1
|
Ferocino E, Martinenghi E, Dalla Mora A, Pifferi A, Cubeddu R, Taroni P. High throughput detection chain for time domain optical mammography. BIOMEDICAL OPTICS EXPRESS 2018; 9:755-770. [PMID: 29552410 PMCID: PMC5854076 DOI: 10.1364/boe.9.000755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/16/2017] [Accepted: 01/09/2018] [Indexed: 05/04/2023]
Abstract
A novel detection chain, based on 8 Silicon Photomultipliers (forming a wide-area custom-made detection probe) and on a time-to-digital converter, was developed to improve the signal level in multi-wavelength (635-1060 nm) time domain optical mammography. The performances of individual components and of the overall chain were assessed using established protocols (BIP and MEDPHOT). The photon detection efficiency was improved by up to 3 orders of magnitude, and the maximum count rate level was increased by a factor of 10 when compared to the previous system, based on photomultiplier tubes and conventional time-correlated single-photon counting boards. In the estimate of optical parameters, the novel detection chain provides performances comparable to the previous system, widely validated in clinics, but with higher signal level, higher robustness, and at a lower price per channel, thus targeting important requirements for clinical applications.
Collapse
Affiliation(s)
- Edoardo Ferocino
- Politecnico di Milano, Department of Physics, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy
| | - Edoardo Martinenghi
- Politecnico di Milano, Department of Physics, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy
| | - Alberto Dalla Mora
- Politecnico di Milano, Department of Physics, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy
| | - Antonio Pifferi
- Politecnico di Milano, Department of Physics, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy
- CNR-Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy
| | - Rinaldo Cubeddu
- Politecnico di Milano, Department of Physics, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy
| | - Paola Taroni
- Politecnico di Milano, Department of Physics, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy
- CNR-Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci, 32, 20133, Milan, Italy
| |
Collapse
|
2
|
Robbins CM, Raghavan G, Antaki JF, Kainerstorfer JM. Feasibility of spatial frequency-domain imaging for monitoring palpable breast lesions. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-9. [PMID: 28831792 PMCID: PMC5997013 DOI: 10.1117/1.jbo.22.12.121605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/27/2017] [Indexed: 05/04/2023]
Abstract
In breast cancer diagnosis and therapy monitoring, there is a need for frequent, noninvasive disease progression evaluation. Breast tumors differ from healthy tissue in mechanical stiffness as well as optical properties, which allows optical methods to detect and monitor breast lesions noninvasively. Spatial frequency-domain imaging (SFDI) is a reflectance-based diffuse optical method that can yield two-dimensional images of absolute optical properties of tissue with an inexpensive and portable system, although depth penetration is limited. Since the absorption coefficient of breast tissue is relatively low and the tissue is quite flexible, there is an opportunity for compression of tissue to bring stiff, palpable breast lesions within the detection range of SFDI. Sixteen breast tissue-mimicking phantoms were fabricated containing stiffer, more highly absorbing tumor-mimicking inclusions of varying absorption contrast and depth. These phantoms were imaged with an SFDI system at five levels of compression. An increase in absorption contrast was observed with compression, and reliable detection of each inclusion was achieved when compression was sufficient to bring the inclusion center within ∼12 mm of the phantom surface. At highest compression level, contrasts achieved with this system were comparable to those measured with single source-detector near-infrared spectroscopy.
Collapse
Affiliation(s)
- Constance M. Robbins
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Guruprasad Raghavan
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - James F. Antaki
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
| | - Jana M. Kainerstorfer
- Carnegie Mellon University, Department of Biomedical Engineering, Pittsburgh, Pennsylvania, United States
- Address all correspondence to: Jana M. Kainerstorfer, E-mail:
| |
Collapse
|
3
|
Ban HY, Schweiger M, Kavuri VC, Cochran JM, Xie L, Busch DR, Katrašnik J, Pathak S, Chung SH, Lee K, Choe R, Czerniecki BJ, Arridge SR, Yodh AG. Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry. Med Phys 2017; 43:4383. [PMID: 27370153 DOI: 10.1118/1.4953830] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE The authors introduce a state-of-the-art all-optical clinical diffuse optical tomography (DOT) imaging instrument which collects spatially dense, multispectral, frequency-domain breast data in the parallel-plate geometry. METHODS The instrument utilizes a CCD-based heterodyne detection scheme that permits massively parallel detection of diffuse photon density wave amplitude and phase for a large number of source-detector pairs (10(6)). The stand-alone clinical DOT instrument thus offers high spatial resolution with reduced crosstalk between absorption and scattering. Other novel features include a fringe profilometry system for breast boundary segmentation, real-time data normalization, and a patient bed design which permits both axial and sagittal breast measurements. RESULTS The authors validated the instrument using tissue simulating phantoms with two different chromophore-containing targets and one scattering target. The authors also demonstrated the instrument in a case study breast cancer patient; the reconstructed 3D image of endogenous chromophores and scattering gave tumor localization in agreement with MRI. CONCLUSIONS Imaging with a novel parallel-plate DOT breast imager that employs highly parallel, high-resolution CCD detection in the frequency-domain was demonstrated.
Collapse
Affiliation(s)
- H Y Ban
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - M Schweiger
- Department of Computer Science, University College London, London WC1E 7JE, United Kingdom
| | - V C Kavuri
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - J M Cochran
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - L Xie
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - D R Busch
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - J Katrašnik
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana 1000, Slovenia
| | - S Pathak
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - S H Chung
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - K Lee
- Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-813, South Korea
| | - R Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14642
| | - B J Czerniecki
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - S R Arridge
- Department of Computer Science, University College London, London WC1E 7JE, United Kingdom
| | - A G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
4
|
Welter M, Fredrich T, Rinneberg H, Rieger H. Computational Model for Tumor Oxygenation Applied to Clinical Data on Breast Tumor Hemoglobin Concentrations Suggests Vascular Dilatation and Compression. PLoS One 2016; 11:e0161267. [PMID: 27547939 PMCID: PMC4993476 DOI: 10.1371/journal.pone.0161267] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/05/2016] [Indexed: 12/15/2022] Open
Abstract
We present a computational model for trans-vascular oxygen transport in synthetic tumor and host tissue blood vessel networks, aiming at qualitatively explaining published data of optical mammography, which were obtained from 87 breast cancer patients. The data generally show average hemoglobin concentration to be higher in tumors versus host tissue whereas average oxy-to total hemoglobin concentration (vascular segment RBC-volume-weighted blood oxygenation) can be above or below normal. Starting from a synthetic arterio-venous initial network the tumor vasculature was generated by processes involving cooption, angiogenesis, and vessel regression. Calculations of spatially resolved blood flow, hematocrit, oxy- and total hemoglobin concentrations, blood and tissue oxygenation were carried out for ninety tumor and associated normal vessel networks starting from various assumed geometries of feeding arteries and draining veins. Spatial heterogeneity in the extra-vascular partial oxygen pressure distribution can be related to various tumor compartments characterized by varying capillary densities and blood flow characteristics. The reported higher average hemoglobin concentration of tumors is explained by growth and dilatation of tumor blood vessels. Even assuming sixfold metabolic rate of oxygen consumption in tumorous versus host tissue, the predicted oxygen hemoglobin concentrations are above normal. Such tumors are likely associated with high tumor blood flow caused by high-caliber blood vessels crossing the tumor volume and hence oxygen supply exceeding oxygen demand. Tumor oxy- to total hemoglobin concentration below normal could only be achieved by reducing tumor vessel radii during growth by a randomly selected factor, simulating compression caused by intra-tumoral solid stress due to proliferation of cells and extracellular matrix. Since compression of blood vessels will impede chemotherapy we conclude that tumors with oxy- to total hemoglobin concentration below normal are less likely to respond to chemotherapy. Such behavior was recently reported for neo-adjuvant chemotherapy of locally advanced breast tumors.
Collapse
Affiliation(s)
- Michael Welter
- Theoretical Physics, Saarland University, Saarbrücken, Germany
| | | | - Herbert Rinneberg
- Division of Medical Physics and Metrological Information Technology, Physikalisch Technische Bundesanstalt PTB Berlin, Germany
| | - Heiko Rieger
- Theoretical Physics, Saarland University, Saarbrücken, Germany
| |
Collapse
|
5
|
Abstract
Near infrared spectroscopy (NIRS) utilizes intrinsic optical absorption signals of blood, water, and lipid concentration available in the NIR window (600–1000 nm) as well as a developing array of extrinsic organic compounds to detect and localize cancer. This paper reviews optical cancer detection made possible through high tumor-tissue signal-to-noise ratio (SNR) and providing biochemical and physiological data in addition to those obtained via other methods. NIRS detects cancers in vivo through a combination of blood volume and oxygenation from measurements of oxy- and deoxy-hemoglobin giving signals of tumor angiogenesis and hypermetabolism. The Chance lab tends towards CW breast cancer systems using manually scannable detectors with calibrated low pressure tissue contact. These systems calculate angiogenesis and hypermetabolism by using a pair of wavelengths and referencing the mirror image position of the contralateral breast to achieve high ROC/AUC. Time domain and frequency domain spectroscopy were also used to study similar intrinsic breast tumor characteristics such as high blood volume. Other NIRS metrics are water-fat ratio and the optical scattering coefficient. An extrinsic FDA approved dye, ICG, has been used to measure blood pooling with extravasation, similar to Gadolinium in MRI. A key future development in NIRS will be new Molecular Beacons targeting cancers and fluorescing in the NIR window to enhance in vivo tumor-tissue ratios and to afford biochemical specificity with the potential for effective photodynamic anti-cancer therapies.
