1
|
Chetty IJ, Cai B, Chuong MD, Dawes SL, Hall WA, Helms AR, Kirby S, Laugeman E, Mierzwa M, Pursley J, Ray X, Subashi E, Henke LE. Quality and Safety Considerations for Adaptive Radiation Therapy: An ASTRO White Paper. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)03474-6. [PMID: 39424080 DOI: 10.1016/j.ijrobp.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/06/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE Adaptive radiation therapy (ART) is the latest topic in a series of white papers published by the American Society for Radiation Oncology addressing quality processes and patient safety. ART widens the therapeutic index by improving the precision of radiation dose to targets, allowing for dose escalation and/or minimization of dose to normal tissue. ART is performed via offline or online methods; offline ART is the process of replanning a patient's treatment plan between fractions, whereas online ART involves plan adjustment with the patient on the treatment table. This is achieved with in-room imaging capable of assessing anatomic changes and the ability to reoptimize the treatment plan rapidly during the treatment session. Although ART has occurred in its simplest forms in clinical practice for decades, recent technological developments have enabled more clinical applications of ART. With increased clinical prevalence, compressed timelines, and the associated complexity of ART, quality and safety considerations are an important focus area. METHODS The American Society for Radiation Oncology convened an interdisciplinary task force to provide expert consensus on key workflows and processes for ART. Recommendations were created using a consensus-building methodology, and task force members indicated their level of agreement based on a 5-point Likert scale, from "strongly agree" to "strongly disagree." A prespecified threshold of ≥75% of raters selecting "strongly agree" or "agree" indicated consensus. Content not meeting this threshold was removed or revised. SUMMARY Establishing and maintaining an adaptive program requires a team-based approach, appropriately trained and credentialed specialists, significant resources, specialized technology, and implementation time. A comprehensive quality assurance program must be developed, using established guidance, to make sure all forms of ART are performed in a safe and effective manner. Patient safety when delivering ART is everyone's responsibility, and professional organizations, regulators, vendors, and end users must demonstrate a clear commitment to working together to deliver the highest levels of quality and safety.
Collapse
Affiliation(s)
- Indrin J Chetty
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Bin Cai
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, Texas
| | - Michael D Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | | | - William A Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Amanda R Helms
- American Society for Radiation Oncology, Arlington, Virginia
| | - Suzanne Kirby
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia
| | - Eric Laugeman
- Department of Radiation Oncology, Washington University in St Louis, St Louis, Missouri
| | - Michelle Mierzwa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Jennifer Pursley
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Xenia Ray
- Department of Radiation Medicine & Applied Sciences, University of California, San Diego, California
| | - Ergys Subashi
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lauren E Henke
- Department of Radiation Oncology, Case Western University Hospitals, Cleveland, Ohio
| |
Collapse
|
2
|
Yan L, Xu Y, Dai J. Impact of 1.5 T Magnetic Field on Treatment Plan Quality in MR-Guided Radiotherapy: Typical Phantom Test Cases. Technol Cancer Res Treat 2024; 23:15330338241272038. [PMID: 39106410 PMCID: PMC11307342 DOI: 10.1177/15330338241272038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 08/09/2024] Open
Abstract
PURPOSE This study aims to investigate the influence of the magnetic field on treatment plan quality using typical phantom test cases, which encompass a circle target test case, AAPM TG119 test cases (prostate, head-and-neck, C-shape, multi-target test cases), and a lung test case. MATERIALS AND METHODS For the typical phantom test cases, two plans were formulated. The first plan underwent optimization in the presence of a 1.5 Tesla magnetic field (1.5 T plan). The second plan was re-optimized without a magnetic field (0 T plan), utilizing the same optimization conditions as the first plan. The two plans were compared based on various parameters, including con-formity index (CI), homogeneity index (HI), fit index (FI) and dose coverage of the planning target volume (PTV), dose delivered to organs at risk (OARs) and normal tissue (NT), monitor unit (MU). A plan-quality metric (PQM) scoring procedure was employed. For the 1.5 T plans, dose verifications were performed using an MR-compatible ArcCHECK phantom. RESULTS A smaller dose influence of the magnetic field was found for the circle target, prostate, head-and-neck, and C-shape test cases, compared with the multi-target and lung test cases. In the multi-target test case, the significant dose influence was on the inferior PTV, followed by the superior PTV. There was a relatively large dose influence on the PTV and OARs for lung test case. No statistically significant differences in PQM and MUs were observed. For the 1.5 T plans, gamma passing rates were all higher than 95% with criteria of 2 mm/3% and 2 mm/2%. CONCLUSION The presence of a 1.5 T magnetic field had a relatively large impact on dose parameters in the multi-target and lung test cases compared with other test cases. However, there were no significant influences on the plan-quality metric, MU and dose accuracy for all test cases.
Collapse
Affiliation(s)
- Lingling Yan
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingjie Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianrong Dai
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Li Y, Li B, Zhu J, Yin Y, Li Z. Assessing the Impact of a 1.5 T Transverse Magnetic Field in Radiotherapy for Esophageal Cancer Patients. Technol Cancer Res Treat 2024; 23:15330338241227291. [PMID: 38258381 PMCID: PMC10807384 DOI: 10.1177/15330338241227291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Purpose: Magnetic resonance (MR)-guided radiotherapy enables visualization of static anatomy, capturing tumor motion, and extracting quantitative image features for treatment verification and outcome monitoring. However, magnetic fields in online MR imaging (MRI) require efforts to ensure accurate dose measurements. This study aimed to assess the dosimetric impact of a 1.5 T magnetic field in esophageal cancer radiotherapy using MR-linac, exploring treatment adaptation potential and personalized medicine benefits. Methods: A prospective cohort study enrolled 100 esophageal squamous cell carcinoma patients undergoing 4DCT and 3DCT scans before radiotherapy. The heart was contoured on 3DCT, 4DCT end expiration (EE), and 4DCT end inhalation (EI) images by the same radiation oncologist. Reference RT plans were designed on 3DCT, with adjustments for different phases generating 5 plan types per patient. Variations in dose-volume parameters for organs at risk and the target area among different plans were compared using Monaco 5.40.04. Results: Slight dose distortions at air-tissue interfaces were observed in the magnetic field's presence. Dose at air-tissue interfaces (chest wall and heart wall) was slightly higher in some patients (3.0% tissue increased by 4.3 Gy on average) compared to nonmagnetic conditions. Average clinical target volume coverage V100 dropped from 99% to 95% compared to reference plans (planEI and planEE). Dose-volume histogram variation between the original plan and reference plans was within 2.3%. Superior-inferior (SI) direction displacement was significantly larger than lateral and anterior-posterior directions (P < .05). Conclusion: Significant SI direction shift in lower esophageal cancerous regions during RT indicates the magnetic field's dosimetric impact, including the electron return effect at tissue-air boundaries. Changes in OAR dose could serve as valuable indicators of organ impairment and target dose alterations, especially for cardiac tissue when using the 1.5 T linac method. Reoptimizing the plan with the magnetic field enhances the feasibility of achieving a clinically acceptable treatment plan for esophageal cancer patients.
Collapse
Affiliation(s)
- Yukun Li
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan City, China
| | - Baosheng Li
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan City, China
| | - Jian Zhu
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan City, China
| | - Yong Yin
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan City, China
| | - Zhenjiang Li
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan City, China
| |
Collapse
|
4
|
Low DA, Fallone BG, Raaymakers BW. MRI-Guided Radiation Therapy Systems. Semin Radiat Oncol 2024; 34:14-22. [PMID: 38105089 DOI: 10.1016/j.semradonc.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
MR-Guided Radiation Therapy (MRIgRT) has been made possible only due to the ingenuity and commitment of commercial radiation therapy system vendors. Unlike conventional linear accelerator systems, MRIgRT systems have had to overcome significant and previously untested techniques to integrate the MRI systems with the radiation therapy delivery systems. Each of these three commercial systems has developed different approaches to integrating their MR and Linac functions. Each has also decided on a different main magnetic field strength, from 0.35T to 1.5T, as well as different design philosophies for other systems, such as the patient support assembly and treatment planning workflow. This paper is intended to provide the reader with a detailed understanding of each system's configuration so that the reader can better interpret the scientific literature concerning these commercial MRIgRT systems.
Collapse
Affiliation(s)
| | - B Gino Fallone
- Medical Physics Division, Oncology and Medical Physics Training Programs, University of Alberta and Medical Physics Department Cross Cancer Institute, Edmonton, AB, Canada
| | - Bas W Raaymakers
- Department of Radiotherapy, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
5
|
Liu X, Yin P, Li T, Yin Y, Li Z. Influence and optimization strategy of the magnetic field in 1.5 T MR-linac liver stereotactic radiotherapy. Radiat Oncol 2023; 18:162. [PMID: 37794505 PMCID: PMC10548616 DOI: 10.1186/s13014-023-02356-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
OBJECTIVE To compare intensity reduction plans for liver cancer with or without a magnetic field and optimize field and subfield numbers in the intensity-modulated radiotherapy (IMRT) plans designed for liver masses in different regions. METHODS This retrospective study included 62 patients who received radiotherapy for liver cancer at Shandong Cancer Hospital. Based on each patient's original individualized intensity-modulated plan (plan1.5 T), a magnetic field-free plan (plan0 T) and static intensity-modulated plan with four different optimization schemes were redesigned for each patient. The differences in dosimetric parameters among plans were compared. RESULTS In the absence of a magnetic field in the first quadrant, PTV Dmin increased (97.75 ± 17.55 vs. 100.96 ± 22.78)%, Dmax decreased (121.48 ± 29.68 vs. 119.06 ± 28.52)%, D98 increased (101.35 ± 7.42 vs. 109.35 ± 26.52)% and HI decreased (1.14 ± 0.14 vs. 1.05 ± 0.01). In the absence of a magnetic field in the second quadrant, PTV Dmin increased (84.33 ± 19.74 vs. 89.96 ± 21.23)%, Dmax decreased (105 ± 25.08 vs. 104.05 ± 24.86)%, and HI decreased (1.04 ± 0.25 vs. 0.99 ± 0.24). In the absence of a magnetic field in the third quadrant, PTV Dmax decreased (110.21 ± 2.22 vs. 102.31 ± 26)%, L-P V30 decreased (10.66 ± 9.19 vs. 5.81 ± 3.22)%, HI decreased (1.09 ± 0.02 vs. 0.98 ± 0.25), and PTV Dmin decreased (92.12 ± 4.92 vs. 89.1 ± 22.35)%. In the absence of a magnetic field in the fourth quadrant, PTV Dmin increased (89.78 ± 6.72 vs. 93.04 ± 4.86)%, HI decreased (1.09 ± 0.01 vs. 1.05 ± 0.01) and D98 increased (99.82 ± 0.82 vs. 100.54 ± 0.84)%. These were all significant differences. In designing plans for tumors in each liver region, a total number of subfields in the first area of 60, total subfields in the second zone of 80, and total subfields in the third and fourth zones of 60 or 80 can achieve the dose effect without a magnetic field. CONCLUSION In patients with liver cancer, the effect of a magnetic field on the target dose is more significant than that on doses to organs at risk. By controlling the max total number of subfields in different quadrants, the effect of the magnetic field can be greatly reduced or even eliminated.
