clinic since 2002 to reduce cardiac dose for patients receiving left-sided breast irradiation. We report our routine use of the mDIBH technique in clinically localized breast cancer, treated to the intact breast, reconstructed breast, or chest wall. MATERIALS AND METHODS Ninety-nine patients with left-sided breast cancer were evaluated for Active Breathing Control treatment, of which, 87 patients were treated with mDIBH. Plans for both the free-breathing (FB) and mDIBH computed tomography scans were evaluated. Dose-volume histograms (DVHs) were analyzed for the heart and ipsilateral lung, comparing results for mDIBH versus FB plans. RESULTS Eighty-seven patients were included for analysis. Of those, 66% received adjuvant chemotherapy with cardiotoxic agents. The mean dose for the whole breast was 47.6 Gy. There was a statistically significant decrease in all DVH parameters evaluated, favoring the delivery of mDIBH over FB plans. mDIBH plans significantly reduced cardiac mean dose (4.23 vs. 2.54 Gy; P<0.001), a relative reduction of 40%. In addition, there were significant reductions in all other heart parameters evaluated (ie, volume of heart treated, V30, V25, V20, V15, V10, and V5). mDIBH also significantly reduced lung dose, including a reduction of the left lung mean dose (9.08 vs. 7.86 Gy; P<0.001), a relative reduction of 13%, as well as significant reduction of all lung DVH parameters evaluated. CONCLUSIONS To date, this series represents the largest experience utilizing mDIBH to reduce cardiac irradiation during left-sided breast cancer treatment. Statistically significant reductions in all heart and lung DVH parameters were achieved with mDIBH over FB plans. mDIBH, for the treatment of left-sided breast cancer, is a proven technique for reducing cardiac dose that may lead to reduced cardiotoxicity and can be routinely integrated into the clinic.
Collapse
Affiliation(s)
- Todd Swanson
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Evaluation of organ-specific peripheral doses after 2-dimensional, 3-dimensional and hybrid intensity modulated radiation therapy for breast cancer based on Monte Carlo and convolution/superposition algorithms: Implications for secondary cancer risk assessment. Radiother Oncol 2013; 106:33-41. [DOI: 10.1016/j.radonc.2012.11.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 10/10/2012] [Accepted: 11/18/2012] [Indexed: 11/18/2022]
|
37
|
Li S, DeWeese T, Movsas B, Liu D, Frassica D, Kim J, Chen Q, Walker E. Initial validation and clinical experience with 3D optical-surface-guided whole breast irradiation of breast cancer. Technol Cancer Res Treat 2012; 11:57-68. [PMID: 22181332 DOI: 10.7785/tcrt.2012.500235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We had introduced 3D optical surface-guided radiotherapy (SGRT) of the breast cancer (BC). We then initiated the feasibility, accuracy, and precision studies of stereovision in detection of any breast displacement through the course of treatment for total thirty breasts undertaken whole breast irradiation (WBI). In the SGRT, CT-based plan data were parsed into an in-house computer program through which the reference surfaces were generated in 3D video format. When patients were positioned on treatment Tables, real-time stereovisions were rapidly acquired while the live surface tracking shown steady thorax motion. The real-time surface images were automatically aligned with the reference surface and detected shape and location changes of the breast were online corrected through the Table and beam adjustments. Accumulated dose to each patient was computed according to the frequency distribution of the measured breast locations during beam on time. Application of SGRT had diminished large skin-marking errors of > 5-mm and daily breast-setup errors of >10-mm that occurred on half of cases. Accuracy (mean) and precision (two standard deviations) of the breast displacements across the tangential field edges in the (U, V) directions were improved from (-0.5 ± 8.8, 2.2 ± 10.8) mm in conventional setup to (0.4 ± 4.6, 0.7 ± 4.4) mm in the final position while intra-fractional motion contributed only (0.1 ± 2.8, 0.0 ± 2.2) mm in free breathing. Dose uniformity and coverage to targets had both been increased by up to 10% and the lung or heart intersections have been decreased by half of those volumes if they were irradiated at the initial positions. SGRT of BC appears to be feasible regardless of skin tones, as fast as a snapshot for 3D imaging, and very accurate and precise for daily setup of flexible breast targets. Importantly, the technique allows us to verify the breast shape and position during beam-on time.