Collapse
Affiliation(s)
- S Nioka
- University of Pennsylvania, Department of Biochemistry and Biophysics, 250 Anatomy-Chemistry Bldg., Philadelphia, PA 19104-6059, USA
| | | |
Collapse
|
6
|
Konovalov AB, Vlasov VV. Total variation based reconstruction of scattering inhomogeneities in tissue from time-resolved optical projections. SARATOV FALL MEETING 2015: THIRD INTERNATIONAL SYMPOSIUM ON OPTICS AND BIOPHOTONICS AND SEVENTH FINNISH-RUSSIAN PHOTONICS AND LASER SYMPOSIUM (PALS) 2016. [DOI: 10.1117/12.2229846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
|
7
|
Di Sieno L, Wabnitz H, Pifferi A, Mazurenka M, Hoshi Y, Dalla Mora A, Contini D, Boso G, Becker W, Martelli F, Tosi A, Macdonald R. Characterization of a time-resolved non-contact scanning diffuse optical imaging system exploiting fast-gated single-photon avalanche diode detection. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:035118. [PMID: 27036830 DOI: 10.1063/1.4944562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/08/2016] [Indexed: 05/20/2023]
Abstract
We present a system for non-contact time-resolved diffuse reflectance imaging, based on small source-detector distance and high dynamic range measurements utilizing a fast-gated single-photon avalanche diode. The system is suitable for imaging of diffusive media without any contact with the sample and with a spatial resolution of about 1 cm at 1 cm depth. In order to objectively assess its performances, we adopted two standardized protocols developed for time-domain brain imagers. The related tests included the recording of the instrument response function of the setup and the responsivity of its detection system. Moreover, by using liquid turbid phantoms with absorbing inclusions, depth-dependent contrast and contrast-to-noise ratio as well as lateral spatial resolution were measured. To illustrate the potentialities of the novel approach, the characteristics of the non-contact system are discussed and compared to those of a fiber-based brain imager.
Collapse
Affiliation(s)
- Laura Di Sieno
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Heidrun Wabnitz
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| | - Antonio Pifferi
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Mikhail Mazurenka
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| | - Yoko Hoshi
- Department of Biomedical Optics, Medical Photonics Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Alberto Dalla Mora
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Davide Contini
- Politecnico di Milano, Dipartimento di Fisica, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Gianluca Boso
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Wolfgang Becker
- Becker and Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin, Germany
| | - Fabrizio Martelli
- Dipartimento di Fisica e Astronomia dell'Università degli Studi di Firenze, Via G. Sansone 1, Sesto Fiorentino, Firenze 50019, Italy
| | - Alberto Tosi
- Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
| | - Rainer Macdonald
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| |
Collapse
|
8
|
Sieno LD, Mora AD, Boso G, Tosi A, Pifferi A, Cubeddu R, Contini D. Diffuse optics using a dual window fast-gated counter. APPLIED OPTICS 2014; 53:7394-401. [PMID: 25402904 DOI: 10.1364/ao.53.007394] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this paper we demonstrate the advantages of a fast-gated counter in achieving high count-rate and reducing costs of timing equipment in a time-resolved diffuse optical spectroscopy setup. We experimentally prove the equivalence between the fast-gated counter we developed and a traditional time-correlated single-photon counting setup in terms of depth sensitivity and signal-to-noise ratio. Additionally, we show the suitability of this device for bilayer analysis and to estimate the absorption coefficient of homogeneous diffusing media. Finally, we present a proof-of-principle arterial occlusion measurement on a healthy volunteer to validate the proposed approach in a real application. Fast-gated counters can dramatically reduce both costs and complexity in time-resolved multichannel systems, while achieving high count-rate, thus offering a great advantage in applications like brain and muscle functional imaging.
Collapse
|
9
|
Choe R, Putt ME, Carlile PM, Durduran T, Giammarco JM, Busch DR, Jung KW, Czerniecki BJ, Tchou J, Feldman MD, Mies C, Rosen MA, Schnall MD, DeMichele A, Yodh AG. Optically measured microvascular blood flow contrast of malignant breast tumors. PLoS One 2014; 9:e99683. [PMID: 24967878 PMCID: PMC4072684 DOI: 10.1371/journal.pone.0099683] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/16/2014] [Indexed: 02/03/2023] Open
Abstract
Microvascular blood flow contrast is an important hemodynamic and metabolic parameter with potential to enhance in vivo breast cancer detection and therapy monitoring. Here we report on non-invasive line-scan measurements of malignant breast tumors with a hand-held optical probe in the remission geometry. The probe employs diffuse correlation spectroscopy (DCS), a near-infrared optical method that quantifies deep tissue microvascular blood flow. Tumor-to-normal perfusion ratios are derived from thirty-two human subjects. Mean (95% confidence interval) tumor-to-normal ratio using surrounding normal tissue was 2.25 (1.92–2.63); tumor-to-normal ratio using normal tissues at the corresponding tumor location in the contralateral breast was 2.27 (1.94–2.66), and using normal tissue in the contralateral breast was 2.27 (1.90–2.70). Thus, the mean tumor-to-normal ratios were significantly different from unity irrespective of the normal tissue chosen, implying that tumors have significantly higher blood flow than normal tissues. Therefore, the study demonstrates existence of breast cancer contrast in blood flow measured by DCS. The new, optically accessible cancer contrast holds potential for cancer detection and therapy monitoring applications, and it is likely to be especially useful when combined with diffuse optical spectroscopy/tomography.
Collapse
Affiliation(s)
- Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
- * E-mail:
| | - Mary E. Putt
- Department of Biostatistics & Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Peter M. Carlile
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
| | - Turgut Durduran
- ICFO- Institut de Ciències Fotòniques, Castelldefels (Barcelona), Spain
| | - Joseph M. Giammarco
- Department of Astronomy & Physics, Eastern University, St. Davids, Pennsylvania, United States of America
| | - David R. Busch
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Ki Won Jung
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
| | - Brian J. Czerniecki
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Julia Tchou
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael D. Feldman
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Carolyn Mies
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mark A. Rosen
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mitchell D. Schnall
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Angela DeMichele
- Department of Medicine (Hematology/Oncology), Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Arjun G. Yodh
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
10
|
Konovalov AB, Vlasov VV, Lyubimov VV. Statistical characteristics of photon distributions in a semi-infinite turbid medium: Analytical expressions and their application to optical tomography. OPTIK 2013; 124:6000-6008. [DOI: 10.1016/j.ijleo.2013.04.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
|
11
|
Busch DR, Choe R, Durduran T, Yodh AG. Towards non-invasive characterization of breast cancer and cancer metabolism with diffuse optics. PET Clin 2013; 8. [PMID: 24244206 DOI: 10.1016/j.cpet.2013.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We review recent developments in diffuse optical imaging and monitoring of breast cancer, i.e. optical mammography. Optical mammography permits non-invasive, safe and frequent measurement of tissue hemodynamics oxygen metabolism and components (lipids, water, etc.), the development of new compound indices indicative of the risk and malignancy, and holds potential for frequent non-invasive longitudinal monitoring of therapy progression.
Collapse
|
12
|
Quarto G, Pifferi A, Bargigia I, Farina A, Cubeddu R, Taroni P. Recipes to make organic phantoms for diffusive optical spectroscopy. APPLIED OPTICS 2013; 52:2494-502. [PMID: 23670779 DOI: 10.1364/ao.52.002494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Three recipes are presented to make tissue constituent-equivalent phantoms of water and lipids. Different approaches to prepare the emulsion are proposed. Nature phantoms are made using no emulsifying agent, but just a professional disperser; instead Agar and Triton phantoms are made using agar or Triton X-100, respectively, as agents to emulsify water and lipids. Different water-to-lipid ratios ranging from 30% to 70% by mass were tested. A broadband time-resolved diffuse optical spectroscopy system was used to characterize the phantoms in terms of optical properties and composition. For some water/lipid ratios the emulsion fails or the phantom has limited lifetime, but in most cases the recipes provide phantoms with a high degree of homogeneity [coefficient of variation (CV) of 4.6% and 1.5% for the absorption and reduced scattering coefficient, respectively] and good reproducibility (CV of 8.3% and 12.4% for absorption and reduced scattering coefficient, respectively).