Collapse
Affiliation(s)
- Xin Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Peijun Yin
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Tengxiang Li
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China
| | - Yong Yin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Zhenjiang Li
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
6
|
Patterson E, Stokes P, Cutajar D, Rosenfeld A, Baines J, Metcalfe P, Powers M. High-resolution entry and exit surface dosimetry in a 1.5 T MR-linac. Phys Eng Sci Med 2023; 46:787-800. [PMID: 36988905 DOI: 10.1007/s13246-023-01251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
The magnetic field of a transverse MR-linac alters electron trajectories as the photon beam transits through materials, causing lower doses at flat entry surfaces and increased doses at flat beam-exiting surfaces. This study investigated the response of a MOSFET detector, known as the MOSkin™, for high-resolution surface and near-surface percentage depth dose measurements on an Elekta Unity. Simulations with Geant4 and the Monaco treatment planning system (TPS), and EBT-3 film measurements, were also performed for comparison. Measured MOSkin™ entry surface doses, relative to Dmax, were (9.9 ± 0.2)%, (10.1 ± 0.3)%, (11.3 ± 0.6)%, (12.9 ± 1.0)%, and (13.4 ± 1.0)% for 1 × 1 cm2, 3 × 3 cm2, 5 × 5 cm2, 10 × 10 cm2, and 22 × 22 cm2 fields, respectively. For the investigated fields, the maximum percent differences of Geant4, TPS, and film doses extrapolated and interpolated to a depth suitable for skin dose assessment at the beam entry, relative to MOSkin™ measurements at an equivalent depth were 1.0%, 2.8%, and 14.3%, respectively, and at a WED of 199.67 mm at the beam exit, 3.2%, 3.7% and 5.7%, respectively. The largest measured increase in exit dose, due to the electron return effect, was 15.4% for the 10 × 10 cm2 field size using the MOSkin™ and 17.9% for the 22 × 22 cm2 field size, using Geant4 calculations. The results presented in the study validate the suitability of the MOSkin™ detector for transverse MR-linac surface dosimetry.
Collapse
Affiliation(s)
- E Patterson
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.
| | - P Stokes
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
| | - D Cutajar
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - A Rosenfeld
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - J Baines
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - P Metcalfe
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - M Powers
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
7
|
MRI-guided Radiotherapy (MRgRT) for treatment of Oligometastases: Review of clinical applications and challenges. Int J Radiat Oncol Biol Phys 2022; 114:950-967. [PMID: 35901978 DOI: 10.1016/j.ijrobp.2022.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022]
Abstract
PURPOSE Early clinical results on the application of magnetic resonance imaging (MRI) coupled with a linear accelerator to deliver MR-guided radiation therapy (MRgRT) have demonstrated feasibility for safe delivery of stereotactic body radiotherapy (SBRT) in treatment of oligometastatic disease. Here we set out to review the clinical evidence and challenges associated with MRgRT in this setting. METHODS AND MATERIALS We performed a systematic review of the literature pertaining to clinical experiences and trials on the use of MRgRT primarily for the treatment of oligometastatic cancers. We reviewed the opportunities and challenges associated with the use of MRgRT. RESULTS Benefits of MRgRT pertaining to superior soft-tissue contrast, real-time imaging and gating, and online adaptive radiotherapy facilitate safe and effective dose escalation to oligometastatic tumors while simultaneously sparing surrounding healthy tissues. Challenges concerning further need for clinical evidence and technical considerations related to planning, delivery, quality assurance (QA) of hypofractionated doses, and safety in the MRI environment must be considered. CONCLUSIONS The promising early indications of safety and effectiveness of MRgRT for SBRT-based treatment of oligometastatic disease in multiple treatment locations should lead to further clinical evidence to demonstrate the benefit of this technology.
Collapse
|
8
|
Omari EA, Zhang Y, Ahunbay E, Paulson E, Amjad A, Chen X, Liang Y, Li XA. Multi parametric magnetic resonance imaging for radiation treatment planning. Med Phys 2022; 49:2836-2845. [PMID: 35170769 DOI: 10.1002/mp.15534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/05/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022] Open
Abstract
In recent years, multi-parametric magnetic resonance imaging (MpMRI) has played a major role in radiation therapy treatment planning. The superior soft tissue contrast, functional or physiological imaging capabilities and the flexibility of site-specific image sequence development has placed MpMRI at the forefront. In this article, the present status of MpMRI for external beam radiation therapy planning is reviewed. Common MpMRI sequences, preprocessing and QA strategies are briefly discussed, and various image registration techniques and strategies are addressed. Image segmentation methods including automatic segmentation and deep learning techniques for organs at risk and target delineation are reviewed. Due to the advancement in MRI guided online adaptive radiotherapy, treatment planning considerations addressing MRI only planning are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Eenas A Omari
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ying Zhang
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ergun Ahunbay
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Eric Paulson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Asma Amjad
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Xinfeng Chen
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ying Liang
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| |
Collapse
|
9
|
Wang MH, Kim A, Ruschin M, Tan H, Soliman H, Myrehaug S, Detsky J, Husain Z, Atenafu EG, Keller B, Sahgal A, Tseng CL. Comparison of Prospectively Generated Glioma Treatment Plans Clinically Delivered on Magnetic Resonance Imaging (MRI)-Linear Accelerator (MR-Linac) Versus Conventional Linac: Predicted and Measured Skin Dose. Technol Cancer Res Treat 2022; 21:15330338221124695. [PMID: 36071647 PMCID: PMC9459463 DOI: 10.1177/15330338221124695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction: Magnetic resonance imaging-linear accelerator
radiotherapy is an innovative technology that requires special consideration for
secondary electron interactions within the magnetic field, which can alter dose
deposition at air–tissue interfaces. As part of ongoing quality assurance and
quality improvement of new radiotherapy technologies, the purpose of this study
was to evaluate skin dose modelled from the treatment planning systems of a
magnetic resonance imaging-linear accelerator and a conventional linear
accelerator, and then correlate with in vivo measurements of delivered skin dose
from each linear accelerator. Methods: In this prospective cohort
study, 37 consecutive glioma patients had treatment planning completed and
approved prior to radiotherapy initiation using commercial treatment planning
systems: a Monte Carlo-based algorithm for magnetic resonance imaging-linear
accelerator or a convolution-based algorithm for conventional linear
accelerator. In vivo skin dose was measured using an optically stimulated
luminescent dosimeter. Results: Monte Carlo-based magnetic
resonance imaging-linear accelerator plans and convolution-based conventional
linear accelerator plans had similar dosimetric parameters for target volumes
and organs-at-risk. However, magnetic resonance imaging-linear accelerator plans
had 1.52 Gy higher mean dose to air cavities (P < .0001) and
1.10 Gy higher mean dose to skin (P < .0001). In vivo skin
dose was 14.5% greater for magnetic resonance imaging-linear accelerator
treatments (P = .0027), and was more accurately predicted by
Monte Carlo-based calculation (ρ = 0.95,
P < .0001) versus convolution-based
(ρ = 0.80, P = .0096).
Conclusion: This is the first prospective dosimetric comparison
of glioma patients clinically treated on both magnetic resonance imaging-linear
accelerator and conventional linear accelerator. Our findings suggest that skin
doses were significantly greater with magnetic resonance imaging-linear
accelerator plans but correlated better with in vivo measurements of actual skin
dose from delivered treatments. Future magnetic resonance imaging-linear
accelerator planning processes are being designed to account for skin dosimetry
and treatment delivery.
Collapse
Affiliation(s)
- Michael H Wang
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, 7938University of Toronto, Toronto, Ontario, Canada
| | - Anthony Kim
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, 7938University of Toronto, Toronto, Ontario, Canada.,Department of Medical Physics, Sunnybrook Odette Cancer Centre, 7938University of Toronto, Toronto, Ontario, Canada
| | - Mark Ruschin
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, 7938University of Toronto, Toronto, Ontario, Canada.,Department of Medical Physics, Sunnybrook Odette Cancer Centre, 7938University of Toronto, Toronto, Ontario, Canada
| | - Hendrick Tan
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, 7938University of Toronto, Toronto, Ontario, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, 7938University of Toronto, Toronto, Ontario, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, 7938University of Toronto, Toronto, Ontario, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, 7938University of Toronto, Toronto, Ontario, Canada
| | - Zain Husain
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, 7938University of Toronto, Toronto, Ontario, Canada
| | - Eshetu G Atenafu
- Department of Biostatistics, 7989University Health Network, 7938University of Toronto, Toronto, Ontario, Canada
| | - Brian Keller
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, 7938University of Toronto, Toronto, Ontario, Canada.,Department of Medical Physics, Sunnybrook Odette Cancer Centre, 7938University of Toronto, Toronto, Ontario, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, 7938University of Toronto, Toronto, Ontario, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, 7938University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Boekhoff M, Defize I, Borggreve A, van Hillegersberg R, Kotte A, Lagendijk J, van Lier A, Ruurda J, Takahashi N, Mook S, Meijer G. An in-silico assessment of the dosimetric benefits of MR-guided radiotherapy for esophageal cancer patients. Radiother Oncol 2021; 162:76-84. [PMID: 34237345 DOI: 10.1016/j.radonc.2021.06.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/17/2021] [Accepted: 06/26/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE To assess the dosimetric benefits of online MR-guided radiotherapy (MRgRT) for esophageal cancer patients and to assess how these benefits could be translated into a local boosting strategy to improve future outcomes. METHODS Twenty-nine patients were in-silico treated with both a MRgRT regimen and a conventional image guided radiotherapy (IGRT) regimen using dose warping techniques. Here, the inter and intrafractional changes that occur over the course of treatment (as derived from 5 MRI scans that were acquired weekly during treatment) were incorporated to assess the total accumulated dose for each regimen. RESULTS A significant reduction in dose to the organs-at-risk (OARs) was observed for all dose-volume-histogram (DVH) parameters for the MRgRT regimen without concessions to target coverage compared to the IGRT regimen. The mean lung dose was reduced by 28%, from 7.9 to 5.7 Gy respectively and V20Gy of the lungs was reduced by 55% (6.3-2.8%). A reduction of 24% was seen in mean heart dose (14.8-11.2 Gy), while the V25Gy of the heart was decreased by 53% (14.3-6.7%) and the V40Gy of the heart was decreased by 69% (3.9-1.2%). In addition, MRgRT dose escalation regimens with a boost up to 66% of the prescription dose to the primary tumor yielded approximately the same dose levels to the OARs as from the conventional IGRT regimen. CONCLUSION This study revealed that MRgRT for esophageal cancer has the potential to significantly reduce the dose to heart and lungs. In addition, online high precision targeting of the primary tumor opens new perspectives for local boosting strategies to improve outcome of the local management of this disease.