Collapse
Affiliation(s)
- S Li
- Department of Radiation Oncology and Molecular Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Alexander A, Soisson E, Renaud MA, Seuntjens J. Direct aperture optimization for FLEC-based MERT and its application in mixed beam radiotherapy. Med Phys 2012; 39:4820-31. [DOI: 10.1118/1.4736423] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
39
|
Rosca F. A hybrid electron and photon IMRT planning technique that lowers normal tissue integral patient dose using standard hardware. Med Phys 2012; 39:2964-71. [PMID: 22755681 DOI: 10.1118/1.4709606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Florin Rosca
- Department of Radiation Oncology, Massachusetts General Hospital, Danvers, MA 01923, USA.
| |
Collapse
|
40
|
Connell T, Alexander A, Evans M, Seuntjens J. An experimental feasibility study on the use of scattering foil free beams for modulated electron radiotherapy. Phys Med Biol 2012; 57:3259-72. [PMID: 22572043 DOI: 10.1088/0031-9155/57/11/3259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The potential benefit of using scattering foil free beams for delivery of modulated electron radiotherapy is investigated in this work. Removal of the scattering foil from the beamline showed a measured bremsstrahlung tail dose reduction just beyond R(p) by a factor of 12.2, 6.9, 7.4, 7.4 and 8.3 for 6, 9, 12, 16 and 20 MeV beams respectively for 2 × 2 cm(2) fields defined on-axis when compared to the clinical beamline. Monte Carlo simulations were matched to measured data through careful tuning of source parameters and the modification of certain accelerator components beyond the manufacturer's specifications. An accelerator model based on the clinical beamline and one with the scattering foil removed were imported into a Monte Carlo-based treatment planning system (McGill Monte Carlo Treatment Planning). A treatment planning study was conducted on a test phantom consisting of a PTV and two distal organs at risk (OAR) by comparing a plan using the clinical beamline to a plan using a scattering foil free beamline. A DVH comparison revealed that for quasi-identical target coverage, the volume of each OAR receiving a given dose was reduced, thus reducing the dose deposited in healthy tissue.
Collapse
Affiliation(s)
- T Connell
- Medical Physics Unit, McGill University, Montreal General Hospital, Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
41
|
Palma BA, Sánchez AU, Salguero FJ, Arráns R, Sánchez CM, Zurita AW, Hermida MIR, Leal A. Combined modulated electron and photon beams planned by a Monte-Carlo-based optimization procedure for accelerated partial breast irradiation. Phys Med Biol 2012; 57:1191-202. [DOI: 10.1088/0031-9155/57/5/1191] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Chakarova R, Gustafsson M, Bäck A, Drugge N, Palm Å, Lindberg A, Berglund M. Superficial dose distribution in breast for tangential radiation treatment, Monte Carlo evaluation of Eclipse algorithms in case of phantom and patient geometries. Radiother Oncol 2012; 102:102-7. [DOI: 10.1016/j.radonc.2011.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 06/08/2011] [Accepted: 06/12/2011] [Indexed: 10/18/2022]
|
43
|
Blasi O, Fontenot JD, Fields RS, Gibbons JP, Hogstrom KR. Preliminary comparison of helical tomotherapy and mixed beams of unmodulated electrons and intensity modulated radiation therapy for treating superficial cancers of the parotid gland and nasal cavity. Radiat Oncol 2011; 6:178. [PMID: 22204477 PMCID: PMC3274488 DOI: 10.1186/1748-717x-6-178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 12/28/2011] [Indexed: 11/18/2022] Open
Abstract
Background and Purpose To investigate combining unmodulated electron beams with intensity-modulated radiation therapy to improve dose distributions for superficial head and neck cancers, and to compare mixed beam plans with helical tomotherapy. Materials and methods Mixed beam and helical tomotherapy dose plans were developed for two patients with parotid gland tumors and two patients with nasal cavity tumors. Mixed beam plans consisted of various weightings of a enface electron beam and IMRT, which was optimized after calculation of the electron dose to compensate for heterogeneity in the electron dose distribution within the target volume. Results Helical tomotherapy plans showed dose conformity and homogeneity in the target volume that was equal to or better than the mixed beam plans. Electron-only plans tended to show the lowest doses to normal tissues, but with markedly worse dose conformity and homogeneity than in the other plans. However, adding a 20% IMRT dose fraction (i.e., IMRT:electron weighting = 1:4) to the electron plan restored target conformity and homogeneity to values comparable to helical tomotherapy plans, while maintaining lower normal tissue dose. Conclusions Mixed beam treatments offer some dosimetric advantages over IMRT or helical tomotherapy for target depths that do not exceed the useful range of the electron beam. Adding a small IMRT component (e.g., IMRT:electron weighting = 1:4) to electron beam plans markedly improved target dose homogeneity and conformity for the cases examined in this study.