Collapse
Affiliation(s)
- Giovanna Quarto
- Politecnico di Milano, Dipartimento di Fisica, Milano 20133, Italy.
| | | | | | | | | | | |
Collapse
|
13
|
Yokoyama J, Fujimaki M, Ohba S, Anzai T, Yoshii R, Ito S, Kojima M, Ikeda K. A feasibility study of NIR fluorescent image-guided surgery in head and neck cancer based on the assessment of optimum surgical time as revealed through dynamic imaging. Onco Targets Ther 2013; 6:325-30. [PMID: 23630424 PMCID: PMC3623571 DOI: 10.2147/ott.s42006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND In order to minimize surgical stress and preserve organs, endoscopic or robotic surgery is often performed when conducting head and neck surgery. However, it is impossible to physically touch tumors or to observe diffusely invaded deep organs through the procedure of endoscopic or robotic surgery. In order to visualize and safely resect tumors even in these cases, we propose using an indocyanine green (ICG) fluorescence method for navigation surgery in head and neck cancer. OBJECTIVE To determine the optimum surgical time for tumor resection after the administration of ICG based on the investigation of dynamic ICG fluorescence imaging. METHODS Nine patients underwent dynamic ICG fluorescence imaging for 360 minutes, assessing tumor visibility at 10, 30, 60, 120, 180, and 360 minutes. All cases were scored according to near-infrared (NIR) fluorescence imaging visibility scored from 0 to 5. RESULTS Dynamic NIR fluorescence imaging under the HyperEye Medical System indicated that the greatest contrast in fluorescent images between tumor and normal tissue could be observed from 30 minutes to 1 hour after the administration of ICG. The optimum surgical time was determined to be between 30 minutes to 2 hours after ICG injection. These findings are particularly useful for detection and safe resection of tumors invading the parapharyngeal space. CONCLUSION ICG fluorescence imaging is effective for the detection of head and neck cancer. Preliminary findings suggest that the optimum timing for surgery is from 30 minutes to 2 hours after the ICG injection.
Collapse
Affiliation(s)
- Junkichi Yokoyama
- Department of Otolaryngology-Head and Neck Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Erickson SJ, Martinez SL, DeCerce J, Romero A, Caldera L, Godavarty A. Three-dimensional fluorescence tomography of human breast tissues in vivo using a hand-held optical imager. Phys Med Biol 2013; 58:1563-79. [PMID: 23417060 DOI: 10.1088/0031-9155/58/5/1563] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Diffuse optical imaging using non-ionizing radiation is a non-invasive method that shows promise towards breast cancer diagnosis. Hand-held optical imagers show potential for clinical translation of the technology, yet they have not been used towards 3D tomography. Herein, 3D tomography of human breast tissue in vivo is demonstrated for the first time using a hand-held optical imager with automated coregistration facilities. Simulation studies are performed on breast geometries to demonstrate the feasibility of 3D tomographic imaging using a hand-held imager under perfect (1:0) and imperfect (100:1, 50:1) fluorescence absorption contrast ratios. Experimental studies are performed in vivo using a 1 µM ICG filled phantom target placed non-invasively underneath the flap of the breast tissue. Results show the ability to perform automated tracking and coregistered imaging of human breast tissue (with tracking accuracy on the order of ∼1 cm). Three-dimensional tomography results demonstrated the ability to recover a single target placed at a depth of 2.5 cm, from both the simulated (at 1:0, 100:1 and 50:1 contrasts) and experimental cases on actual breast tissues. Ongoing efforts to improve target depth recovery are carried out via implementation of transmittance imaging in the hand-held imager.
Collapse
Affiliation(s)
- Sarah J Erickson
- Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street EC 2610, Miami, FL 33174, USA
| | | | | | | | | | | |
Collapse
|
15
|
Ban HY, Busch DR, Pathak S, Moscatelli FA, Machida M, Schotland JC, Markel VA, Yodh AG. Diffuse optical tomography in the presence of a chest wall. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:26016. [PMID: 23392384 PMCID: PMC3566530 DOI: 10.1117/1.jbo.18.2.026016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/07/2012] [Accepted: 01/14/2013] [Indexed: 06/01/2023]
Abstract
Diffuse optical tomography (DOT) has been employed to derive spatial maps of physiologically important chromophores in the human breast, but the fidelity of these images is often compromised by boundary effects such as those due to the chest wall. We explore the image quality in fast, data-intensive analytic and algebraic linear DOT reconstructions of phantoms with subcentimeter target features and large absorptive regions mimicking the chest wall. Experiments demonstrate that the chest wall phantom can introduce severe image artifacts. We then show how these artifacts can be mitigated by exclusion of data affected by the chest wall. We also introduce and demonstrate a linear algebraic reconstruction method well suited for very large data sets in the presence of a chest wall.
Collapse
Affiliation(s)
- Han Y Ban
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA 19104-6396, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhu Q, DeFusco PA, Ricci A, Cronin EB, Hegde PU, Kane M, Tavakoli B, Xu Y, Hart J, Tannenbaum SH. Breast cancer: assessing response to neoadjuvant chemotherapy by using US-guided near-infrared tomography. Radiology 2012; 266:433-42. [PMID: 23264349 DOI: 10.1148/radiol.12112415] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE To assess initial breast tumor hemoglobin (Hb) content before the initiation of neoadjuvant chemotherapy, monitor the Hb changes at the end of each treatment cycle, and correlate these findings with tumor pathologic response. MATERIALS AND METHODS The HIPAA-compliant study protocol was approved by the institutional review boards of both institutions. Written informed consent was obtained from all patients. Patients who were eligible for neoadjuvant chemotherapy were recruited between December 2007 and May 2011, and their tumor Hb content was assessed by using a near-infrared imager coupled with an ultrasonography (US) system. Thirty-two women (mean age, 48 years; range, 32-82 years) were imaged before treatment, at the end of every treatment cycle, and before definitive surgery. The patients were graded in terms of their final pathologic response on the basis of the Miller-Payne system as nonresponders and partial responders (grades 1-3) and near-complete and complete responders (grades 4 and 5). Tumor vascularity was assessed from total Hb (tHb), oxygenated Hb (oxyHb), and deoxygenated Hb (deoxyHb) concentrations. Tumor vascularity changes during treatment were assessed from percentage tHb normalized to the pretreatment level. A two-sample two-sided t test was used to calculate the P value and to evaluate statistical significance between groups. Bonferroni-Holm correction was applied to obtain the corrected P value for multiple comparisons. RESULTS There were 20 Miller-Payne grade 1-3 tumors and 14 grade 4 or 5 tumors. Mean maximum pretreatment tHb, oxyHb, and deoxyHb levels were significantly higher in grade 4 and 5 tumors than in grade 1-3 tumors (P = .005, P = .008, and P = .017, respectively). The mean percentage tHb changes were significantly higher in grade 4 or 5 tumors than in grade 1-3 tumors at the end of treatment cycles 1-3 (P = .009 and corrected P = .009, P = .002 and corrected P = .004, and P < .001 and corrected P < .001, respectively). DISCUSSION These findings indicate that initial tumor Hb content is a strong predictor of final pathologic response. Additionally, the tHb changes during early treatment cycles can further predict final pathologic response.
Collapse
Affiliation(s)
- Quing Zhu
- Biomedical Engineering Program, Electrical and Computer Engineering Department, University of Connecticut, 371 Fairfield Rd, U2157, Storrs, CT 06269, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pearlman PC, Adams A, Elias SG, Mali WPTM, Viergever MA, Pluim JPW. Mono- and multimodal registration of optical breast images. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:080901-1. [PMID: 23224161 DOI: 10.1117/1.jbo.17.8.080901] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Optical breast imaging offers the possibility of noninvasive, low cost, and high sensitivity imaging of breast cancers. Poor spatial resolution and a lack of anatomical landmarks in optical images of the breast make interpretation difficult and motivate registration and fusion of these data with subsequent optical images and other breast imaging modalities. Methods used for registration and fusion of optical breast images are reviewed. Imaging concerns relevant to the registration problem are first highlighted, followed by a focus on both monomodal and multimodal registration of optical breast imaging. Where relevant, methods pertaining to other imaging modalities or imaged anatomies are presented. The multimodal registration discussion concerns digital x-ray mammography, ultrasound, magnetic resonance imaging, and positron emission tomography.