Collapse
Affiliation(s)
- Mick Boekhoff
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, The Netherlands.
| | - Ingmar Defize
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, The Netherlands; Department of Surgery, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Alicia Borggreve
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, The Netherlands; Department of Surgery, University Medical Center Utrecht, Utrecht University, The Netherlands
| | | | - Alexis Kotte
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Jan Lagendijk
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Astrid van Lier
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Jelle Ruurda
- Department of Surgery, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Noriyoshi Takahashi
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, The Netherlands; Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Stella Mook
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Gert Meijer
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, The Netherlands.
| |
Collapse
|
11
|
Corradini S, Alongi F, Andratschke N, Azria D, Bohoudi O, Boldrini L, Bruynzeel A, Hörner-Rieber J, Jürgenliemk-Schulz I, Lagerwaard F, McNair H, Raaymakers B, Schytte T, Tree A, Valentini V, Wilke L, Zips D, Belka C. ESTRO-ACROP recommendations on the clinical implementation of hybrid MR-linac systems in radiation oncology. Radiother Oncol 2021; 159:146-154. [PMID: 33775715 DOI: 10.1016/j.radonc.2021.03.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 01/11/2023]
Abstract
Online magnetic resonance-guided radiotherapy (oMRgRT) represents one of the most innovative applications of current image-guided radiation therapy (IGRT). The revolutionary concept of oMRgRT systems is the ability to acquire MR images for adaptive treatment planning and also online imaging during treatment delivery. The daily adaptive planning strategies allow to improve targeting accuracy while avoiding critical structures. This ESTRO-ACROP recommendation aims to provide an overview of available systems and guidance for best practice in the implementation phase of hybrid MR-linac systems. Unlike the implementation of other radiotherapy techniques, oMRgRT adds the MR environment to the daily practice of radiotherapy, which might be a new experience for many centers. New issues and challenges that need to be thoroughly explored before starting clinical treatments will be highlighted.
Collapse
Affiliation(s)
- Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany.
| | - Filippo Alongi
- Department of Advanced Radiation Oncology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar-Verona, Italy, University of Brescia, Italy
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| | - David Azria
- Department of Radiation Oncology, University Federation of Radiation Oncology Montpellier-Nîmes, ICM, Montpellier Cancer Institute, University of Montpellier, INSERM U1194, France
| | - Omar Bohoudi
- Department of Radiation Oncology, Amsterdam University Medical Center, location de Boelelaan, The Netherlands
| | - Luca Boldrini
- Department of Bioimaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Anna Bruynzeel
- Department of Radiation Oncology, Amsterdam University Medical Center, location de Boelelaan, The Netherlands
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany, Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Frank Lagerwaard
- Department of Radiation Oncology, Amsterdam University Medical Center, location de Boelelaan, The Netherlands
| | - Helen McNair
- The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, London, United Kingdom
| | - Bas Raaymakers
- Department of Radiation Oncology, University Medical Center Utrecht, The Netherlands
| | - Tine Schytte
- Department of Oncology, Odense University Hospital, Odense, Denmark, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Alison Tree
- The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, London, United Kingdom
| | - Vincenzo Valentini
- Department of Bioimaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Lotte Wilke
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Switzerland
| | - Daniel Zips
- Department of Radiation Oncology, University of Tübingen, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany
| |
Collapse
|
12
|
Tsekas G, Bol GH, Raaymakers BW, Kontaxis C. DeepDose: a robust deep learning-based dose engine for abdominal tumours in a 1.5 T MRI radiotherapy system. Phys Med Biol 2021; 66:065017. [PMID: 33545708 DOI: 10.1088/1361-6560/abe3d1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We present a robust deep learning-based framework for dose calculations of abdominal tumours in a 1.5 T MRI radiotherapy system. For a set of patient plans, a convolutional neural network is trained on the dose of individual multi-leaf-collimator segments following the DeepDose framework. It can then be used to predict the dose distribution per segment for a set of patient anatomies. The network was trained using data from three anatomical sites of the abdomen: prostate, rectal and oligometastatic tumours. A total of 216 patient fractions were used, previously treated in our clinic with fixed-beam IMRT using the Elekta MR-linac. For the purpose of training, 176 fractions were used with random gantry angles assigned to each segment, while 20 fractions were used for the validation of the network. The ground truth data were calculated with a Monte Carlo dose engine at 1% statistical uncertainty per segment. For a total of 20 independent abdominal test fractions with the clinical angles, the network was able to accurately predict the dose distributions, achieving 99.4% ± 0.6% for the whole plan prediction at the 3%/3 mm gamma test. The average dose difference and standard deviation per segment was 0.3% ± 0.7%. Additional dose prediction on one cervical and one pancreatic case yielded high dose agreement of 99.9% and 99.8% respectively for the 3%/3 mm criterion. Overall, we show that our deep learning-based dose engine calculates highly accurate dose distributions for a variety of abdominal tumour sites treated on the MR-linac, in terms of performance and generality.
Collapse
Affiliation(s)
- G Tsekas
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | | | | | | |
Collapse
|
13
|
Impact of field number and beam angle on ERE for lung stereotactic body radiotherapy with 1.5T MR-Linac. Cancer Radiother 2021; 25:366-372. [PMID: 33622638 DOI: 10.1016/j.canrad.2021.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE To investigate the impact of field number and beam angle on ERE during IMRT planning with 1.5T MR-Linac for lung stereotactic body radiotherapy (SBRT). MATERIAL AND METHODS IMRT plans for three representative lung cases who treated with 1.5T MR-Linac were generated using TPS Monaco 5.40.01. In each case, five types of plans were generated: (1) the "original plan" generated using 5-fields and beam angles manually optimized in ipsilateral tumor side, with no transverse magnetic field (TMF); (2) the plans generated by reoptimizing and recalculating the original plan, with a 1.5T TMF; (3) the plans generated with 5-fields, with beam angles manually optimized in anterior-posterior (AP) direction; (4) the plans generated with equidistant 5-fields; and (5) the plans generated with equidistant 9-fields. These plans were compared using a variety of dose-volume-parameters (DVPs). RESULTS The DVPs under TMF showed the presence of 1.5T TMF can slightly change for all lung cases studied. When the plans generated with beam angles manually optimized in anterior-posterior direction, results showed that the plans improved conformity and homogeneity for PTV and reduced the dose to tissue surface. Furthermore, the results showed that the equidistant/non-equidistant comparison of the previous target anatomy result in a more favourable dose distribution for the equidistant beam setting. At last, the results showed the dose distributions for PTV with 9 and 5 equidistant beams were not significantly different. CONCLUSION The plan quality can be significantly changed by the presence of a 1.5T TMF for lung SBRT with MR-Linac. The selection of optimal fields number and beam angle can substantially reduce or even eliminate these changes, without deteriorating overall plan quality.
Collapse
|
14
|
Xia W, Zhang K, Li M, Tian Y, Men K, Wang J, Yi J, Li Y, Dai J. Impact of Magnetic Field on Dose Distribution in MR-Guided Radiotherapy of Head and Neck Cancer. Front Oncol 2020; 10:1739. [PMID: 33014859 PMCID: PMC7506127 DOI: 10.3389/fonc.2020.01739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/04/2020] [Indexed: 01/19/2023] Open
Abstract
Purpose This study investigates the impact of the magnetic field on plan quality and dose at the tissue-air interface in MR-guided radiotherapy of head and neck cancer. Materials and Methods The charts of 10 patients with hypopharyngeal carcinoma who were treated with conventional fractionated radiotherapy were collected and reviewed. The skin and tissues containing air cavities were contoured. Three plans using 9 fields of intensity-modulated radiation therapy were generated for each patient in the Monaco treatment planning system of an Elekta Unity MR-linac. The first plan was optimized without the magnetic field (plan0T). The second plan was recalculated in the presence of a 1.5-T magnetic field (plan1.5T_reCal) using the same segment shape and monitor units as the first plan. The third plan was reoptimized in the presence of a 1.5-T magnetic field (plan1.5T_reOpt) using the same cost function as the first plan. The dose to the skin and tissues containing air cavities were compared across the three types of plans. A plan-quality metric method was used to evaluate the plan quality according to the clinical requirements. Results The skin dose was increased in the presence of the 1.5-T magnetic field, and the amplitude increase of plan1.5T_reOpt (ΔDmean 1.30 ± 0.42 Gy, ΔDmax 1.68 ± 1.36 Gy) was smaller than that of plan1.5T_reCal (ΔDmean 1.81 ± 0.79 Gy, ΔDmax 5.43 ± 2.26 Gy). There were no significant differences in terms of the metrics of interfaces of tissues containing air cavities except for an increased maximum dose to the larynx and trachea. The plan quality of plan1.5T_reCal (68.0 ± 9.2) was significantly worse than that of plan0T (82.2 ± 7.0), and the plan quality of plan1.5T_reOpt (80.0 ± 7.0) was similar to that of plan0T. Conclusion The presence of a 1.5-T magnetic field had an apparent impact on the dose distribution, in particular, a significant increase in the skin dose. The plan quality of plan1.5T_reOpt was similar to that of the original plan0T when the same cost function was used.
Collapse
Affiliation(s)
- Wenlong Xia
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ke Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minghui Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Tian
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kuo Men
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingbo Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junlin Yi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yexiong Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianrong Dai
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Shortall J, Vasquez Osorio E, Aitkenhead A, Berresford J, Agnew J, Budgell G, Chuter R, McWilliam A, Kirkby K, Mackay R, van Herk M. Experimental verification the electron return effect around spherical air cavities for the MR-Linac using Monte Carlo calculation. Med Phys 2020; 47:2506-2515. [PMID: 32145087 DOI: 10.1002/mp.14123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Dose deposition around unplanned air cavities during magnetic resonance-guided radiotherapy (MRgRT) is influenced by the electron return effect (ERE). This is clinically relevant for gas forming close to or inside organs at risk (OARs) that lie in the path of a single beam, for example, intestinal track during pelvic treatment. This work aims to verify Monte Carlo calculations that predict the dosimetric effects of ERE around air cavities. For this, we use GafChromic EBT3 film inside poly-methyl methacrylate (PMMA) -air phantoms. METHOD Four PMMA phantoms were produced. Three of the phantoms contained centrally located spherical air cavities (0.5, 3.5, 7.5 cm diameter), and one phantom contained no air. The phantoms were split to sandwich GafChromic EBT3 film in the center. The phantoms were irradiated on an Elekta Unity system using a single 10 × 10 cm2 7-MV photon beam under the influence of a 1.5-T transverse magnetic field. The measurements were replicated using the Elekta Monaco treatment planning system (TPS). Gamma analysis with pass criteria 3%/3 mm was used to compare the measured and calculated dose distributions. We also consider 3%/2 mm, 2%/3 mm, and 2%/2 mm pass criteria for interest. RESULTS The gamma analysis showed that >95% of the points agreed between the TPS-calculated and measured dose distributions, using 3%/3 mm criteria. The phantom containing the largest air cavity had the lowest agreement, with most of the disagreeing points lying inside the air cavity (dose to air region). CONCLUSIONS The dose effects due to ERE around spherical air cavities are being calculated in the TPS with sufficient accuracy for clinical use.
