1
|
Goudarzi S, Jones RM, Lee YHW, Hynynen K. Transducer module apodization to reduce bone heating during focused ultrasound uterine fibroid ablation with phased arrays: A numerical study. Med Phys 2024; 51:8670-8687. [PMID: 39341358 DOI: 10.1002/mp.17427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND During magnetic resonance-guided focused ultrasound (MRgFUS) surgery for uterine fibroids, ablation of fibrous tissues in proximity to the hips and spine is challenging due to heating within the bone that can cause patients to experience pain and potentially damage nerves. This far-field bone heating limits the volume of fibroid tissue that is treatable via MRgFUS. PURPOSE To investigate transducer module apodization for improving the ratio of focal-to-bone heating (Δ T ratio $\Delta T_{\mathrm{ratio}}$ ) when targeting fibroid tissue close to the hips and spine, to enable MRgFUS treatments closer to the bone. METHODS Acoustic and thermal simulations were performed using 3D magnetic resonance imaging (MRI)-derived anatomies of ten patients who underwent MRgFUS ablation for uterine fibroids using a low-frequency (0.5 MHz $0.5 \ \text{MHz}$ ) 6144-element flat fully-populated modular phased array system (Arrayus Technologies Inc., Burlington, Canada) at our institution as part of a larger clinical trial (NCT03323905). Transducer modules (64 elements $64 \ \text{elements}$ per module) whose beams intersected with no-pass zones delineated within the field were identified, their output power levels were reduced by varying blocking percentage levels, and the resulting temperature field distributions were evaluated across multiple sonications near the hip and spine bones in each patient. Acoustic and thermal simulations took approximately20 min $20 \ \text{min}$ (7 min $7 \ \text{min}$ ) and1 min $1 \ \text{min}$ (30 s $30 \ \text{s}$ ) to run for a single near-spine (near-hip) target, respectively. RESULTS For all simulated sonications, transducer module blocking improvedΔ T ratio $\Delta T_{\mathrm{ratio}}$ compared to the no blocking case. In just over half of sonications, full module blocking maximizedΔ T ratio $\Delta T_{\mathrm{ratio}}$ (increase of 82% ± $\pm$ 38% in 50% of hip targets and 49% ± $\pm$ 30% in 62% of spine targets vs. no blocking; mean ± SD), at the cost of more diffuse focusing (focal heating volumes increased by 13% ± 13% for hip targets and 39% ± 27% for spine targets) and thus requiring elevated total (hip: 6% ± 17%, spine: 37% ± 17%) and peak module-wise (hip: 65% ± 36%, spine: 101% ± 56%) acoustic power levels to achieve equivalent focal heating as the no blocking control case. In the remaining sonications, partial module blocking provided further improvements in bothΔ T ratio $\Delta T_{\mathrm{ratio}}$ (increased by 29% ± 25% in the hip and 15% ± 12% in the spine) and focal heating volume (decrease of 20% ± 10% in the hip and 34% ± 17% in the spine) relative to the full blocking case. The optimal blocking percentage value was dependent on the specific patient geometry and target location of interest. Although not all individual target locations saw the benefit, element-wise phase aberration corrections improved the averageΔ T ratio $\Delta T_{\mathrm{ratio}}$ compared to the no correction case (increase of 52% ± 47% in the hip, 35% ± 24% in the spine) and impacted the optimal blocking percentage value. Transducer module blocking enabled ablative treatments to be carried out closer to both hip and spine without overheating or damaging the bone (no blocking:42 ± 1 mm $42\pm 1 \ \text{mm}$ /17 ± 2 mm $17 \pm 2 \ \text{mm}$ , full blocking:38 ± 1 mm $38\pm 1 \ \text{mm}$ /8 ± 1 mm $8\pm 1 \ \text{mm}$ , optimal partial blocking:36 ± 1 mm $36\pm 1 \ \text{mm}$ /7 ± 1 mm $7\pm 1 \ \text{mm}$ for hip/spine). CONCLUSION The proposed transducer apodization scheme shows promise for improving MRgFUS treatments of uterine fibroids, and may ultimately increase the effective treatment envelope of MRgFUS surgery in the body by enabling tissue ablation closer to bony structures.