Collapse
Affiliation(s)
- Paul C Pearlman
- University Medical Center Utrecht, Image Sciences Institute, P.O. Box 85500, 3508 GA, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
18
|
Choe R, Durduran T. Diffuse Optical Monitoring of the Neoadjuvant Breast Cancer Therapy. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2012; 18:1367-1386. [PMID: 23243386 PMCID: PMC3521564 DOI: 10.1109/jstqe.2011.2177963] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Recent advances in the use of diffuse optical techniques for monitoring the hemodynamic, metabolic and physiological signatures of the neoadjuvant breast cancer therapy effectiveness is critically reviewed. An extensive discussion of the state-of-theart diffuse optical mammography is presented alongside a discussion of the current approaches to breast cancer therapies. Overall, the diffuse optics field is growing rapidly with a great deal of promise to fill an important niche in the current approaches to monitor, predict and personalize neoadjuvant breast cancer therapies.
Collapse
Affiliation(s)
- Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA;
| | - Turgut Durduran
- ICFO- Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860, Barcelona, Spain;
| |
Collapse
|
19
|
Hassan M, Chernomordik V, Zielinski R, Ardeshirpour Y, Capala J, Gandjbakhche A. In Vivo Method to Monitor Changes in HER2 Expression Using Near-Infrared Fluorescence Imaging. Mol Imaging 2012. [DOI: 10.2310/7290.2011.00038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Moinuddin Hassan
- From the Section on Analytical and Functional Biophotonics, Program on Pediatric Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and Molecular Targeting Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; and Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Victor Chernomordik
- From the Section on Analytical and Functional Biophotonics, Program on Pediatric Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and Molecular Targeting Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; and Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Rafal Zielinski
- From the Section on Analytical and Functional Biophotonics, Program on Pediatric Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and Molecular Targeting Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; and Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Yasaman Ardeshirpour
- From the Section on Analytical and Functional Biophotonics, Program on Pediatric Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and Molecular Targeting Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; and Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Jacek Capala
- From the Section on Analytical and Functional Biophotonics, Program on Pediatric Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and Molecular Targeting Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; and Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Amir Gandjbakhche
- From the Section on Analytical and Functional Biophotonics, Program on Pediatric Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and Molecular Targeting Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD; and Department of Molecular Biology, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
20
|
SREE SVINITHA, NG EDDIEYK, ACHARYA U RAJENDRA, TAN WILLIAM. BREAST IMAGING SYSTEMS: A REVIEW AND COMPARATIVE STUDY. J MECH MED BIOL 2012. [DOI: 10.1142/s0219519410003277] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Due to the successful union between computational technologies and basic laws of physics and biological sciences, many biomedical imaging systems now find significant presence in clinical settings, aiding physicians in diagnosing most forms of human illness with more confidence. In the case of breast imaging, apart from the basic diagnosis, these imaging systems also help in locating the abnormal tissues for biopsy, identifying the exact margins of the lesion for good lumpectomy results, staging and restaging the cancer, detecting locations of metastases, and planning and following up treatment protocols. It is well known that early detection of cancer is the only way to increase the survival rate of the patient. Without such imaging systems, it would be hard and almost impossible for the physicians to determine the nature and extent of the disease by merely simple physical examinations and biopsies. This article presents a description of most of these invaluable breast-imaging systems. Moreover, a comparison of these modalities and a review of a few of the developments these devices have come across over the years are also given.
Collapse
Affiliation(s)
- S. VINITHA SREE
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - EDDIE Y.-K. NG
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Adjunct NUH Scientist, Office of Biomedical Research, National University Hospital of Singapore, Singapore 117597, Singapore
| | - RAJENDRA ACHARYA U
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore
| | - WILLIAM TAN
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore
| |
Collapse
|
21
|
Okawa S, Hoshi Y, Yamada Y. Improvement of image quality of time-domain diffuse optical tomography with l sparsity regularization. BIOMEDICAL OPTICS EXPRESS 2011; 2:3334-48. [PMID: 22162823 PMCID: PMC3233252 DOI: 10.1364/boe.2.003334] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/14/2011] [Accepted: 11/14/2011] [Indexed: 05/03/2023]
Abstract
An l(p) (0 < p ≤ 1) sparsity regularization is applied to time-domain diffuse optical tomography with a gradient-based nonlinear optimization scheme to improve the spatial resolution and the robustness to noise. The expression of the l(p) sparsity regularization is reformulated as a differentiable function of a parameter to avoid the difficulty in calculating its gradient in the optimization process. The regularization parameter is selected by the L-curve method. Numerical experiments show that the l(p) sparsity regularization improves the spatial resolution and recovers the difference in the absorption coefficients between two targets, although a target with a small absorption coefficient may disappear due to the strong effect of the l(p) sparsity regularization when the value of p is too small. The l(p) sparsity regularization with small p values strongly localizes the target, and the reconstructed region of the target becomes smaller as the value of p decreases. A phantom experiment validates the numerical simulations.
Collapse
Affiliation(s)
- Shinpei Okawa
- Department of Mechanical Engineering and Intelligent Systems, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585
Japan
| | - Yoko Hoshi
- Integrated Neuroscience Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kami-kitazawa, Setagaya, Tokyo 156-8506,
Japan
| | - Yukio Yamada
- Department of Mechanical Engineering and Intelligent Systems, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585
Japan
| |
Collapse
|
22
|
Taroni P. Diffuse optical imaging and spectroscopy of the breast: a brief outline of history and perspectives. Photochem Photobiol Sci 2011; 11:241-50. [PMID: 22094324 DOI: 10.1039/c1pp05230f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Breast cancer is the most common cancer among women in industrialized countries. At present, X-ray mammography is the gold standard for breast imaging, but has limitations, especially when dense breasts are imaged, as typically occurs in young women. Optical imaging can non-invasively provide information on tissue composition, structure and physiology that can be beneficially exploited for breast lesion detection and identification. In the last few decades optical breast imaging has been investigated, using different geometries (projection imaging and tomography) and measurement techniques (continuous wave, frequency resolved and time resolved approaches). Also, data analysis and display varies significantly, ranging from intensity images to maps of the optical properties (absorption and scattering), tissue composition, and physiological parameters (typically blood volume and oxygenation). This paper outlines the historical evolution of optical imaging and spectroscopy of the breast, highlighting potentialities and limitations, and presents an overview of the main applications and perspectives of the field.
Collapse
Affiliation(s)
- Paola Taroni
- Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133, Milan, Italy.
| |
Collapse
|
23
|
Tavakoli B, Zhu Q. Depth-correction algorithm that improves optical quantification of large breast lesions imaged by diffuse optical tomography. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:056002. [PMID: 21639570 PMCID: PMC3188608 DOI: 10.1117/1.3573814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Optical quantification of large lesions imaged with diffuse optical tomography in reflection geometry is depth dependence due to the exponential decay of photon density waves. We introduce a depth-correction method that incorporates the target depth information provided by coregistered ultrasound. It is based on balancing the weight matrix, using the maximum singular values of the target layers in depth without changing the forward model. The performance of the method is evaluated using phantom targets and 10 clinical cases of larger malignant and benign lesions. The results for the homogenous targets demonstrate that the location error of the reconstructed maximum absorption coefficient is reduced to the range of the reconstruction mesh size for phantom targets. Furthermore, the uniformity of absorption distribution inside the lesions improve about two times and the median of the absorption increases from 60 to 85% of its maximum compared to no depth correction. In addition, nonhomogenous phantoms are characterized more accurately. Clinical examples show a similar trend as the phantom results and demonstrate the utility of the correction method for improving lesion quantification.
Collapse
Affiliation(s)
- Behnoosh Tavakoli
- Electrical and Computer Engineering Department, University of Connecticut, 371 Fairfield Road, U1157, Storrs, Connecticut 06269, USA
| | | |
Collapse
|
24
|
Reduction of Poisson noise in measured time-resolved data for time-domain diffuse optical tomography. Med Biol Eng Comput 2011; 50:69-78. [PMID: 21499803 DOI: 10.1007/s11517-011-0774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 03/31/2011] [Indexed: 10/18/2022]
Abstract
A method to reduce noise for time-domain diffuse optical tomography (DOT) is proposed. Poisson noise which contaminates time-resolved photon counting data is reduced by use of maximum a posteriori estimation. The noise-free data are modeled as a Markov random process, and the measured time-resolved data are assumed as Poisson distributed random variables. The posterior probability of the occurrence of the noise-free data is formulated. By maximizing the probability, the noise-free data are estimated, and the Poisson noise is reduced as a result. The performances of the Poisson noise reduction are demonstrated in some experiments of the image reconstruction of time-domain DOT. In simulations, the proposed method reduces the relative error between the noise-free and noisy data to about one thirtieth, and the reconstructed DOT image was smoothed by the proposed noise reduction. The variance of the reconstructed absorption coefficients decreased by 22% in a phantom experiment. The quality of DOT, which can be applied to breast cancer screening etc., is improved by the proposed noise reduction.