Collapse
Affiliation(s)
- J Shortall
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
| | - E Vasquez Osorio
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
| | - A Aitkenhead
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - J Berresford
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - J Agnew
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - G Budgell
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - R Chuter
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - A McWilliam
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - K Kirkby
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - R Mackay
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - M van Herk
- Department of Cancer Sciences, The University of Manchester, Manchester, UK
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
16
|
Godoy Scripes P, Subashi E, Burleson S, Liang J, Romesser P, Crane C, Mechalakos J, Hunt M, Tyagi N. Impact of varying air cavity on planning dosimetry for rectum patients treated on a 1.5 T hybrid MR-linac system. J Appl Clin Med Phys 2020; 21:144-152. [PMID: 32445292 PMCID: PMC7386179 DOI: 10.1002/acm2.12903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 11/20/2022] Open
Abstract
Purpose To investigate the dosimetric impact of magnetic (B) field on varying air cavities in rectum patients treated on the hybrid 1.5 T MR‐linac. Methods Artificial air cavities of varying diameters (0.0, 1.0, 1.5, 2.0, 2.5, 3.0, and 5.0 cm) were created for four rectum patients (two prone and two supine). A total of 56 plans using a 7 MV flattening filter‐free beam were generated with and without B‐field. Reference intensity‐modulated radiation therapy treatment plans without air cavity in the presence and absence of B‐field were generated to a total dose of 45/50 Gy. The reference plans were copied and recalculated for the varying air cavities. D95(PTV45–PTV50), D95(PTV50–aircavity), V50(PTV50–aircavity), Dmax(PTV50–aircavity), and V110%(PTV50–aircavity) were extracted for each patient. Annulus rings of 1‐mm‐diameter step size were generated for one of the air cavity plans (3.0 cm) for all four patients to determine Dmax (%) and V110% (cc) within each annulus. Results In the presence of B‐field, hot spots at the cavity interface start to become visible at ~1 cm air cavity in both supine and prone positioning due to electron return effect (ERE). In the presence of B‐field Dmax and V110% varied from 5523 ± 49 cGy and 0.09 ± 0.16 cc for 0 cm air cavity size to 6050 ± 109 cGy and 11.6 ± 6.7 cc for 5 cm air cavity size. The hot spots were located within 3 mm inside the rectal‐air interface, where Dmax increased from 110.4 ± 0.5% without B‐field to 119.2 ± 0.8 % with B‐field. Conclusions Air cavities inside rectum affects rectum plan dosimetry due ERE. Location and magnitude of hot spots are dependent on the size of the air cavity.
Collapse
Affiliation(s)
- Paola Godoy Scripes
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Ergys Subashi
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Sarah Burleson
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jiayi Liang
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Paul Romesser
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Christopher Crane
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - James Mechalakos
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Margie Hunt
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
17
|
Cho Y, Farrokhkish M, Norrlinger B, Heaton R, Jaffray D, Islam M. An artificial neural network to model response of a radiotherapy beam monitoring system. Med Phys 2020; 47:1983-1994. [DOI: 10.1002/mp.14033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/26/2019] [Accepted: 01/07/2020] [Indexed: 11/09/2022] Open
Affiliation(s)
- Young‐Bin Cho
- Radiation Medicine Program Princess Margaret Cancer Center University Health Network Toronto Canada M5G 2C1
- Department of Radiation Oncology University of Toronto Toronto Canada M5T 1P5
- Techna Institute University Health Network Toronto Ontario Canada M5G 1L5
| | - Makan Farrokhkish
- Radiation Medicine Program Princess Margaret Cancer Center University Health Network Toronto Canada M5G 2C1
| | - Bern Norrlinger
- Radiation Medicine Program Princess Margaret Cancer Center University Health Network Toronto Canada M5G 2C1
| | - Robert Heaton
- Radiation Medicine Program Princess Margaret Cancer Center University Health Network Toronto Canada M5G 2C1
- Department of Radiation Oncology University of Toronto Toronto Canada M5T 1P5
| | - David Jaffray
- Radiation Medicine Program Princess Margaret Cancer Center University Health Network Toronto Canada M5G 2C1
- Department of Radiation Oncology University of Toronto Toronto Canada M5T 1P5
- Techna Institute University Health Network Toronto Ontario Canada M5G 1L5
- Institute of Biomaterials and Biomedical Engineering University of Toronto Toronto Canada M5S 3G9
- Department of Medical Biophysics University of Toronto Toronto Canada M5G 1L7
| | - Mohammad Islam
- Radiation Medicine Program Princess Margaret Cancer Center University Health Network Toronto Canada M5G 2C1
- Department of Radiation Oncology University of Toronto Toronto Canada M5T 1P5
- Techna Institute University Health Network Toronto Ontario Canada M5G 1L5
- Institute of Biomaterials and Biomedical Engineering University of Toronto Toronto Canada M5S 3G9
| |
Collapse
|
18
|
Thapa R, Ahunbay E, Nasief H, Chen X, Allen Li X. Automated air region delineation on MRI for synthetic CT creation. Phys Med Biol 2020; 65:025009. [PMID: 31775128 DOI: 10.1088/1361-6560/ab5c5b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Automatically and accurately separating air from other low signal regions (especially bone, liver, etc) in an MRI is difficult because these tissues produce similar MR intensities, resulting in errors in synthetic CT generation for MRI-based radiation therapy planning. This work aims to develop a technique to accurately and automatically determine air-regions for MR-guided adaptive radiation therapy. CT and MRI scans (T2-weighted) of phantoms with fabricated air-cavities and abdominal cancer patients were used to establish an MR intensity threshold for air delineation. From the phantom data, air/tissue boundaries in MRI were identified by CT-MRI registration. A formula relating the MRI intensities of air and surrounding materials was established to auto-threshold air-regions. The air-regions were further refined by using quantitative image texture features. A naive Bayesian classifier was trained using the extracted features with a leave-one-out cross validation technique to differentiate air from non-air voxels. The multi-step air auto-segmentation method was tested against the manually segmented air-regions. The dosimetry impacts of the air-segmentation methods were studied. Air-regions in the abdomen can be segmented on MRI within 1 mm accuracy using a multi-step auto-segmentation method as compared to manually delineated contours. The air delineation based on the MR threshold formula was improved using the MRI texture differences between air and tissues, as judged by the area under the receiver operating characteristic curve of 81% when two texture features (autocorrelation and contrast) were used. The performance increased to 82% with using three features (autocorrelation, sum-variance, and contrast). Dosimetric analysis showed no significant difference between the auto-segmentation and manual MR air delineation on commonly used dose volume parameters. The proposed techniques consisting of intensity-based auto-thresholding and image texture-based voxel classification can automatically and accurately segment air-regions on MRI, allowing synthetic CT to be generated quickly and precisely for MR-guided adaptive radiation therapy.
Collapse
Affiliation(s)
- Ranjeeta Thapa
- Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | | | | | | | | |
Collapse
|
19
|
Han EY, Aima M, Hughes N, Briere TM, Yeboa DN, Castillo P, Wang J, Yang J, Vedam S. Feasibility of spinal stereotactic body radiotherapy in Elekta Unity ® MR-Linac. JOURNAL OF RADIOSURGERY AND SBRT 2020; 7:127-134. [PMID: 33282466 PMCID: PMC7717094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/02/2020] [Indexed: 06/12/2023]
Abstract
The Elekta Unity MR-Linac (MRL) is expected to benefit spine stereotactic body radiotherapy (SBRT) due to the improved soft tissue contrast available with onboard MR imaging. However, the irradiation geometry and beam configuration of the MRL deviates from the conventional linear accelerator (Linac). The purpose of the study was to investigate the feasibility of spine SBRT on the MRL. Treatment plans were generated for lumbar and thoracic spines. Target and spinal cord doses were measured with two cylindrical ion chambers inserted into an anthropomorphic spine phantom. Our study indicated that the Monaco treatment planning system (TPS) could generate clinical treatment plans for the MRL that were of comparable quality to the RayStation TPS with a conventional Linac. For both Linacs the planned dose within the gross tumor volume agreed with measurements within ±3%. For the spinal cord, while the measured doses from the TrueBeam were 1.8% higher for the lumbar spine plan and 6.9% higher for thoracic spine plan, the measured doses from MRL were 0.6% lower for the lumbar spine plan and 3.9% higher for the thoracic spine plan. In conclusion, the feasibility of spine SBRT in Elekta Unity MRL has been demonstrated, however, more effort is needed for such as optimizing the online plan adaptation method.
Collapse
Affiliation(s)
- Eun Young Han
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manik Aima
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neil Hughes
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tina M. Briere
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Debra N. Yeboa
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pam Castillo
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jihong Wang
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jinzhong Yang
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sastry Vedam
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
20
|
Shortall J, Vasquez Osorio E, Chuter R, McWilliam A, Choudhury A, Kirkby K, Mackay R, van Herk M. Assessing localized dosimetric effects due to unplanned gas cavities during pelvic MR-guided radiotherapy using Monte Carlo simulations. Med Phys 2019; 46:5807-5815. [PMID: 31600837 DOI: 10.1002/mp.13857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 01/28/2023] Open
Abstract
PURPOSE It has been proposed that beam modulation and opposing beam configurations can cancel effects of the Electron Return Effect (ERE) during MR-guided radiotherapy (MRgRT). However, this may not always be the case for unplanned gas cavities outside of the target in the pelvic region. We evaluate dosimetric effects, including effects in the rectal wall, due to unplanned spherical air cavities during MRgRT. METHODS Nine virtual cuboid water phantoms containing spherical air cavities (0.5-7.5 cm diameter) and a reference phantom without air were created. Monte Carlo dose calculations of 7 MV photons under the influence of a 1.5 T transverse magnetic field were produced using Monaco 5.19.02 Treatment Planning System (TPS) (Elekta AB, Stockholm, Sweden). Cavities in the path of a single and multiple beam plans were considered. Dose distributions of phantoms with and without air cavities were compared (ΔD% ) using a spherical coordinate system originating in the center of the cavity. Effects in the rectal wall were quantified by comparing dose volume histogram (DVH) parameters for solid and gaseous filling from simulated rectal wall structures. RESULTS Max(ΔD% ) of ~70% and 20% were observed around large cavities in the path of a single and multiple beam plans, respectively. Approximately 45 cm3 of phantom surrounding the largest cavity in a single beam received dose changes of >10%. Dmean in the rectal wall was unchanged when comparing gaseous and solid filling in the path of a single beam; however, D1cc and Dmax increased by up to ~45% and ~63%, respectively. CONCLUSIONS Unplanned gas cavities in the path of a single beam during pelvic MRgRT with a 1.5 T transverse magnetic field cause dose changes which may impact toxicity in the rectal wall, depending on local dose and fractionation. Effects are reduced but not eliminated with a five-beam plan.
Collapse
Affiliation(s)
- Jane Shortall
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Eliana Vasquez Osorio
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Robert Chuter
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Alan McWilliam
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Ananya Choudhury
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Karen Kirkby
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Ranald Mackay
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Marcel van Herk
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
21
|
McDonald BA, Lee HJ, Ibbott GS. Low-density gel dosimeter for measurement of the electron return effect in an MR-linac. Phys Med Biol 2019; 64:205016. [PMID: 31505483 DOI: 10.1088/1361-6560/ab4321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Radiation therapy in the presence of a strong magnetic field is known to cause regions of enhanced and reduced dose at interfaces of materials with varying densities, in a phenomenon known as the electron return effect (ERE). In this study, a novel low-density gel dosimeter was developed to simulate lung tissue and was used to measure the ERE at the lung-soft tissue interface. Low-density gel dosimeters were developed with Fricke xylenol orange gelatin (FXG) and ferrous oxide xylenol orange (FOX) gels mixed with polystyrene foam beads of various sizes. The gels were characterized based on CT number, MR signal intensity, and uniformity. All low-density gels had CT numbers roughly equivalent to lung tissue. The optimal lung-equivalent gel formulation was determined to be FXG with <1 mm polystyrene beads due to the higher signal intensity of FXG compared to FOX and the higher uniformity with the small beads. Dose response curves were generated for the optimal low-density gel and conventional FXG. The change in spin-lattice relaxation rate (R1) before and after irradiation was linear with dose for both gels. Next, phantoms consisting of concentric cylinders with low-density and conventional FXG were created to simulate the lung-soft tissue interface. The phantoms were irradiated in a conventional linear accelerator (linac) and in a linac combined with a 1.5 T magnetic resonance imaging (MRI) unit (MR-linac) to measure the effects of the magnetic field on the dose distribution. Hot and cold spots were observed in the dose distribution at the boundaries between the gels for the phantom irradiated in the MR-linac but not the conventional linac, consistent with the ERE.