Collapse
Affiliation(s)
- Olivier Blasi
- Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA, USA
| | | | | | | | | |
Collapse
|
44
|
O'Shea TP, Ge Y, Foley MJ, Faddegon BA. Characterization of an extendable multi-leaf collimator for clinical electron beams. Phys Med Biol 2011; 56:7621-38. [PMID: 22086242 DOI: 10.1088/0031-9155/56/23/018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An extendable x-ray multi-leaf collimator (eMLC) is investigated for collimation of electron beams on a linear accelerator. The conventional method of collimation using an electron applicator is impractical for conformal, modulated and mixed beam therapy techniques. An eMLC would allow faster, more complex treatments with potential for reduction in dose to organs-at-risk and critical structures. The add-on eMLC was modelled using the EGSnrc Monte Carlo code and validated against dose measurements at 6-21 MeV with the eMLC mounted on a Siemens Oncor linear accelerator at 71.6 and 81.6 cm source-to-collimator distances. Measurements and simulations at 8.4-18.4 cm airgaps showed agreement of 2%/2 mm. The eMLC dose profiles and percentage depth dose curves were compared with standard electron applicator parameters. The primary differences were a wider penumbra and up to 4.2% reduction in the build-up dose at 0.5 cm depth, with dose normalized on the central axis. At 90 cm source-to-surface distance (SSD)--relevant to isocentric delivery--the applicator and eMLC penumbrae agreed to 0.3 cm. The eMLC leaves, which were 7 cm thick, contributed up to 6.3% scattered electron dose at the depth of maximum dose for a 10 × 10 cm2 field, with the thick leaves effectively eliminating bremsstrahlung leakage. A Monte Carlo calculated wedge shaped dose distribution generated with all six beam energies matched across the maximum available eMLC field width demonstrated a therapeutic (80% of maximum dose) depth range of 2.1-6.8 cm. Field matching was particularly challenging at lower beam energies (6-12 MeV) due to the wider penumbrae and angular distribution of electron scattering. An eMLC isocentric electron breast boost was planned and compared with the conventional applicator fixed SSD plan, showing similar target coverage and dose to critical structures. The mean dose to the target differed by less than 2%. The low bremsstrahlung dose from the 7 cm thick MLC leaves had the added advantage of reducing the mean dose to the whole heart. Isocentric delivery using an extendable eMLC means that treatment room re-entry and repositioning the patient for SSD set-up is unnecessary. Monte Carlo simulation can accurately calculate the fluence below the eMLC and subsequent patient dose distributions. The eMLC generates similar dose distributions to the standard electron applicator but provides a practical method for more complex electron beam delivery.
Collapse
Affiliation(s)
- Tuathan P O'Shea
- School of Physics, National University of Ireland Galway, University Road, Galway, Ireland
| | | | | | | |
Collapse
|
45
|
Mosalaei H, Karnas S, Shah S, Van Doodewaard S, Foster T, Chen J. The use of intensity-modulated radiation therapy photon beams for improving the dose uniformity of electron beams shaped with MLC. Med Dosim 2011; 37:76-83. [PMID: 21925867 DOI: 10.1016/j.meddos.2011.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 01/05/2011] [Accepted: 01/13/2011] [Indexed: 11/30/2022]
Abstract
Electrons are ideal for treating shallow tumors and sparing adjacent normal tissue. Conventionally, electron beams are collimated by cut-outs that are time-consuming to make and difficult to adapt to tumor shape throughout the course of treatment. We propose that electron cut-outs can be replaced using photon multileaf collimator (MLC). Two major problems of this approach are that the scattering of electrons causes penumbra widening because of a large air gap, and available commercial treatment planning systems (TPSs) do not support MLC-collimated electron beams. In this study, these difficulties were overcome by (1) modeling electron beams collimated by photon MLC for a commercial TPS, and (2) developing a technique to reduce electron beam penumbra by adding low-energy intensity-modulated radiation therapy (IMRT) photons (4 MV). We used blocks to simulate MLC shielding in the TPS. Inverse planning was used to optimize boost photon beams. This technique was applied to a parotid and a central nervous system (CNS) clinical case. Combined photon and electron plans were compared with conventional plans and verified using ion chamber, film, and a 2D diode array. Our studies showed that the beam penumbra for mixed beams with 90 cm source to surface distance (SSD) is comparable with electron applicators and cut-outs at 100 cm SSD. Our mixed-beam technique yielded more uniform dose to the planning target volume and lower doses to various organs at risk for both parotid and CNS clinical cases. The plans were verified with measurements, with more than 95% points passing the gamma criteria of 5% in dose difference and 5 mm for distance to agreement. In conclusion, the study has demonstrated the feasibility and potential advantage of using photon MLC to collimate electron beams with boost photon IMRT fields.