Collapse
|
25
|
Ardeshirpour Y, Biswal N, Aguirre A, Zhu Q. Artifact reduction method in ultrasound-guided diffuse optical tomography using exogenous contrast agents. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:046015. [PMID: 21529084 PMCID: PMC3094466 DOI: 10.1117/1.3569088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 01/29/2011] [Accepted: 02/22/2011] [Indexed: 05/18/2023]
Abstract
In diffuse optical tomography (DOT), a typical perturbation approach requires two sets of measurements obtained at the lesion breast (lesion or target site) and a contra-lateral location of the normal breast (reference site) for image reconstruction. For patients who have a small amount of breast tissue, the chest-wall underneath the breast tissue at both sites affects the imaging results. In this group of patients, the perturbation, which is the difference between measurements obtained at the lesion and reference sites, may include the information of background mismatch which can generate artifacts or affect the reconstructed quantitative absorption coefficient of the lesion. Also, for patients who have a single breast due to prior surgery, the contra-lateral reference is not available. To improve the DOT performance or overcome its limitation, we introduced a new method based on an exogenous contrast agent and demonstrate its performance using animal models. Co-registered ultrasound was used to guide the lesion localization. The results have shown that artifacts caused by background mismatch can be reduced significantly by using this new method.
Collapse
Affiliation(s)
- Yasaman Ardeshirpour
- Electrical and Computer Engineering Department, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | | | |
Collapse
|
26
|
Leproux A, van der Voort M, van der Mark MB, Harbers R, van de Ven SMWY, van Leeuwen TG. Optical mammography combined with fluorescence imaging: lesion detection using scatterplots. BIOMEDICAL OPTICS EXPRESS 2011; 2:1007-20. [PMID: 21483622 PMCID: PMC3072114 DOI: 10.1364/boe.2.001007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 05/15/2023]
Abstract
Using scatterplots of 2 or 3 parameters, diffuse optical tomography and fluorescence imaging are combined to improve detectability of breast lesions. Small or low contrast phantom-lesions that were missed in the optical and fluorescence images were detected in the scatterplots. In patient measurements, all tumors were visible and easily differentiated from artifacts and areolas in the scatterplots. The different rate of intake and wash out of the fluorescent contrast agent in the healthy versus malignant tissues was also observed in the scatterplot: this information can be used to discriminate malignant lesion from normal structures.
Collapse
Affiliation(s)
- Anaïs Leproux
- Minimally Invasive Healthcare Group, Philips Research, High Tech Campus 34, 5656AE Eindhoven, the Netherlands
| | - Marjolein van der Voort
- Minimally Invasive Healthcare Group, Philips Research, High Tech Campus 34, 5656AE Eindhoven, the Netherlands
| | - Martin B. van der Mark
- Minimally Invasive Healthcare Group, Philips Research, High Tech Campus 34, 5656AE Eindhoven, the Netherlands
| | - Rik Harbers
- Minimally Invasive Healthcare Group, Philips Research, High Tech Campus 34, 5656AE Eindhoven, the Netherlands
| | | | - Ton G. van Leeuwen
- Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, P.O. Box 227700, 1100 DE Amsterdam, the Netherlands
| |
Collapse
|
27
|
Grosenick D, Hagen A, Steinkellner O, Poellinger A, Burock S, Schlag PM, Rinneberg H, Macdonald R. A multichannel time-domain scanning fluorescence mammograph: performance assessment and first in vivo results. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2011; 82:024302. [PMID: 21361617 DOI: 10.1063/1.3543820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We present a scanning time-domain fluorescence mammograph capable to image the distribution of a fluorescent contrast agent within a female breast, slightly compressed between two parallel glass plates, with high sensitivity. Fluorescence of the contrast agent is excited using a near infrared picosecond diode laser module. Four additional picosecond diode lasers with emission wavelengths between 660 and 1066 nm allow to measure the intrinsic optical properties of the breast tissue. By synchronously moving a source fiber and seven detection fiber bundles across the breast, distributions of times of flight of photons are recorded simultaneously for selected source-detector combinations in transmission and reflection geometry either at the fluorescence wavelength or at the selected laser wavelengths. To evaluate the performance of the mammograph, we used breastlike rectangular phantoms comprising fluorescent and absorbing objects using the fluorescent dye Omocyanine as contrast agent excited at 735 nm. We compare two-dimensional imaging of the phantom based on transmission and reflection data. Furthermore, we developed an improved tomosynthesis algorithm which permits three-dimensional reconstruction of fluorescence and absorption properties of lesions with good spatial resolution. For illustration, we present fluorescence mammograms of one patient recorded 30 min after administration of the contrast agent indocyanine green showing the carcinoma at high contrast originating from fluorescence of the extravasated dye, excited at 780 nm.
Collapse
Affiliation(s)
- Dirk Grosenick
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Poellinger A, Burock S, Grosenick D, Hagen A, Lüdemann L, Diekmann F, Engelken F, Macdonald R, Rinneberg H, Schlag PM. Breast cancer: early- and late-fluorescence near-infrared imaging with indocyanine green--a preliminary study. Radiology 2010; 258:409-16. [PMID: 21177396 DOI: 10.1148/radiol.10100258] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE To assess early- and late-fluorescence near-infrared imaging, corresponding to the vascular (early-fluorescence) and extravascular (late-fluorescence) phases of indocyanine green (ICG) enhancement, for breast cancer detection and benign versus malignant breast lesion differentiation. MATERIALS AND METHODS The study was approved by the ethical review board; all participants provided written informed consent. Twenty women with 21 breast lesions were examined with near-infrared imaging before, during, and after intravenous injection of ICG. Absorption and fluorescence projection mammograms were recorded simultaneously on a prototype near-infrared imaging unit. Two blinded readers independently assessed the images and assigned visibility scores to lesions seen on the absorption and absorption-corrected fluorescence mammograms. Imaging results were compared with histopathologic findings. Lesion contrast and diameter on the fluorescence mammograms were measured, and Cohen κ, Mann-Whitney U, and Spearman ρ tests were conducted. RESULTS The absorption-corrected fluorescence ratio mammograms showed high contrast (contrast value range, 0.25-0.64) between tumors and surrounding breast tissue. Malignant lesions were correctly defined in 11 (reader 1) and 12 (reader 2) of 13 cases, and benign lesions were correctly defined in six (reader 1) and five (reader 2) of eight cases with late-fluorescence imaging. Lesion visibility scores for malignant and benign lesions were significantly different on the fluorescence ratio mammograms (P = .003) but not on the absorption mammograms (P = .206). Mean sensitivity and specificity reached 92% ± 8 (standard error of mean) and 75% ± 16, respectively, for fluorescence ratio imaging compared with 100% ± 0 and 25% ± 16, respectively, for conventional mammography alone. CONCLUSION Preliminary data suggest that early- and late-fluorescence ratio imaging after ICG administration can be used to distinguish malignant from benign breast lesions.
Collapse
Affiliation(s)
- Alexander Poellinger
- Department of Radiology and Radiation Therapy, Charité Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Xu Y, Zhu Q. Imaging heterogeneous absorption distribution of advanced breast cancer by optical tomography. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:066007. [PMID: 21198181 PMCID: PMC3013150 DOI: 10.1117/1.3505015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 09/02/2010] [Accepted: 09/10/2010] [Indexed: 05/30/2023]
Abstract
Tumor vascular patterns of advanced breast cancers are complex and heterogeneous. Two typical light absorption patterns of periphery enhancement and posterior shadowing have been observed when imaging these advanced cancers using optical tomography guided by ultrasound. We perform a series simulation and phantom experiments to systemically evaluate the effects of target parameters, target locations, and target optical properties on imaging periphery enhancement absorption distribution using reflection geometry. Large tumors are modeled as concentric semiellipsoidal targets of different outer shell and inner core optical properties. We show that larger targets of more than 3 to 4 cm diameter with outer shell thicknesses less than 1 cm can be resolved at a depth less than 3 cm. A clinical example is given to show the complex vasculature distributions seen from an advanced cancer.
Collapse
Affiliation(s)
- Yan Xu
- University of Connecticut Department of Electrical and Computer Engineering, Storrs, CT 06269, USA
| | | |
Collapse
|
30
|
Zarychta K, Tinet E, Azizi L, Avrillier S, Ettori D, Tualle JM. Time-resolved diffusing wave spectroscopy with a CCD camera. OPTICS EXPRESS 2010; 18:16289-301. [PMID: 20721015 DOI: 10.1364/oe.18.016289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We show how time-resolved measurements of the diffuse light transmitted through a thick scattering slab can be performed with a standard CCD camera, thanks to an interferometric protocol. Time-resolved correlations measured at a fixed photon transit time are also presented. The high number of pixels of the camera allows us to attain a quite good sensitivity for a reasonably low acquisition time.