Collapse
Affiliation(s)
- Brigid A McDonald
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America. Medical Physics Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States of America. Author to whom correspondence should be addressed
| | | | | |
Collapse
|
22
|
Friedel M, Nachbar M, Mönnich D, Dohm O, Thorwarth D. Development and validation of a 1.5 T MR-Linac full accelerator head and cryostat model for Monte Carlo dose simulations. Med Phys 2019; 46:5304-5313. [PMID: 31532829 DOI: 10.1002/mp.13829] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/26/2019] [Accepted: 08/21/2019] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To develop, implement, and validate a full 1.5 T/7 MV magnetic resonance (MR)-Linac accelerator head and cryostat model in EGSnrc for high precision dose calculations accounting for magnetic field effects that are independent from the vendor treatment planning system. METHODS Primary electron beam parameters for the implemented model were adapted to be in accordance with measured dose profiles of the Elekta Unity (Elekta AB, Stockholm, Sweden). Parameters to be investigated were the mean electron energy as well as the Gaussian radial intensity and energy distributions. Energy tuning was done comparing depth dose profiles simulated with monoenergetic beams of varying energies to measurements. The optimum radial intensity distribution was found by varying the radial full width at half maximum (FWHM) and comparing simulated and measured lateral profiles. The influence of the energy distribution was investigated by comparing simulated lateral and depth dose profiles with varying energy spreads to measured data. Comparison of simulations and measurements was performed by calculating average and maximum local dose deviations. The model was validated recalculating a clinical intensity-modulated radiation therapy plan for the MR-Linac and comparing the resulting dose distribution with simulations from the commercial treatment planning system Monaco using the gamma criterion. RESULTS Comparison of simulated and measured data showed that the optimum initial electron beam for MR-Linac simulations was monoenergetic with an electron energy of (7.4 ± 0.2) MeV. The optimum Gaussian radial intensity distribution has a FWHM of (2.2 ± 0.3) mm. The average relative deviations were smaller than 1% for all simulated profiles with optimum electron parameters, whereas the largest maximum deviation of 2.07% was found for the 22 × 22 cm 2 cross-plane profile. Profiles were insensitive to energy spread variations. The IMRT plan recalculated with the final MR-Linac model with optimized initial electron beam parameters showed a gamma pass rate of 99.83 % using a gamma criterion of 3%/3 mm. CONCLUSIONS The EGSnrc MR-Linac model developed in this study showed good accordance with measurements and was successfully used to recalculate a first full clinical IMRT treatment plan. Thus, it shows the general possibility for future secondary dose calculations of full IMRT plans with EGSnrc, which needs further detailed investigations before clinical use.
Collapse
Affiliation(s)
- M Friedel
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - M Nachbar
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - D Mönnich
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - O Dohm
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, 72076, Tübingen, Germany.,Department of Radiation Oncology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - D Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
23
|
|
24
|
Chen X, Paulson ES, Ahunbay E, Sanli A, Klawikowski S, Li XA. Measurement validation of treatment planning for a MR-Linac. J Appl Clin Med Phys 2019; 20:28-38. [PMID: 31254376 PMCID: PMC6612768 DOI: 10.1002/acm2.12651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 03/11/2019] [Accepted: 05/02/2019] [Indexed: 11/20/2022] Open
Abstract
Purpose The magnetic field can cause a nonnegligible dosimetric effect in an MR‐Linac system. This effect should be accurately accounted for by the beam models in treatment planning systems (TPS). The purpose of the study was to verify the beam model and the entire treatment planning and delivery process for a 1.5 T MR‐Linac based on comprehensive dosimetric measurements and end‐to‐end tests. Material and methods Dosimetry measurements and end‐to‐end tests were performed on a preclinical MR‐Linac (Elekta AB) using a multitude of detectors and were compared to the corresponding beam model calculations from the TPS for the MR‐Linac. Measurement devices included ion chambers (IC), diamond detector, radiochromic film, and MR‐compatible ion chamber array and diode array. The dose in inhomogeneous phantom was also verified. The end‐to‐end tests include the generation, delivery, and comparison of 3D and IMRT plan with measurement. Results For the depth dose measurements with Farmer IC, micro IC and diamond detector, the absolute difference between most measurement points and beam model calculation beyond the buildup region were <1%, at most 2% for a few measurement points. For the beam profile measurements, the absolute differences were no more than 1% outside the penumbra region and no more than 2.5% inside the penumbra region. Results of end‐to‐end tests demonstrated that three 3D static plans with single 5 × 10 cm2 fields (at gantry angle 0°, 90° and 270°) and two IMRT plans successfully passed gamma analysis with clinical criteria. The dose difference in the inhomogeneous phantom between the calculation and measurement was within 1.0%. Conclusions Both relative and absolute dosimetry measurements agreed well with the TPS calculation, indicating that the beam model for MR‐Linac properly accounts for the magnetic field effect. The end‐to‐end tests verified the entire treatment planning process.
Collapse
Affiliation(s)
- Xinfeng Chen
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Eric S Paulson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ergun Ahunbay
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aydin Sanli
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Slade Klawikowski
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
25
|
Nagle PW, van Goethem MJ, Kempers M, Kiewit H, Knopf A, Langendijk JA, Brandenburg S, van Luijk P, Coppes RP. In vitro biological response of cancer and normal tissue cells to proton irradiation not affected by an added magnetic field. Radiother Oncol 2019; 137:125-129. [PMID: 31085392 DOI: 10.1016/j.radonc.2019.04.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 01/26/2023]
Abstract
To optimize beam delivery and conformality of proton therapy, MRI integration has been proposed. Therefore, we investigated if proton irradiation in a magnetic field would change biological responses. Our data in cancer cell lines and stem cell-derived organoid models suggest that a magnetic field does not modify the biological response.
Collapse
Affiliation(s)
- Peter W Nagle
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, The Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands; Department of Surgical Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Marc-Jan van Goethem
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands; KVI Center for Advanced Radiation Technology, University of Groningen, The Netherlands
| | - Marco Kempers
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Harry Kiewit
- KVI Center for Advanced Radiation Technology, University of Groningen, The Netherlands
| | - Antje Knopf
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Sytze Brandenburg
- KVI Center for Advanced Radiation Technology, University of Groningen, The Netherlands
| | - Peter van Luijk
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, The Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Rob P Coppes
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, The Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands.
| |
Collapse
|
26
|
Schrenk O, Spindeldreier CK, Schmitt D, Roeder F, Bangert M, Burigo LN, Pfaffenberger A. The effect of density overrides on magnetic resonance-guided radiation therapy planning for lung cancer. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2018; 8:23-27. [PMID: 33458412 PMCID: PMC7807559 DOI: 10.1016/j.phro.2018.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022]
Abstract
Background and Purpose Inverse treatment planning for lung cancer can be challenging since density heterogeneities may appear inside the planning target volume (PTV). One method to improve the quality of intensity modulation is the override of low density tissues inside the PTV during plan optimization. For magnetic resonance-guided radiation therapy (MRgRT), where the influence of the magnetic field on secondary electrons is sensitive to the tissue density, the reliability of density overrides has not yet been proven. This work, therefore, gains a first insight into density override strategies for MRgRT. Material and methods Monte Carlo-based treatment plans for five lung cancer patients were generated based on free-breathing CTs and two density override strategies. Different magnetic field configurations were considered with their effect being accounted for during optimization. Optimized plans were forward calculated to 4D-CTs and accumulated for the comparison of planned and expected delivered dose. Results For MRgRT, density overrides led to a discrepancy between the delivered and planned dose. The tumor volume coverage deteriorated for perpendicular magnetic fields of 1.5 T to 93.6% (D98%). For inline fields a maximal increase of 2.2% was found for the mean dose. In terms of organs at risk, a maximal sparing of 0.6 Gy and 0.9 Gy was observed for lung and heart, respectively. Conclusions In this work, first results on the effect of density overrides on treatment planning for MRgRT are presented. It was observed that the underestimation of magnetic field effects in overridden densities during treatment planning resulted in an altered delivered dose, depending on the field strength and orientation.
Collapse
Affiliation(s)
- Oliver Schrenk
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Claudia Katharina Spindeldreier
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniela Schmitt
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Falk Roeder
- Clinical Cooperation Unit Molecular Radiooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University of Munich (LMU), Munich, Germany
| | - Mark Bangert
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Lucas Norberto Burigo
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Asja Pfaffenberger
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| |
Collapse
|
27
|
Paganelli C, Whelan B, Peroni M, Summers P, Fast M, van de Lindt T, McClelland J, Eiben B, Keall P, Lomax T, Riboldi M, Baroni G. MRI-guidance for motion management in external beam radiotherapy: current status and future challenges. Phys Med Biol 2018; 63:22TR03. [PMID: 30457121 DOI: 10.1088/1361-6560/aaebcf] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High precision conformal radiotherapy requires sophisticated imaging techniques to aid in target localisation for planning and treatment, particularly when organ motion due to respiration is involved. X-ray based imaging is a well-established standard for radiotherapy treatments. Over the last few years, the ability of magnetic resonance imaging (MRI) to provide radiation-free images with high-resolution and superb soft tissue contrast has highlighted the potential of this imaging modality for radiotherapy treatment planning and motion management. In addition, these advantageous properties motivated several recent developments towards combined MRI radiation therapy treatment units, enabling in-room MRI-guidance and treatment adaptation. The aim of this review is to provide an overview of the state-of-the-art in MRI-based image guidance for organ motion management in external beam radiotherapy. Methodological aspects of MRI for organ motion management are reviewed and their application in treatment planning, in-room guidance and adaptive radiotherapy described. Finally, a roadmap for an optimal use of MRI-guidance is highlighted and future challenges are discussed.
Collapse
Affiliation(s)
- C Paganelli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy. Author to whom any correspondence should be addressed. www.cartcas.polimi.it
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rubinstein AE, Gay S, Peterson CB, Kingsley CV, Tailor RC, Pollard-Larkin JM, Melancon AD, Followill DS, Court LE. Radiation-induced lung toxicity in mice irradiated in a strong magnetic field. PLoS One 2018; 13:e0205803. [PMID: 30444887 PMCID: PMC6239291 DOI: 10.1371/journal.pone.0205803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 10/02/2018] [Indexed: 11/19/2022] Open
Abstract
Strong magnetic fields affect radiation dose deposition in MRI-guided radiation therapy systems, particularly at interfaces between tissues of differing densities such as those in the thorax. In this study, we evaluated the impact of a 1.5 T magnetic field on radiation-induced lung damage in C57L/J mice. We irradiated 140 mice to the whole thorax with parallel-opposed Co-60 beams to doses of 0, 9.0, 10.0, 10.5, 11.0, 12.0, or 13.0 Gy (20 mice per dose group). Ten mice per dose group were irradiated while a 1.5 T magnetic field was applied transverse to the radiation beam and ten mice were irradiated with the magnetic field set to 0 T. We compared survival and noninvasive assays of radiation-induced lung damage, namely respiratory rate and metrics derived from thoracic cone-beam CTs, between the two sets of mice. We report two main results. First, the presence of a transverse 1.5 T field during irradiation had no impact on survival of C57L/J mice. Second, there was a small but statistically significant effect on noninvasive assays of radiation-induced lung damage. These results provide critical safety data for the clinical introduction of MRI-guided radiation therapy systems.