Collapse
Affiliation(s)
- Sobhan Goudarzi
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ryan Matthew Jones
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Yin Hau Wallace Lee
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Martin D, Xu R, Dressler M, O'Reilly MA. Ex vivovalidation of non-invasive phase correction for transspine focused ultrasound: model performance and target feasibility. Phys Med Biol 2024; 69:235001. [PMID: 39509818 DOI: 10.1088/1361-6560/ad8fed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
Objective.To evaluate the feasibility of transspine focused ultrasound using simulation-based phase corrections from a CT-derived ray acoustics model.Approach.Bilateral transspine focusing was performed inex vivohuman vertebrae with a spine-specific ultrasound array. Ray acoustics-derived phase correction was compared to geometric focusing and a hydrophone-corrected gold standard. Planar hydrophone scans were recorded in the spinal canal and three metrics were calculated: target pressure, coronal and sagittal focal shift, and coronal and sagittal Sørensen-Dice similarity to the free-field.Post hocanalysis was performedin silicoto assess the impact of windows between vertebrae on focal shift.Main results.Hydrophone correction reduced mean sagittal plane shift from 1.74 ± 0.82 mm to 1.40 ± 0.82 mm and mean coronal plane shift from 1.07 ± 0.63 mm to 0.54 ± 0.49 mm. Ray acoustics correction reduced mean sagittal plane and coronal plane shift to 1.63 ± 0.83 mm and 0.83 ± 0.60 mm, respectively. Hydrophone correction increased mean sagittal similarity from 0.48 ± 0.22 to 0.68 ± 0.19 and mean coronal similarity from 0.48 ± 0.23 to 0.70 ± 0.19. Ray acoustics correction increased mean sagittal and coronal similarity to 0.53 ± 0.25 and 0.55 ± 0.26, respectively. Target pressure was relatively unchanged across beamforming methods.In silicoanalysis found that, for some targets, unoccluded paths may have increased focal shift.Significance. Gold standard phase correction significantly reduced coronal shift and significantly increased sagittal and coronal Sørensen-Dice similarity (p< 0.05). Ray acoustics-derived phase correction reduced sagittal and coronal shift and increased sagittal and coronal similarity but did not achieve statistical significance. Across beamforming methods, mean focal shift was comparable to MRI resolution, suggesting that transspine focusing is possible with minimal correction in favourable targets. Future work will explore the mitigation of acoustic windows with anti-focus control points.
Collapse
Affiliation(s)
- David Martin
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada
| | - Rui Xu
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada
| | - Max Dressler
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | - Meaghan A O'Reilly
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
3
|
Rosnitskiy PB, Khokhlova TD, Schade GR, Sapozhnikov OA, Khokhlova VA. Treatment Planning and Aberration Correction Algorithm for HIFU Ablation of Renal Tumors. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:341-353. [PMID: 38231825 PMCID: PMC11003458 DOI: 10.1109/tuffc.2024.3355390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
High-intensity focused ultrasound (HIFU) applications for thermal or mechanical ablation of renal tumors often encounter challenges due to significant beam aberration and refraction caused by oblique beam incidence, inhomogeneous tissue layers, and presence of gas and bones within the beam. These losses can be significantly mitigated through sonication geometry planning, patient positioning, and aberration correction using multielement phased arrays. Here, a sonication planning algorithm is introduced, which uses the simulations to select the optimal transducer position and evaluate the effect of aberrations and acoustic field quality at the target region after aberration correction. Optimization of transducer positioning is implemented using a graphical user interface (GUI) to visualize a segmented 3-D computed tomography (CT)-based acoustic model of the body and to select sonication geometry through a combination of manual and automated approaches. An HIFU array (1.5 MHz, 256 elements) and three renal cell carcinoma (RCC) cases with different tumor locations and patient body habitus were considered. After array positioning, the correction of aberrations was performed using a combination of backpropagation from the focus with an ordinary least squares (OLS) optimization of phases at the array elements. The forward propagation was simulated using a combination of the Rayleigh integral and k-space pseudospectral method (k-Wave toolbox). After correction, simulated HIFU fields showed tight focusing and up to threefold higher maximum pressure within the target region. The addition of OLS optimization to the aberration correction method yielded up to 30% higher maximum pressure compared to the conventional backpropagation and up to 250% higher maximum pressure compared to the ray-tracing method, particularly in strongly distorted cases.
Collapse
|
4
|
Messas E, Ijsselmuiden A, Trifunović-Zamaklar D, Cholley B, Puymirat E, Halim J, Karan R, van Gameren M, Terzić D, Milićević V, Tanter M, Pernot M, Goudot G. Treatment of severe symptomatic aortic valve stenosis using non-invasive ultrasound therapy: a cohort study. Lancet 2023; 402:2317-2325. [PMID: 37972628 DOI: 10.1016/s0140-6736(23)01518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Calcific aortic stenosis is commonly treated using surgical or transcatheter aortic valve replacement; however, many patients are not considered suitable candidates for these interventions due to severe comorbidities and limited life expectancy. As such, non-invasive therapies might offer alternative therapeutic possibilities in these patients. This study aimed to assess the safety of non-invasive ultrasound therapy and its ability to improve valvular function by softening calcified valve tissue. METHODS This prospective, multicentre, single-arm series enrolled 40 adult patients with severe symptomatic aortic valve stenosis at three hospitals in France, the Netherlands, and Serbia between March 13, 2019, and May 8, 2022. Patients were treated with transthoracically delivered non-invasive ultrasound therapy. Follow-ups were scheduled at 1, 3, 6, 12, and 24 months. The primary endpoints were procedure-related deaths within 30 days and improved valve function. We report the 6-month data. This study is registered at ClinicalTrials.gov, NCT03779620 and NCT04665596. FINDINGS 40 high-risk patients with a mean Society of Thoracic Surgeons score of 5·6% (SD 4·4) and multiple severe comorbidities were included. The primary endpoint, procedure-related mortality, did not occur; furthermore, no life-threatening or cerebrovascular events were reported. Improved valve function was confirmed up to 6 months, reflected by a 10% increase in mean aortic valve area from 0·58 cm2 (SD 0·19) at baseline to 0·64 cm2 (0·21) at follow-up (p=0·0088), and a 7% decrease in mean pressure gradient from 41·9 mm Hg (20·1) to 38·8 mm Hg (17·8; p=0·024). At 6 months, the New York Heart Association score had improved or stabilised in 24 (96%) of 25 patients, and the mean Kansas City Cardiomyopathy Questionnaire score had improved by 33%, from 48·5 (SD 22·6) to 64·5 (21·0). One serious procedure-related adverse event occurred in a patient who presented with a transient decrease in peripheral oxygen saturation. Non-serious adverse events included pain, discomfort during treatment, and transient arrhythmias. INTERPRETATION This novel, non-invasive ultrasound therapy for calcified aortic stenosis proved to be safe and feasible. FUNDING Cardiawave.