Collapse
Affiliation(s)
- Katarzyna Zarychta
- Laboratoire de Physique des Lasers, Institut Galilée, Université Paris 13, 99 Ave JB Clément, F-93430 Villetaneuse, France
| | | | | | | | | | | |
Collapse
|
31
|
Fang Q, Moore RH, Kopans DB, Boas DA. Compositional-prior-guided image reconstruction algorithm for multi-modality imaging. BIOMEDICAL OPTICS EXPRESS 2010; 1:223-235. [PMID: 21258460 PMCID: PMC3005170 DOI: 10.1364/boe.1.000223] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/10/2010] [Accepted: 07/13/2010] [Indexed: 05/18/2023]
Abstract
The development of effective multi-modality imaging methods typically requires an efficient information fusion model, particularly when combining structural images with a complementary imaging modality that provides functional information. We propose a composition-based image segmentation method for X-ray digital breast tomosynthesis (DBT) and a structural-prior-guided image reconstruction for a combined DBT and diffuse optical tomography (DOT) breast imaging system. Using the 3D DBT images from 31 clinically measured healthy breasts, we create an empirical relationship between the X-ray intensities for adipose and fibroglandular tissue. We use this relationship to then segment another 58 healthy breast DBT images from 29 subjects into compositional maps of different tissue types. For each breast, we build a weighted-graph in the compositional space and construct a regularization matrix to incorporate the structural priors into a finite-element-based DOT image reconstruction. Use of the compositional priors enables us to fuse tissue anatomy into optical images with less restriction than when using a binary segmentation. This allows us to recover the image contrast captured by DOT but not by DBT. We show that it is possible to fine-tune the strength of the structural priors by changing a single regularization parameter. By estimating the optical properties for adipose and fibroglandular tissue using the proposed algorithm, we found the results are comparable or superior to those estimated with expert-segmentations, but does not involve the time-consuming manual selection of regions-of-interest.
Collapse
Affiliation(s)
- Qianqian Fang
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital,
149 13th St, Charlestown, Massachusetts, 02129, USA
| | - Richard H. Moore
- Avon Foundation Comprehensive Breast Evaluation Center, Massachusetts General Hospital,
55 Fruit Street, Boston, MA 02114, USA
| | - Daniel B. Kopans
- Avon Foundation Comprehensive Breast Evaluation Center, Massachusetts General Hospital,
55 Fruit Street, Boston, MA 02114, USA
| | - David A. Boas
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital,
149 13th St, Charlestown, Massachusetts, 02129, USA
| |
Collapse
|
32
|
Ardeshirpour Y, Zhu Q. Optical tomography method that accounts for tilted chest wall in breast imaging. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:041515. [PMID: 20799793 PMCID: PMC2912938 DOI: 10.1117/1.3449570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The chest wall underneath breast tissue distorts light reflection measurements, especially measurements obtained from distant source-detector pairs. For patients with a chest wall located at a shallower depth, the chest-wall effect needs to be considered in the image reconstruction procedure. Following our previous studies, this work systemically evaluates the performance of a two-layer model-based reconstruction using the finite element method, and compares it with the performance of the semi-infinite model. The results obtained from simulations and phantom experiments show that the two-layer model improves the light quantification of the targets. The improvements are attributed to improved background estimation and more accurate weight matrix calculation using a two-layer model compared to the semi-infinite model. Fitted two-layer background optical properties obtained from a group of ten patients with chest walls located less than 2 cm deep are more representative of breast tissue and chest-wall optical properties.
Collapse
Affiliation(s)
- Yasaman Ardeshirpour
- University of Connecticut, Electrical and Computer Engineering Department, Storrs, Connecticut 06269-2157, USA
| | | |
Collapse
|
33
|
Durduran T, Choe R, Baker WB, Yodh AG. Diffuse Optics for Tissue Monitoring and Tomography. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2010; 73:076701. [PMID: 26120204 PMCID: PMC4482362 DOI: 10.1088/0034-4885/73/7/076701] [Citation(s) in RCA: 582] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This review describes the diffusion model for light transport in tissues and the medical applications of diffuse light. Diffuse optics is particularly useful for measurement of tissue hemodynamics, wherein quantitative assessment of oxy- and deoxy-hemoglobin concentrations and blood flow are desired. The theoretical basis for near-infrared or diffuse optical spectroscopy (NIRS or DOS, respectively) is developed, and the basic elements of diffuse optical tomography (DOT) are outlined. We also discuss diffuse correlation spectroscopy (DCS), a technique whereby temporal correlation functions of diffusing light are transported through tissue and are used to measure blood flow. Essential instrumentation is described, and representative brain and breast functional imaging and monitoring results illustrate the workings of these new tissue diagnostics.
Collapse
Affiliation(s)
- T Durduran
- ICFO- Institut de Ciències Fotòniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain
| | - R Choe
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - W B Baker
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - A G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Chernomordik V, Hassan M, Lee SB, Zielinski R, Gandjbakhche A, Capala J. Quantitative Analysis of HER2 Receptor Expression In Vivo by Near-Infrared Optical Imaging. Mol Imaging 2010. [DOI: 10.2310/7290.2010.00018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Victor Chernomordik
- From the Program on Pediatric Imaging and Tissue Sciences, Section on Analytical and Functional Biophotonics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Moinuddin Hassan
- From the Program on Pediatric Imaging and Tissue Sciences, Section on Analytical and Functional Biophotonics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sang Bong Lee
- From the Program on Pediatric Imaging and Tissue Sciences, Section on Analytical and Functional Biophotonics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Rafal Zielinski
- From the Program on Pediatric Imaging and Tissue Sciences, Section on Analytical and Functional Biophotonics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Amir Gandjbakhche
- From the Program on Pediatric Imaging and Tissue Sciences, Section on Analytical and Functional Biophotonics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jacek Capala
- From the Program on Pediatric Imaging and Tissue Sciences, Section on Analytical and Functional Biophotonics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
35
|
Zhu Q, Hegde PU, Ricci A, Kane M, Cronin EB, Ardeshirpour Y, Xu C, Aguirre A, Kurtzman SH, Deckers PJ, Tannenbaum SH. Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis. Radiology 2010; 256:367-78. [PMID: 20571122 DOI: 10.1148/radiol.10091237] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To investigate the potential role of optical tomography in the near-infrared (NIR) spectrum with ultrasonographic (US) localization as a means of differentiating early-stage cancers from benign lesions of the breast. MATERIALS AND METHODS The protocol was approved by the institutional review boards and was HIPAA compliant; all participants signed an informed consent. One hundred seventy-eight consecutive women (mean age, 52 years; range, 21-89 years) who underwent US-guided biopsy were imaged with a hand-held probe consisting of a coregistered US transducer and an NIR imager. The lesion location provided by coregistered US was used to guide optical imaging. Light absorption was measured at two optical wavelengths. From this measurement, tumor angiogenesis was assessed on the basis of calculated total hemoglobin concentration (tHb) and was correlated with core biopsy results. For patients diagnosed with carcinomas and followed up with subsequent excision, the tHb was correlated with pathologic parameters. RESULTS There were two in situ carcinomas (Tis), 35 T1 carcinomas, 24 T2-T4 carcinomas, and 114 benign lesions. The mean maximum and mean average tHb of the Tis-T1 group were 102.0 micromol/L +/- 28.5 (standard deviation) and 71.9 micromol/L +/- 18.8, and those of the T2-T4 group were 100.3 micromol/L +/- 26.4 and 67.0 micromol/L +/- 18.3, respectively. The mean maximum and mean average tHb of the benign group were 55.1 micromol/L +/- 22.7 and 39.1 micromol/L +/- 14.9, respectively. Both mean maximum and mean average tHb levels were significantly higher in the malignant groups than they were in the benign group (P < .001). The sensitivity, specificity, positive predictive value, and negative predictive value for Tis-T1 cancers were 92%, 93%, 81%, and 97%. The corresponding values for T2-T4 tumors were 75%, 93%, 69%, and 95%. CONCLUSION The angiogenesis (tHb) contrast imaged by using the NIR technique with US holds promise as an adjunct to mammography and US for distinguishing early-stage invasive breast cancers from benign lesions.
Collapse
Affiliation(s)
- Quing Zhu
- Bioengineering Program, University of Connecticut, 371 Fairfield Rd, U2157, Storrs, CT 06269, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Okawa S, Yamada Y. Reconstruction of fluorescence/bioluminescence sources in biological medium with spatial filter. OPTICS EXPRESS 2010; 18:13151-72. [PMID: 20588444 DOI: 10.1364/oe.18.013151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We propose a new method for reconstruction of emitting source distributions by use of a spatial filter and a successive updating process of the forward model for fluorescence/bioluminescence diffuse optical tomography. The spatial filter transforms a set of the measurement data to a single source strength at a position of interest, and the forward model is updated by use of the estimated source strengths. This updating process ignores the dispensable source positions from reconstruction according to the reconstructed source distribution, and the spatial resolution of the reconstructed image is improved. The estimated sources are also used for the reduction of artifacts induced by noises based on the singular value decomposition. Some numerical experiments show the advantages of the proposed method by comparing the present results with those obtained by the conventional methods of the least squares method nd Algebraic Reconstruction Technique. Finally the criteria for practical use of the method are quantitatively presented by the simulations for 2D and 3D geometries.