Collapse
Affiliation(s)
- Ashley E. Rubinstein
- Department of Diagnostic and Interventional Imaging, UTHealth McGovern Medical School, Houston, Texas, United States of America
| | - Skylar Gay
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Christine B. Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Charles V. Kingsley
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ramesh C. Tailor
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Julianne M. Pollard-Larkin
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Adam D. Melancon
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - David S. Followill
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Laurence E. Court
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
29
|
Mohajer JK, Nisbet A, Velliou E, Ajaz M, Schettino G. Biological effects of static magnetic field exposure in the context of MR-guided radiotherapy. Br J Radiol 2018; 92:20180484. [PMID: 30359096 DOI: 10.1259/bjr.20180484] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The clinical introduction of MRI-guided radiotherapy has prompted consideration of the potential impact of the static magnetic field on biological responses to radiation. This review provides an introduction to the mechanisms of biological interaction of radiation and magnetic fields individually, in addition to a description of the magnetic field effects on megavoltage photon beams at the macroscale, microscale and nanoscale arising from the Lorentz force on secondary charged particles. A relatively small number of scientific studies have measured the impact of combined static magnetic fields and ionising radiation on biological endpoints of relevance to radiotherapy. Approximately, half of these investigations found that static magnetic fields in combination with ionising radiation produced a significantly different outcome compared with ionising radiation alone. strength static magnetic fields appear to modestly influence the radiation response via a mechanism distinct from modification to the dose distribution. This review intends to serve as a reference for future biological studies, such that understanding of static magnetic field plus ionising radiation synergism may be improved, and if necessary, accounted for in MRI-guided radiotherapy treatment planning.
Collapse
Affiliation(s)
- Jonathan Kim Mohajer
- 1 Department of Physics, University of Surrey , Guildford , UK.,2 Medical Radiation Science group, National Physical Laboratory , Teddington , UK
| | - Andrew Nisbet
- 1 Department of Physics, University of Surrey , Guildford , UK.,3 The Royal Surrey County Hospital NHS Foundation Trust , Guildford , UK
| | - Eirini Velliou
- 4 Department of Chemical and Process Engineering, Bioprocess and Biochemical Engineering group (BioProChem), University of Surrey , Guildford , UK
| | - Mazhar Ajaz
- 3 The Royal Surrey County Hospital NHS Foundation Trust , Guildford , UK.,5 Department of Microbial and Cellular Sciences, University of Surrey , Guildford , UK
| | - Giuseppe Schettino
- 1 Department of Physics, University of Surrey , Guildford , UK.,2 Medical Radiation Science group, National Physical Laboratory , Teddington , UK
| |
Collapse
|
30
|
Nachbar M, Mönnich D, Kalwa P, Zips D, Thorwarth D, Gani C. Comparison of treatment plans for a high-field MRI-linac and a conventional linac for esophageal cancer. Strahlenther Onkol 2018; 195:327-334. [PMID: 30361744 DOI: 10.1007/s00066-018-1386-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/09/2018] [Indexed: 01/06/2023]
Abstract
PURPOSE To compare radiotherapy treatments plans in esophageal cancer calculated for a high-field magnetic resonance imaging (MRI)-linac with plans for a conventional linac. MATERIALS AND METHODS Ten patients with esophageal squamous cell carcinomas were re-planned retrospectively using the research version of Monaco (V 5.19.03, Elekta AB, Stockholm, Sweden). Intensity modulated radiotherapy (IMRT) plans with a nine-field step-and-shoot technique and two-arc volumetric modulated arc therapy (VMAT) plans were created for the Elekta MRI-linac and a conventional linac, respectively. The prescribed dose was 60 Gy to the primary tumor (PTV60) and 50 Gy to elective volumes (PTV50). Plans were optimized for optimal coverage of the 60 Gy volume and compared using dose-volume histogram parameters. RESULTS All calculated treatment plans met predefined criteria for target volume coverage and organs at risk dose both for MRI-linac and conventional linac. Plans for the MRI-linac had a lower number of segments and monitor units. No significant differences between both plans were seen in terms of V20Gy of the lungs and V40Gy of the heart with slightly higher mean doses to the heart (14.0 Gy vs. 12.5 Gy) and lungs (12.8 Gy vs. 12.2 Gy). CONCLUSION Applying conventional target volume and margin concepts as well as dose-fractionation prescription reveals clinically acceptable dose distributions using hybrid MRI-linac in its current configuration compared to standard IMRT/VMAT. This represents an important prerequisite for future studies to investigate the clinical benefit of MRI-guided radiotherapy exploiting the conceptional advantages such as reduced margins, plan adaptation and biological individualization and hypofractionation.
Collapse
Affiliation(s)
- Marcel Nachbar
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | - David Mönnich
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Paul Kalwa
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Daniel Zips
- German Cancer Consortium (DKTK), Partner Site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cihan Gani
- German Cancer Consortium (DKTK), Partner Site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
- Gastrointestinal Cancer Center, Comprehensive Cancer Center Tübingen-Stuttgart, Tübingen, Germany.
| |
Collapse
|
31
|
Apport du guidage par l’image pour le repositionnement au cours de la radiothérapie des tumeurs encéphaliques. Cancer Radiother 2018; 22:593-601. [DOI: 10.1016/j.canrad.2018.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/29/2018] [Indexed: 11/20/2022]
|
32
|
Christiansen RL, Hansen CR, Dahlrot RH, Bertelsen AS, Hansen O, Brink C, Bernchou U. Plan quality for high-risk prostate cancer treated with high field magnetic resonance imaging guided radiotherapy. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2018; 7:1-8. [PMID: 33458398 PMCID: PMC7807623 DOI: 10.1016/j.phro.2018.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022]
Abstract
Background and purpose Daily radiotherapy plan adaptation facilitated by a high field magnetic resonance linac (MRL) may potentially reduce the treated volume due to a reduction of the setup uncertainty. However, the technology also imposes limitations to the treatment technique compared to a standard linac. This study investigated the clinical quality of MRL treatment plans against current standard plans using identical planning target volume margins for high-risk prostate cancer patients. Materials and methods Twenty consecutive patients planned with our current clinical standard TPS and treated with single arc VMAT on standard linacs with 78 Gy in the prostate and 56 Gy for pelvic lymph nodes over 39 fractions were included. In addition, IMRT treatment plans for delivery by a 1.5 T MRL, using standard margins and dose objectives, were made in a dedicated TPS. Mean population dose volume histograms (DVH) and dose metrics were analyzed and clinical plan quality was evaluated by an oncologist. Results All MRL plans were considered clinically acceptable, and DVH analysis showed an overall high similarity to dose distributions of the clinically delivered plans. Mean target coverage was similar (78.0 Gy vs 77.8 Gy). Small but statistically significant differences were seen in doses to organs at risk; on average MRL plans reduced dose to the bladder (46.2 vs 48.3 Gy) compared to standard plans, while dose was higher to the bowel (29.2 vs 26.6 Gy) and penile bulb (16.5 vs 10.8 Gy). Conclusion MRL treatment plans were clinically acceptable and similar in quality to the current standard.
Collapse
Affiliation(s)
- Rasmus Lübeck Christiansen
- Laboratory of Radiation Physics, Odense University Hospital, DK-5000 Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Christian Rønn Hansen
- Laboratory of Radiation Physics, Odense University Hospital, DK-5000 Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, DK-5000 Odense, Denmark
| | | | | | - Olfred Hansen
- Institute of Clinical Research, University of Southern Denmark, DK-5000 Odense, Denmark.,Department of Oncology, Odense University Hospital, DK-5000 Odense, Denmark
| | - Carsten Brink
- Laboratory of Radiation Physics, Odense University Hospital, DK-5000 Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Uffe Bernchou
- Laboratory of Radiation Physics, Odense University Hospital, DK-5000 Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, DK-5000 Odense, Denmark
| |
Collapse
|
33
|
Noble DJ, Burnet NG. The future of image-guided radiotherapy-is image everything? Br J Radiol 2018; 91:20170894. [PMID: 29616822 PMCID: PMC6221761 DOI: 10.1259/bjr.20170894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/19/2018] [Accepted: 03/28/2018] [Indexed: 12/31/2022] Open
Abstract
MR-based image-guided (IG) radiotherapy via all-in-one MR treatment units (MR-linacs) is one of the hottest topics in contemporary radiotherapy research. From ingenious engineering solutions to complex physical problems, researchers have developed machines with the promise of superior image quality, and all the advantages this may confer. Benefits include better tumour visualisation, online adaptation and the potential for image biomarker-based personalised RT. However, it is important to remember that the technical challenges are real. In many instances, they are skillfully managed rather than abolished, a point illustrated by the wide variety of MR-linac designs. The proposed benefits also deserve careful inspection. Better visibility of the primary tumour on an IG scan cannot be bad, but does not automatically equate to better IG, which often depends on a more generalised match to daily anatomy. MR-linac will undoubtedly be a rich milieu to search for IMBs, but these will need to be carefully validated, and similar work with CT-based biomarkers using existing, cheaper, and more widely available hardware is currently ongoing. Online adaptation is an attractive concept, but practicalities are complex, and more work is required to understand which patients will benefit from plan adaptation, and when. Finally, the issue of cost cannot be overlooked, nor can the research community's responsibilities to global healthcare inequalities. MR-linac is an exciting and ingenious technology, which merits both investment and research. It may not, however, have the future to itself.
Collapse
|
34
|
Chuter RW, Pollitt A, Whitehurst P, MacKay RI, van Herk M, McWilliam A. Assessing MR-linac radiotherapy robustness for anatomical changes in head and neck cancer. Phys Med Biol 2018; 63:125020. [PMID: 29790861 DOI: 10.1088/1361-6560/aac749] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The MR-Linac will provide excellent soft tissue contrast for on-treatment imaging. It is well known that the electron return effect (ERE) results in areas of increased and decreased dose at air/tissue boundaries, which can be compensated for in plan optimisation. However, anatomical changes may affect the quality of this compensation. In this paper we aim to quantify the interaction of anatomical changes with ERE in head and neck (H&N) cancer patients. Twenty patients treated with either 66 Gy or 60 Gy in 30 fractions were selected. Ten had significant weight-loss during treatment requiring repeat CT (rCT) and ten had PTVs close to the sinus cavity. Plans were optimised using Monaco to meet the departmental dose constraints and copied to the rCT and re-calculated. For the sinus patients, we optimised plans with full and empty sinus at both 0 T and 1.5 T. The effect of the opposite filling state was next evaluated. No clinically relevant difference between the doses in the PTV and OARs were observed related to weight-loss in 0 T or 1.5 T fields. Variable sinus filling caused greater dosimetric differences near the walls of the sinus for plans optimised with a full cavity in 1.5 T, indicating that optimising with an empty sinus makes the plan more robust to changes in filling. These findings indicate that current off-line strategies for adaptive planning for H&N patients are also valid on an MR-linac, if care is taken with sinus filling.