Collapse
Affiliation(s)
- Homeira Mosalaei
- London Regional Cancer Program, London Health Science Centre, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
46
|
Alexander A, Soisson E, Hijal T, Sarfehnia A, Seuntjens J. Comparison of modulated electron radiotherapy to conventional electron boost irradiation and volumetric modulated photon arc therapy for treatment of tumour bed boost in breast cancer. Radiother Oncol 2011; 100:253-8. [PMID: 21741103 DOI: 10.1016/j.radonc.2011.05.081] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE To compare few leaf electron collimator (FLEC)-based modulated electron radiotherapy (MERT) to conventional direct electron (DE) and volumetric modulated photon arc therapy (VMAT) for the treatment of tumour bed boost in breast cancer. MATERIALS AND METHODS Fourteen patients with breast cancer treated by lumpectomy and requiring post-operative whole breast radiotherapy with tumour bed boost were planned retrospectively using conventional DE, VMAT and FLEC-based MERT. The planning goal was to deliver 10Gy to at least 95% of the tumour bed volume. Dosimetry parameters for all techniques were compared. RESULTS Dose evaluation volume (DEV) coverage and homogeneity were best for MERT (D(98)=9.77Gy, D(2)=11.03Gy) followed by VMAT (D(98)=9.56Gy, D(2)=11.07Gy) and DE (D(98)=9.81Gy, D(2)=11.52Gy). Relative to the DE plans, the MERT plans predicted a reduction of 35% in mean breast dose (p<0.05), 54% in mean lung dose (p<0.05) and 46% in mean body dose (p<0.05). Relative to the VMAT plans, the MERT plans predicted a reduction of 24%, 36% and 39% in mean breast dose, heart dose and body dose, respectively (p<0.05). CONCLUSIONS MERT plans were a considerable improvement in dosimetry over DE boost plans. There was a dosimetric advantage in using MERT over VMAT for increased DEV conformity and low-dose sparing of healthy tissue including the integral dose; however, the cost is often an increase in the ipsilateral lung high-dose volume.