Collapse
Affiliation(s)
- Shinpei Okawa
- Depatrment of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, 1-5-1 Choufugaoka, Choufu, Tokyo 182-8585, Japan.
| | | |
Collapse
|
37
|
Ducros N, Da Silva A, Dinten JM, Seelamantula CS, Unser M, Peyrin F. A time-domain wavelet-based approach for fluorescence diffuse optical tomography. Med Phys 2010; 37:2890-900. [DOI: 10.1118/1.3431571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
38
|
Ducros N, Da Silva A, Hervé L, Dinten JM, Peyrin F. A comprehensive study of the use of temporal moments in time-resolved diffuse optical tomography: part II. Three-dimensional reconstructions. Phys Med Biol 2009; 54:7107-19. [DOI: 10.1088/0031-9155/54/23/005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
39
|
Enfield LC, Gibson AP, Hebden JC, Douek M. Optical tomography of breast cancer—monitoring response to primary medical therapy. Target Oncol 2009; 4:219-33. [PMID: 19777322 DOI: 10.1007/s11523-009-0115-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 08/28/2009] [Indexed: 12/18/2022]
Affiliation(s)
- Louise C Enfield
- Department of Medical Physics and Bioengineering, Malet Place Engineering Building, University College London, Gower Street, London, WC1E 6BT, UK.
| | | | | | | |
Collapse
|
40
|
Hagen A, Grosenick D, Macdonald R, Rinneberg H, Burock S, Warnick P, Poellinger A, Schlag PM. Late-fluorescence mammography assesses tumor capillary permeability and differentiates malignant from benign lesions. OPTICS EXPRESS 2009; 17:17016-17033. [PMID: 19770920 DOI: 10.1364/oe.17.017016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Using scanning time-domain instrumentation we recorded fluorescence projection mammograms on few breast cancer patients prior, during and after infusion of indocyanine green (ICG), while monitoring arterial ICG concentration by transcutaneous pulse densitometry. Late-fluorescence mammograms recorded after ICG had been largely cleared from the blood by the liver, showed invasive carcinomas at high contrast over a rather homogeneous background, whereas benign lesions did not produce (focused) fluorescence contrast. During infusion, tissue concentration contrast and hence fluorescence contrast is determined by intravascular contributions, whereas late-fluorescence mammograms are dominated by contributions from protein-bound ICG extravasated into the interstitium, reflecting relative microvascular permeabilities of carcinomas and normal breast tissue. We simulated intravascular and extravascular contributions to ICG tissue concentration contrast within a two-compartment unidirectional pharmacokinetic model.
Collapse
Affiliation(s)
- Axel Hagen
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Taroni P, Pifferi A, Salvagnini E, Spinelli L, Torricelli A, Cubeddu R. Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification. OPTICS EXPRESS 2009; 17:15932-46. [PMID: 19724592 DOI: 10.1364/oe.17.015932] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Our multi-wavelength time-resolved optical mammograph was upgraded to improve its overall performances and extend its spectral coverage up to 1060 nm, with the aim of increasing the measurement sensitivity to the content of collagen in breast tissue. Late-gated intensity and reduced scattering images are routinely displayed for diagnostic purposes. Maps of tissue constituents (lipid, water and collagen) and blood parameters (total hemoglobin content and blood oxygenation) are built to highlight spatial changes due to physiological and pathological reasons. The upgraded instrument was tested on tissue phantoms. Then images were collected at 7 wavelengths (635-1060 nm) from 10 healthy volunteers. Average collagen content correlated with breast density whenever x-ray mammograms were available (6 subjects).
Collapse
Affiliation(s)
- Paola Taroni
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
42
|
Ziegler R, Nielsen T, Koehler T, Grosenick D, Steinkellner O, Hagen A, Macdonald R, Rinneberg H. Nonlinear reconstruction of absorption and fluorescence contrast from measured diffuse transmittance and reflectance of a compressed-breast-simulating phantom. APPLIED OPTICS 2009; 48:4651-62. [PMID: 19696852 DOI: 10.1364/ao.48.004651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We report on the nonlinear reconstruction of local absorption and fluorescence contrast in tissuelike scattering media from measured time-domain diffuse reflectance and transmittance of laser as well as laser-excited fluorescence radiation. Measurements were taken at selected source-detector offsets using slablike diffusely scattering and fluorescent phantoms containing fluorescent heterogeneities. Such measurements simulate in vivo data that would be obtained employing a scanning, time-domain fluorescence mammograph, where the breast is gently compressed between two parallel glass plates, and source and detector optical fibers scan synchronously at various source-detector offsets, allowing the recording of laser and fluorescence mammograms. The diffusion equations modeling the propagation of the laser and fluorescence radiation were solved in frequency domain by the finite element method simultaneously for several modulation frequencies using Fourier transformation and preprocessed experimental data. To reconstruct the concentration of the fluorescent contrast agent, the Born approximation including higher-order reconstructed photon densities at the excitation wavelength was used. Axial resolution was determined that can be achieved by various detection schemes. We show that remission measurements increase the depth resolution significantly.
Collapse
Affiliation(s)
- Ronny Ziegler
- Philips Research Europe-Hamburg, Röntgenstrasse 24, 22335 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Azizi L, Zarychta K, Ettori D, Tinet E, Tualle JM. Ultimate spatial resolution with Diffuse Optical Tomography. OPTICS EXPRESS 2009; 17:12132-12144. [PMID: 19582128 DOI: 10.1364/oe.17.012132] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We evaluate the ultimate transverse spatial resolution that can be expected in Diffuse Optical Tomography, in the configuration of projection imaging. We show how such a performance can be approached using time-resolved measurements and reasonable assumptions, in the context of a linearized diffusion model.
Collapse
Affiliation(s)
- Leila Azizi
- Laboratoire de Physique des Lasers, CNRS UMR 7538, Université Paris 13, 99 av J-B Clément, 93430 Villetaneuse, France
| | | | | | | | | |
Collapse
|
44
|
Nielsen T, Brendel B, Ziegler R, van Beek M, Uhlemann F, Bontus C, Koehler T. Linear image reconstruction for a diffuse optical mammography system in a noncompressed geometry using scattering fluid. APPLIED OPTICS 2009; 48:D1-13. [PMID: 19340097 DOI: 10.1364/ao.48.0000d1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Diffuse optical tomography (DOT) is a potential new imaging modality to detect or monitor breast lesions. Recently, Philips developed a new DOT system capable of transmission and fluorescence imaging, where the investigated breast is hanging freely into the measurement cup containing scattering fluid. We present a fast and robust image reconstruction algorithm that is used for the transmission measurements. The algorithm is based on the Rytov approximation. We show that this algorithm can be used over a wide range of tissue optical properties if the reconstruction is adapted to each patient. We use estimates of the breast shape and average tissue optical properties to initialize the reconstruction, which improves the image quality significantly. We demonstrate the capability of the measurement system and reconstruction to image breast lesions by clinical examples.
Collapse
Affiliation(s)
- Tim Nielsen
- Tomographic Imaging Systems, Philips Research, Röntgenstrasse 24, 22335 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Ermilov SA, Khamapirad T, Conjusteau A, Leonard MH, Lacewell R, Mehta K, Miller T, Oraevsky AA. Laser optoacoustic imaging system for detection of breast cancer. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:024007. [PMID: 19405737 DOI: 10.1117/1.3086616] [Citation(s) in RCA: 278] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We designed, fabricated and tested the laser optoacoustic imaging system for breast cancer detection (LOIS-64), which fuses optical and acoustic imaging techniques in one modality by utilizing pulsed optical illumination and ultrawide-band ultrasonic detection of resulting optoacoustic (OA) signals. The system was designed to image a single breast slice in craniocaudal or mediolateral projection with an arc-shaped array of 64 ultrawide-band acoustic transducers. The system resolution on breast phantoms was at least 0.5 mm. The single-channel sensitivity of 1.66 mVPa was estimated to be sufficient for single-pulse imaging of 6 to 11 mm tumors through the whole imaging slice of the breast. The implemented signal processing using the wavelet transform allowed significant reduction of the low-frequency (LF) acoustic noise, allowed localization of the optoacoustic signals from tumors, and enhanced the contrast and sharpened the boundaries of the optoacoustic images of the tumors. During the preliminary clinical studies on 27 patients, the LOIS-64 was able to visualize 18 out of 20 malignant lesions suspected from mammography and ultrasound images and confirmed by the biopsy performed after the optoacoustic tomography (OAT) procedure.