Collapse
Affiliation(s)
- Robert W Chuter
- Christie Medical Physics and Engineering (CMPE), The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, United Kingdom. Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, United Kingdom. Joint first author
| | | | | | | | | | | |
Collapse
|
35
|
Andreozzi JM, Mooney KE, Brůža P, Curcuru A, Gladstone DJ, Pogue BW, Green O. Remote Cherenkov imaging-based quality assurance of a magnetic resonance image-guided radiotherapy system. Med Phys 2018; 45:2647-2659. [PMID: 29663429 DOI: 10.1002/mp.12919] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 02/09/2018] [Accepted: 04/04/2018] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Tools to perform regular quality assurance of magnetic resonance image-guided radiotherapy (MRIgRT) systems should ideally be independent of interference from the magnetic fields. Remotely acquired optical Cherenkov imaging-based dosimetry measurements in water were investigated for this purpose, comparing measures of dose accuracy, temporal dynamics, and overall integrated IMRT delivery. METHODS A 40 × 30.5 × 37.5 cm3 water tank doped with 1 g/L of quinine sulfate was imaged using an intensified charge-coupled device (ICCD) to capture the Cherenkov emission while being irradiated by a commercial MRIgRT system (ViewRay™). The ICCD was placed down-bore at the end of the couch, 4 m from treatment isocenter and behind the 5-Gauss line of the 0.35-T MRI. After establishing optimal camera acquisition settings, square beams of increasing size (4.2 × 4.2 cm2 , 10.5 × 10.5 cm2 , and 14.7 × 14.7 cm2 ) were imaged at 0.93 frames per second, from an individual cobalt-60 treatment head, to develop projection measures related to percent depth dose (PDD) curves and cross beam profiles (CPB). These Cherenkov-derived measurements were compared to ionization chamber (IC) and radiographic film dosimetry data, as well as simulation data from the treatment planning system (TPS). An intensity-modulated radiotherapy (IMRT) commissioning plan from AAPM TG-119 (C4:C-Shape) was also imaged at 2.1 frames per second, and the single linear sum image from 509 s of plan delivery was compared to the dose volume prediction generated by the TPS using gamma index analysis. RESULTS Analysis of standardized test target images (1024 × 1024 pixels) yielded a pixel resolution of 0.37 mm/pixel. The beam width measured from the Cherenkov image-generated projection CBPs was within 1 mm accuracy when compared to film measurements for all beams. The 502 point measurements (i.e., pixels) of the Cherenkov image-based projection percent depth dose curves (pPDDs) were compared to pPDDs simulated by the treatment planning system (TPS), with an overall average error of 0.60%, 0.56%, and 0.65% for the 4.2, 10.5, and 14.7 cm square beams, respectively. The relationships between pPDDs and central axis PDDs derived from the TPS were used to apply a weighting factor to the Cherenkov pPDD, so that the Cherenkov data could be directly compared to IC PDDs (average error of -0.07%, 0.10%, and -0.01% for the same sized beams, respectively). Finally, the composite image of the TG-119 C4 treatment plan achieved a 95.1% passing rate using 4%/4 mm gamma index agreement criteria between Cherenkov intensity and TPS dose volume data. CONCLUSIONS This is the first examination of Cherenkov-generated pPDDs and pCBPs in an MR-IGRT system. Cherenkov imaging measurements were fast to acquire, and minimal error was observed overall. Cherenkov imaging also provided novel real-time data for IMRT QA. The strengths of this imaging are the rapid data capture ability providing real-time, high spatial resolution data, combined with the remote, noncontact nature of imaging. The biggest limitation of this method is the two-dimensional (2D) projection-based imaging of three-dimensional (3D) dose distributions through the transparent water tank.
Collapse
Affiliation(s)
| | - Karen E Mooney
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Petr Brůža
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Austen Curcuru
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - David J Gladstone
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03766, USA
- Geisel School of Medicine and Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Brian W Pogue
- Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, NH, 03755, USA
| | - Olga Green
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
36
|
Gargett M, Oborn B, Alnaghy SJ, Causer T, Petasecca M, Rosenfeld AB, Metcalfe P. A high resolution 2D array detector system for small-field MRI-linac applications. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aabd08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Dosimetric analysis of stereotactic body radiation therapy for pancreatic cancer using MR-guided Tri- 60Co unit, MR-guided LINAC, and conventional LINAC-based plans. Pract Radiat Oncol 2018; 8:e312-e321. [PMID: 29703704 DOI: 10.1016/j.prro.2018.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/10/2018] [Accepted: 02/21/2018] [Indexed: 01/08/2023]
|
38
|
Costa F, Doran SJ, Hanson IM, Nill S, Billas I, Shipley D, Duane S, Adamovics J, Oelfke U. Investigating the effect of a magnetic field on dose distributions at phantom-air interfaces using PRESAGE ® 3D dosimeter and Monte Carlo simulations. Phys Med Biol 2018; 63:05NT01. [PMID: 29393066 PMCID: PMC5964337 DOI: 10.1088/1361-6560/aaaca2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/22/2018] [Accepted: 02/02/2018] [Indexed: 11/23/2022]
Abstract
Dosimetric quality assurance (QA) of the new Elekta Unity (MR-linac) will differ from the QA performed of a conventional linac due to the constant magnetic field, which creates an electron return effect (ERE). In this work we aim to validate PRESAGE® dosimetry in a transverse magnetic field, and assess its use to validate the research version of the Monaco TPS of the MR-linac. Cylindrical samples of PRESAGE® 3D dosimeter separated by an air gap were irradiated with a cobalt-60 unit, while placed between the poles of an electromagnet at 0.5 T and 1.5 T. This set-up was simulated in EGSnrc/Cavity Monte Carlo (MC) code and relative dose distributions were compared with measurements using 1D and 2D gamma criteria of 3% and 1.5 mm. The irradiation conditions were adapted for the MR-linac and compared with Monaco TPS simulations. Measured and EGSnrc/Cavity simulated profiles showed good agreement with a gamma passing rate of 99.9% for 0.5 T and 99.8% for 1.5 T. Measurements on the MR-linac also compared well with Monaco TPS simulations, with a gamma passing rate of 98.4% at 1.5 T. Results demonstrated that PRESAGE® can accurately measure dose and detect the ERE, encouraging its use as a QA tool to validate the Monaco TPS of the MR-linac for clinically relevant dose distributions at tissue-air boundaries.
Collapse
Affiliation(s)
- Filipa Costa
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS
Foundation Trust, London SM2 5NG, United
Kingdom
| | - Simon J Doran
- CRUK Cancer Imaging Centre, The Institute of Cancer Research, London SM2
5NG, United Kingdom
| | - Ian M Hanson
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS
Foundation Trust, London SM2 5NG, United
Kingdom
| | - Simeon Nill
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS
Foundation Trust, London SM2 5NG, United
Kingdom
| | - Ilias Billas
- Metrology for Medical Physics, National Physical Laboratory, Hampton Road,
Teddington TW11 0LW, United Kingdom
| | - David Shipley
- Metrology for Medical Physics, National Physical Laboratory, Hampton Road,
Teddington TW11 0LW, United Kingdom
| | - Simon Duane
- Metrology for Medical Physics, National Physical Laboratory, Hampton Road,
Teddington TW11 0LW, United Kingdom
| | - John Adamovics
- Department of Chemistry and Biology, Rider University, Lawrenceville, NJ 08648,
United States of America
| | - Uwe Oelfke
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS
Foundation Trust, London SM2 5NG, United
Kingdom
| |
Collapse
|
39
|
Han EY, Wen Z, Lee HJ, Paulino ADC, Lee C. Measurement of Electron Return Effect and Skin Dose Reduction by a Bolus in an Anthropomorphic Physical Phantom under a Magnetic Resonance Guided Linear Accelerator (MR-LINAC) System. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/ijmpcero.2018.73028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Schrenk O, Spindeldreier CK, Burigo LN, Hoerner-Rieber J, Pfaffenberger A. Effects of magnetic field orientation and strength on the treatment planning of nonsmall cell lung cancer. Med Phys 2017; 44:6621-6631. [PMID: 29064573 DOI: 10.1002/mp.12631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/14/2017] [Accepted: 10/11/2017] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Magnetic resonance image-guided radiotherapy (MRgRT) has the potential to increase the accuracy of radiation treatment delivery. Several research groups have developed hybrid MRgRT devices differing by radiation source used and magnetic field orientation and strength. In this work, we investigate the impact of different magnetic field orientations and strengths on the treatment planning of nonsmall cell lung cancer patients (NSCLC). METHODS A framework using the in-house developed treatment planning system matRad and the EGSnrc Monte Carlo code system was introduced to perform Monte Carlo-based treatment planning in the presence of a magnetic field. A specialized spectrum-based source model for the beam qualities of 6 MV and cobalt-60 was applied. Optimized plans for stereotactic body radiation therapy (SBRT) and intensity-modulated radiation therapy (IMRT) were generated for four NSCLC patients in the presence of different magnetic field orientations and strengths which are applied in hybrid MRgRT devices currently under development or in clinical use. RESULTS SBRT and IMRT treatment planning could be performed with consistent plan quality for all magnetic field setups. Only minor effects on the treatment planning outcome were found in the case of magnetic fields orientated perpendicular to the beam direction. Compared to the perpendicular magnetic field orientation, the inline orientation showed the capability to reduce the dose to lung while maintaining equal target coverage. Particularly for tumors with a central position in lung, a distinct dose reduction was obtained which led to a maximum reduction of mean lung dose by 18.5% (0.5 Gy), when applying a 1 T inline magnetic field. CONCLUSION All plans generated in this work obtained dose metrics within clinical constraints according to RTOG guidelines. When considering conventional dose metrics, no detrimental effects due to the magnetic fields were observed on the dose to the tumor or to organs at risk. An evaluation of the effects on skin dose was not ascertainable due to the simplified specification of the source model used. By accounting for the magnetic field during treatment planning, a dose reduction in lung could be achieved for inline-oriented magnetic fields. An inline orientation of the magnetic field therefore showed a potential benefit when treating NSCLC with MRgRT.