Collapse
Affiliation(s)
- Andrew Alexander
- Medical Physics Unit, McGill University, Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
47
|
O'shea TP, Foley MJ, Faddegon BA. Accounting for the fringe magnetic field from the bending magnet in a Monte Carlo accelerator treatment head simulation. Med Phys 2011; 38:3260-9. [DOI: 10.1118/1.3592640] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
48
|
Ali OA, Willemse CA, Shaw W, O'Reilly FHJ, du Plessis FCP. Monte Carlo electron source model validation for an Elekta Precise linac. Med Phys 2011; 38:2366-73. [DOI: 10.1118/1.3570579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
49
|
Morganti AG, Cilla S, de Gaetano A, Panunzi S, Digesù C, Macchia G, Massaccesi M, Deodato F, Ferrandina G, Cellini N, Scambia G, Piermattei A, Valentini V. Forward planned intensity modulated radiotherapy (IMRT) for whole breast postoperative radiotherapy. Is it useful? When? J Appl Clin Med Phys 2011; 12:3451. [PMID: 21587195 PMCID: PMC5718668 DOI: 10.1120/jacmp.v12i2.3451] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 12/10/2010] [Accepted: 01/10/2011] [Indexed: 11/23/2022] Open
Abstract
The purpose was to compare the dosimetric results observed in 201 breast cancer patients submitted to tangential forward intensity-modulated radiation therapy (IMRT) with those observed in 131 patients treated with a standard wedged 3D technique for postoperative treatment of whole breast, according to breast size and supraclavicular node irradiation. Following dosimetric parameters were used for the comparison: D(max), D(min), D(mean), V(95%) and V(107%) for the irradiated volume; D(max), D(mean), V(80%) and V(95%) for the ipsilateral lung; D(max), D(mean), V(80%) and V(95%) for the heart. Stratification was made according to breast size and supraclavicular (SCV) nodal irradiation. As respect to irradiated volume, a significant reduction of V(107%) (mean values: 7.0 ± 6.6 versus 2.4 ± 3.7, p < 0.001) and D(max) (mean % values: 111.2 ± 2.7 versus 107.7 ± 6.3, p < 0.001), and an increase of D(min) (mean % values: 65.0 ± 17.4 versus 74.9 ± 12.9, p < 0.001) were observed with forward IMRT. The homogeneity of dose distribution to target volume significantly improved with forward IMRT in all patient groups, irrespective of breast size or supraclavicular nodal irradiation. When patients treated with supraclavicular nodal irradiation were excluded from the analysis, forward IMRT slightly reduced V(80%) (mean values: 3.7 ± 2.6 versus 3.0 ± 2.4, p = 0.03) and V(95%) (mean values 1.9 ± 1.8 versus 1.2%± 1.5; p = 0.001) of the ipsilateral lung. The dose to the heart tended to be lower with IMRT but this difference was not statistically significant. Tangential forward IMRT in postoperative treatment of whole breast improved dosimetric parameters in terms of homogeneity of dose distribution to the target in a large sample of patients, independent of breast size or supraclavicular nodal irradiation. Lung irradiation was slightly reduced in patients not undergoing to supraclavicular irradiation.
Collapse
Affiliation(s)
- Alessio G. Morganti
- Radiotherapy UnitDepartment of Oncology“John Paul II” Center for High Technology Research and Education in Biomedical SciencesCampobasso
| | - Savino Cilla
- Medical Physics UnitDepartment of Oncology“John Paul II” Center for High Technology Research and Education in Biomedical SciencesCampobasso
| | - Andrea de Gaetano
- CNR‐Institute of Systems Analysis and Computer Science (IASI)BioMathLabRome
| | - Simona Panunzi
- CNR‐Institute of Systems Analysis and Computer Science (IASI)BioMathLabRome
| | - Cinzia Digesù
- Radiotherapy UnitDepartment of Oncology“John Paul II” Center for High Technology Research and Education in Biomedical SciencesCampobasso
| | - Gabriella Macchia
- Radiotherapy UnitDepartment of Oncology“John Paul II” Center for High Technology Research and Education in Biomedical SciencesCampobasso
| | - Mariangela Massaccesi
- Radiotherapy UnitDepartment of Oncology“John Paul II” Center for High Technology Research and Education in Biomedical SciencesCampobasso
| | - Francesco Deodato
- Radiotherapy UnitDepartment of Oncology“John Paul II” Center for High Technology Research and Education in Biomedical SciencesCampobasso
| | - Gabriella Ferrandina
- Gynaecology Oncology UnitDepartment of Oncology“John Paul II” Center for High Technology Research and Education in Biomedical SciencesCampobasso
| | - Numa Cellini
- Department of RadiotherapyPoliclinico Universitario “Agostino Gemelli”, Catholic UniversityRomeItaly
| | - Giovanni Scambia
- Gynecology Oncology DepartmentPoliclinico Universitario “Agostino Gemelli”, Catholic UniversityRomeItaly
| | - Angelo Piermattei
- Medical Physics UnitDepartment of Oncology“John Paul II” Center for High Technology Research and Education in Biomedical SciencesCampobasso
| | - Vincenzo Valentini
- Department of RadiotherapyPoliclinico Universitario “Agostino Gemelli”, Catholic UniversityRomeItaly
| |
Collapse
|
50
|
Mihaljevic J, Soukup M, Dohm O, Alber M. Monte Carlo simulation of small electron fields collimated by the integrated photon MLC. Phys Med Biol 2011; 56:829-43. [DOI: 10.1088/0031-9155/56/3/018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|