Collapse
Affiliation(s)
- Sergey A Ermilov
- Fairway Medical Technologies, Inc., 9431 West Sam Houston Parkway South, Houston, Texas 77099, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Choe R, Konecky SD, Corlu A, Lee K, Durduran T, Busch DR, Pathak S, Czerniecki BJ, Tchou J, Fraker DL, Demichele A, Chance B, Arridge SR, Schweiger M, Culver JP, Schnall MD, Putt ME, Rosen MA, Yodh AG. Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:024020. [PMID: 19405750 PMCID: PMC2782703 DOI: 10.1117/1.3103325] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We have developed a novel parallel-plate diffuse optical tomography (DOT) system for three-dimensional in vivo imaging of human breast tumor based on large optical data sets. Images of oxy-, deoxy-, and total hemoglobin concentration as well as blood oxygen saturation and tissue scattering were reconstructed. Tumor margins were derived using the optical data with guidance from radiology reports and magnetic resonance imaging. Tumor-to-normal ratios of these endogenous physiological parameters and an optical index were computed for 51 biopsy-proven lesions from 47 subjects. Malignant cancers (N=41) showed statistically significant higher total hemoglobin, oxy-hemoglobin concentration, and scattering compared to normal tissue. Furthermore, malignant lesions exhibited a twofold average increase in optical index. The influence of core biopsy on DOT results was also explored; the difference between the malignant group measured before core biopsy and the group measured more than 1 week after core biopsy was not significant. Benign tumors (N=10) did not exhibit statistical significance in the tumor-to-normal ratios of any parameter. Optical index and tumor-to-normal ratios of total hemoglobin, oxy-hemoglobin concentration, and scattering exhibited high area under the receiver operating characteristic curve values from 0.90 to 0.99, suggesting good discriminatory power. The data demonstrate that benign and malignant lesions can be distinguished by quantitative three-dimensional DOT.
Collapse
Affiliation(s)
- Regine Choe
- University of Pennsylvania, Department of Physics, 209 S. 33rd Street, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ziegler R, Brendel B, Rinneberg H, Nielsen T. Investigation of detection limits for diffuse optical tomography systems: II. Analysis of slab and cup geometry for breast imaging. Phys Med Biol 2008; 54:413-31. [DOI: 10.1088/0031-9155/54/2/016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
48
|
Poellinger A, Martin JC, Ponder SL, Freund T, Hamm B, Bick U, Diekmann F. Near-infrared laser computed tomography of the breast first clinical experience. Acad Radiol 2008; 15:1545-53. [PMID: 19000871 DOI: 10.1016/j.acra.2008.07.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 07/25/2008] [Accepted: 07/26/2008] [Indexed: 11/28/2022]
Abstract
RATIONALE AND OBJECTIVES The purpose of the present study was to evaluate a near-infrared (NIR) laser breast imaging system (Computed Tomography Laser Mammography [CTLM]) as an adjunct to mammography by means of receiver-operating characteristic (ROC) analysis. The NIR technique used in this study is based on the absorption of NIR light by hemoglobin. Malignant tumors can be detected by imaging their neovascularization. MATERIALS AND METHODS Eighty-two patients were examined by both CTLM and mammography. Seventy-nine of the 82 patients underwent biopsies, and three patients had 2-year follow up. Three-dimensional scans were acquired with an NIR laser computed tomographic scanner (the CTLM system) at a slice thickness of 4 mm. Mammograms were analyzed alone and together with CTLM images. RESULTS Histology revealed 37 benign and 42 malignant lesions. For the combination of mammography and CTLM, the area under the ROC curve was significantly larger than for mammography alone. In addition, it was shown that the difference in area under the ROC curve between the combination of both methods and mammography alone was considerably larger for dense breasts than for radiolucent breasts, although these differences were not statistically significant. CONCLUSION CTLM, used as an adjunct, may serve as a feasible tool to improve the diagnostic capabilities of mammography.
Collapse
Affiliation(s)
- Alexander Poellinger
- Department of Radiology, Campus Charité Virchow Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
Lee SB, Hassan M, Fisher R, Chertov O, Chernomordik V, Kramer-Marek G, Gandjbakhche A, Capala J. Affibody molecules for in vivo characterization of HER2-positive tumors by near-infrared imaging. Clin Cancer Res 2008; 14:3840-9. [PMID: 18559604 PMCID: PMC3398736 DOI: 10.1158/1078-0432.ccr-07-4076] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE HER2 overexpression has been associated with a poor prognosis and resistance to therapy in breast cancer patients. We are developing molecular probes for in vivo quantitative imaging of HER2 receptors using near-infrared (NIR) optical imaging. The goal is to provide probes that will minimally interfere with the studied system, that is, whose binding does not interfere with the binding of the therapeutic agents and whose effect on the target cells is minimal. EXPERIMENTAL DESIGN We used three different types of HER2-specific Affibody molecules [monomer ZHER2:342, dimer (ZHER2:477)2, and albumin-binding domain-fused-(ZHER2:342)2] as targeting agents and labeled them with Alexa Fluor dyes. Trastuzumab was also conjugated, using commercially available kits, as a standard control. The resulting conjugates were characterized in vitro by toxicity assays, Biacore affinity measurements, flow cytometry, and confocal microscopy. Semiquantitative in vivo NIR optical imaging studies were carried out using mice with s.c. xenografts of HER2-positive tumors. RESULTS The HER2-specific Affibody molecules were not toxic to HER2-overexpressing cells and their binding to HER2 did interfere with neither binding nor effectives of trastuzumab. The binding affinities and specificities of the Affibody-Alexa Fluor fluorescent conjugates to HER2 were unchanged or minimally affected by the modifications. Pharmacokinetics and biodistribution studies showed the albumin-binding domain-fused-(ZHER2:342)2-Alexa Fluor 750 conjugate to be an optimal probe for optical imaging of HER2 in vivo. CONCLUSION Our results suggest that Affibody-Alexa Fluor conjugates may be used as a specific NIR probe for the noninvasive semiquantitative imaging of HER2 expression in vivo.
Collapse
Affiliation(s)
- Sang Bong Lee
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Moinuddin Hassan
- Section on Biomedical Stochastic Physics, Laboratory of Integrative and Medical Biophysics, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Robert Fisher
- Protein Chemistry Laboratory, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD
| | - Oleg Chertov
- Protein Chemistry Laboratory, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD
| | - Victor Chernomordik
- Section on Biomedical Stochastic Physics, Laboratory of Integrative and Medical Biophysics, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Gabriela Kramer-Marek
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Amir Gandjbakhche
- Section on Biomedical Stochastic Physics, Laboratory of Integrative and Medical Biophysics, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Jacek Capala
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| |
Collapse
|
50
|
Grosenick D, Kummrow A, Macdonald R, Schlag PM, Rinneberg H. Evaluation of higher-order time-domain perturbation theory of photon diffusion on breast-equivalent phantoms and optical mammograms. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:061908. [PMID: 18233870 DOI: 10.1103/physreve.76.061908] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 09/21/2007] [Indexed: 05/25/2023]
Abstract
Time-domain perturbation theory of photon diffusion up to third order was evaluated for its accuracy in deducing optical properties of breast tumors using simulated and physical phantoms and by analyzing 141 projection mammograms of 87 patients with histology-validated tumors that had been recorded by scanning time-domain optical mammography. The slightly compressed breast was modeled as (partially) homogeneous diffusely scattering infinite slab containing a scattering and absorbing spherical heterogeneity representing the tumor. Photon flux densities were calculated from densities of transmitted photons, assuming extended boundary conditions. Explicit formulas are provided for second-order changes in transmitted photon density due to the presence of absorbers or scatterers. The results on phantoms obtained by perturbation theory carried up to third order were compared with measured temporal point spread functions, with numerical finite-element method (FEM) simulations of transmitted photon flux density, with results obtained from the diffraction of diffuse photon density waves, and from Padé approximants. The breakdown of first-, second-, and third-order perturbation theory is discussed for absorbers and a general expression was derived for the convergence of the Born series in this case. Taking tumor optical properties derived by the diffraction model as reference we conclude that estimates of tumor absorption coefficients by perturbation theory agree with reference values within +/-25% in only 65% (first order), 66% (second order), and 77% (third order) of all mammograms analyzed. In the remaining cases tumor absorption is generally underestimated due to the breakdown of perturbation theory. On average the empirical Padé approximants yield tumor absorption coefficients similar to third-order perturbation theory, yet at noticeable lower computational efforts.
Collapse
Affiliation(s)
- D Grosenick
- Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, Berlin, Germany
| | | | | | | | | |
Collapse
|