Collapse
Affiliation(s)
- Oliver Schrenk
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), 69120, Heidelberg, Germany
| | - Claudia Katharina Spindeldreier
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), 69120, Heidelberg, Germany
| | - Lucas Norberto Burigo
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), 69120, Heidelberg, Germany
| | - Juliane Hoerner-Rieber
- Department of Radiation Oncology, University Hospital Heidelberg, 69120, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), 69120, Heidelberg, Germany
| | - Asja Pfaffenberger
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), 69120, Heidelberg, Germany
| |
Collapse
|
41
|
Tseng CL, Eppinga W, Seravalli E, Hackett S, Brand E, Ruschin M, Lee YK, Atenafu EG, Sahgal A. Dosimetric feasibility of the hybrid Magnetic Resonance Imaging (MRI)-linac System (MRL) for brain metastases: The impact of the magnetic field. Radiother Oncol 2017; 125:273-279. [PMID: 29079310 DOI: 10.1016/j.radonc.2017.09.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 09/24/2017] [Accepted: 09/28/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND PURPOSE We aimed to investigate the suitability of treating patients with single brain metastases using stereotactic radiosurgery (SRS) with the MRL and to characterize the dosimetric impact at tissue-air interfaces resulting primarily from the electron return effect (ERE). MATERIAL AND METHODS 24 patients treated for intact single brain metastases were analyzed. Three radiotherapy plans with the same prescribed dose were generated for each case: (1) noncoplanar volumetric modulated arc therapy (VMAT), (2) coplanar step-and-shoot intensity modulated radiotherapy (IMRT) on the MRL in the absence (MRLB=0), and (3) in the presence of the transverse magnetic field (MRLB=1.5). The plans were evaluated using cumulative dose-volume histograms and by calculation of Paddick conformity index (CI), V100%, V12Gy minus gross tumor volume (V12Gy - GTV), and V2Gy. At tissue-air boundaries, the dosimetric impact of the magnetic field was quantified using a 5 mm rim of tissue. RESULTS All plans met the target coverage and organs-at-risk planning objectives. Differences between all investigated dosimetric parameters significantly favored the VMAT plans as compared to the MRLB=0 and MRLB=1.5 plans, except for V2Gy. The mean V12Gy - GTV and V2Gy marginally favored the MRLB=0 plans compared to the MRLB=1.5 plans (mean difference: 0.45 cm3, p = 0.0019 and 16.46 cm3, p < 0.0001, respectively). The presence of the magnetic field resulted in a statistically significant but small increase in mean dose and D2cc in the skin (0.08 Gy, p < 0.0001 and 0.6 Gy, p < 0.0001, respectively) and around air cavities (0.07 Gy, p = 0.0092 and 0.3 Gy, p = 0.0004, respectively). CONCLUSIONS It is feasible to generate stereotactic radiation plans that satisfy clinical requirements using the MRL in the setting of single brain metastases. The dosimetric impact of the magnetic field including the ERE at tissue-air boundaries is minor and does not negatively impact target conformity or dose gradient.
Collapse
Affiliation(s)
- Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.
| | - Wietse Eppinga
- Department of Radiotherapy, University Medical Center Utrecht, The Netherlands
| | - Enrica Seravalli
- Department of Radiotherapy, University Medical Center Utrecht, The Netherlands
| | - Sara Hackett
- Department of Radiotherapy, University Medical Center Utrecht, The Netherlands
| | - Eric Brand
- Department of Radiotherapy, University Medical Center Utrecht, The Netherlands
| | - Mark Ruschin
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Young K Lee
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Eshetu G Atenafu
- Department of Biostatistics, University Health Network, University of Toronto, Toronto, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
42
|
Choudhury A, Budgell G, MacKay R, Falk S, Faivre-Finn C, Dubec M, van Herk M, McWilliam A. The Future of Image-guided Radiotherapy. Clin Oncol (R Coll Radiol) 2017; 29:662-666. [DOI: 10.1016/j.clon.2017.04.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/11/2017] [Accepted: 04/28/2017] [Indexed: 11/16/2022]
|
43
|
Cao Y, Tseng CL, Balter JM, Teng F, Parmar HA, Sahgal A. MR-guided radiation therapy: transformative technology and its role in the central nervous system. Neuro Oncol 2017; 19:ii16-ii29. [PMID: 28380637 DOI: 10.1093/neuonc/nox006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This review article describes advancement of magnetic resonance imaging technologies in radiation therapy planning, guidance, and adaptation of brain tumors. The potential for MR-guided radiation therapy to improve outcomes and the challenges in its adoption are discussed.
Collapse
Affiliation(s)
- Yue Cao
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
- Radiology, University of Michigan, Ann Arbor, Michigan, USA
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - James M Balter
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Feifei Teng
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan, China
| | | | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
44
|
Jia X, Tian Z, Xi Y, Jiang SB, Wang G. New concept on an integrated interior magnetic resonance imaging and medical linear accelerator system for radiation therapy. J Med Imaging (Bellingham) 2017; 4:015004. [PMID: 28331888 DOI: 10.1117/1.jmi.4.1.015004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/13/2017] [Indexed: 12/25/2022] Open
Abstract
Image guidance plays a critical role in radiotherapy. Currently, cone-beam computed tomography (CBCT) is routinely used in clinics for this purpose. While this modality can provide an attenuation image for therapeutic planning, low soft-tissue contrast affects the delineation of anatomical and pathological features. Efforts have recently been devoted to several MRI linear accelerator (LINAC) projects that lead to the successful combination of a full diagnostic MRI scanner with a radiotherapy machine. We present a new concept for the development of the MRI-LINAC system. Instead of combining a full MRI scanner with the LINAC platform, we propose using an interior MRI (iMRI) approach to image a specific region of interest (RoI) containing the radiation treatment target. While the conventional CBCT component still delivers a global image of the patient's anatomy, the iMRI offers local imaging of high soft-tissue contrast for tumor delineation. We describe a top-level system design for the integration of an iMRI component into an existing LINAC platform. We performed numerical analyses of the magnetic field for the iMRI to show potentially acceptable field properties in a spherical RoI with a diameter of 15 cm. This field could be shielded to a sufficiently low level around the LINAC region to avoid electromagnetic interference. Furthermore, we investigate the dosimetric impacts of this integration on the radiotherapy beam.
Collapse
Affiliation(s)
- Xun Jia
- University of Texas Southwestern Medical Center , Department of Radiation Oncology, Dallas, Texas, United States
| | - Zhen Tian
- University of Texas Southwestern Medical Center , Department of Radiation Oncology, Dallas, Texas, United States
| | - Yan Xi
- Biomedical Imaging Center , Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Steve B Jiang
- University of Texas Southwestern Medical Center , Department of Radiation Oncology, Dallas, Texas, United States
| | - Ge Wang
- Biomedical Imaging Center , Rensselaer Polytechnic Institute, Troy, New York, United States
| |
Collapse
|
45
|
Ghila A, Fallone BG, Rathee S. Influence of standard RF coil materials on surface and buildup dose from a 6 MV photon beam in magnetic field. Med Phys 2016; 43:5808. [DOI: 10.1118/1.4963803] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
46
|
Chen X, Prior P, Chen GP, Schultz CJ, Li XA. Technical Note: Dose effects of 1.5 T transverse magnetic field on tissue interfaces in MRI-guided radiotherapy. Med Phys 2016; 43:4797. [DOI: 10.1118/1.4959534] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
47
|
Carlone M, Tadic T, Keller H, Rezaee M, Jaffray D. Technical Note: Enhancing the surface dose using a weak longitudinal magnetic field. Med Phys 2016; 43:2927-2932. [PMID: 27277041 DOI: 10.1118/1.4949001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The surface dose in radiotherapy is subject to the physical properties of the radiation beam and collimator. The purpose of this work is to investigate the manipulation of surface dose using magnetic fields produced with a resistive magnet. Better understanding of the feasibility and mechanisms of altered surface dose could have important clinical applications where the surface dose must be increased for therapeutic goals, or reduced to enhance the therapeutic benefit. METHODS A resistive magnet capable of generating a peak magnetic field up to 0.24 T was integrated with a cobalt treatment unit. The magnetic fringe field of the magnet was small due to the self-shielding built within the magnet. The magnetic field at the beam collimation jaws of the cobalt irradiator was less than 10 G. The surface dose and depth dose were measured for varying magnetic field strengths. RESULTS The resistive magnet was able to alter the dose in the buildup region of the (60)Co depth dose significantly, and the magnitude of dose enhancement was directly related to the strength of the longitudinal magnetic field. Peak magnetic fields as low as 0.08 T were able to affect the surface dose. At a peak field of 0.24 T, the authors measured a surface dose enhancement of 2.8-fold. CONCLUSIONS Surface dose enhancement using resistive magnets is feasible. Further experimental study is needed to understand the origin of the scattered electrons that contribute to the increase in surface dose.
Collapse
Affiliation(s)
- Marco Carlone
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9, Canada and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Tony Tadic
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9, Canada
| | - Harald Keller
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9, Canada and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Mohammad Rezaee
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9, Canada and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - David Jaffray
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario M5G 2M9, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 1A1, Canada; and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| |
Collapse
|
48
|
Menten MJ, Fast MF, Nill S, Kamerling CP, McDonald F, Oelfke U. Lung stereotactic body radiotherapy with an MR-linac - Quantifying the impact of the magnetic field and real-time tumor tracking. Radiother Oncol 2016; 119:461-6. [PMID: 27165615 PMCID: PMC4936791 DOI: 10.1016/j.radonc.2016.04.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE There are concerns that radiotherapy doses delivered in a magnetic field might be distorted due to the Lorentz force deflecting secondary electrons. This study investigates this effect on lung stereotactic body radiotherapy (SBRT) treatments, conducted either with or without multileaf collimator (MLC) tumor tracking. MATERIAL AND METHODS Lung SBRT treatments with an MR-linac were simulated for nine patients. Two different treatment techniques were compared: conventional, non-tracked deliveries and deliveries with real-time MLC tumor tracking, each conducted either with or without a 1.5T magnetic field. RESULTS Slight dose distortions at air-tissue-interfaces were observed in the presence of the magnetic field. Most prominently, the dose to 2% of the skin increased by 1.4Gy on average. Regardless of the presence of the magnetic field, MLC tracking was able to spare healthy tissue, for example by decreasing the mean lung dose by 0.3Gy on average, while maintaining the target dose. CONCLUSIONS Accounting for the magnetic field during treatment plan optimization allowed for design and delivery of clinically acceptable lung SBRT treatments with an MR-linac. Furthermore, the ability of MLC tumor tracking to decrease dose exposure of healthy tissue, was not inhibited by the magnetic field.
Collapse
Affiliation(s)
- Martin J Menten
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK.
| | - Martin F Fast
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Simeon Nill
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Cornelis P Kamerling
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Fiona McDonald
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Uwe Oelfke
- Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK.
| |
Collapse
|
49
|
Combs SE, Nüsslin F, Wilkens JJ. Individualized radiotherapy by combining high-end irradiation and magnetic resonance imaging. Strahlenther Onkol 2016; 192:209-15. [PMID: 26852244 DOI: 10.1007/s00066-016-0944-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/14/2016] [Indexed: 01/22/2023]
Abstract
Image-guided radiotherapy (IGRT) has been integrated into daily clinical routine and can today be considered the standard especially with high-dose radiotherapy. Currently imaging is based on MV- or kV-CT, which has clear limitations especially in soft-tissue contrast. Thus, combination of magnetic resonance (MR) imaging and high-end radiotherapy opens a new horizon. The intricate technical properties of MR imagers pose a challenge to technology when combined with radiation technology. Several solutions that are almost ready for routine clinical application have been developed. The clinical questions include dose-escalation strategies, monitoring of changes during treatment as well as imaging without additional radiation exposure during treatment.
Collapse
Affiliation(s)
- Stephanie E Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Germany. .,Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| | - Fridtjof Nüsslin
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Germany
| | - Jan J Wilkens
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Germany.,Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| |
Collapse
|
50
|
Oborn BM, Ge Y, Hardcastle N, Metcalfe PE, Keall PJ. Dose enhancement in radiotherapy of small lung tumors using inline magnetic fields: A Monte Carlo based planning study. Med Phys 2015; 43:368. [DOI: 10.1118/1.4938580] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|