Collapse
Affiliation(s)
- Emmanuel Messas
- Cardiovascular Department, Hôpital Européen Georges-Pompidou, Université Paris-Cité, Paris, France; Paris Cardiovascular Research Center, Inserm UMR_U970, Université Paris-Cité, Paris, France; STOP-AS Research Consortium, Recherche Hospitalo-Universitaire, Rouen, France.
| | | | - Danijela Trifunović-Zamaklar
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Clinic for Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Bernard Cholley
- Department of Anaesthesiology and Intensive Care Medicine, Hôpital Européen Georges-Pompidou, Université Paris-Cité, Paris, France; Innovative Therapies in Haemostasis, Inserm UMR_S1140, Université Paris-Cité, Paris, France
| | - Etienne Puymirat
- Cardiovascular Department, Hôpital Européen Georges-Pompidou, Université Paris-Cité, Paris, France; Paris Cardiovascular Research Center, Inserm UMR_U970, Université Paris-Cité, Paris, France
| | - Jonathan Halim
- Cardiology Department, Amphia Hospital, Breda, Netherlands
| | - Radmila Karan
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Department of Anaesthesiology and Intensive Care at Clinic for Cardiac Surgery, University Clinical Centre of Serbia, Belgrade, Serbia
| | | | - Duško Terzić
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Clinic for Cardiac Surgery, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Vladimir Milićević
- Clinic for Cardiac Surgery, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Mickael Tanter
- Physics for Medicine Paris, Inserm/ESPCI Paris-PSL/CRNS, Paris, France
| | - Mathieu Pernot
- Physics for Medicine Paris, Inserm/ESPCI Paris-PSL/CRNS, Paris, France
| | - Guillaume Goudot
- Cardiovascular Department, Hôpital Européen Georges-Pompidou, Université Paris-Cité, Paris, France
| |
Collapse
|
5
|
Howe GA, Tang MX, Rowlands CJ. Tailored photoacoustic apertures with superimposed optical holograms. BIOMEDICAL OPTICS EXPRESS 2023; 14:6361-6380. [PMID: 38420325 PMCID: PMC10898579 DOI: 10.1364/boe.507453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 03/02/2024]
Abstract
A new method of generating potentially arbitrary photoacoustic wavefronts with optical holograms is presented. This method uses nanosecond laser pulses at 1064 nm that are split into four time-delayed components by means of a configurable multipass optical delay apparatus, which serves to map the pulses onto phase-delayed regions of a given acoustic wavefront. A single spatial light modulator generates separate holograms for each component, which are imaged onto a photoacoustic transducer comprised of a thermoelastic polymer. As a proof of concept of the broader arbitrary wavefront construction technique, the spatially- and temporally-modulated holograms in this study produce a phased array effect that enables beam steering of the resulting acoustic pulse. For a first experimental demonstration of the method, as verified by simulation, the acoustic beam is steered in four directions by around 5 degrees.
Collapse
Affiliation(s)
- Glenn A Howe
- Department of Bioengineering, Imperial College London, Royal School of Mines, Prince Consort Road, London, SW7 2BX, UK
| | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, Royal School of Mines, Prince Consort Road, London, SW7 2BX, UK
| | - Christopher J Rowlands
- Department of Bioengineering, Imperial College London, Royal School of Mines, Prince Consort Road, London, SW7 2BX, UK
| |
Collapse
|
6
|
Kaiser CRW, Tuma AB, Zebarjadi M, Zachs DP, Organ AJ, Lim HH, Collins MN. Rib detection using pitch-catch ultrasound and classification algorithms for a novel ultrasound therapy device. Bioelectron Med 2023; 9:25. [PMID: 37964380 PMCID: PMC10647025 DOI: 10.1186/s42234-023-00127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Noninvasive ultrasound (US) has been used therapeutically for decades, with applications in tissue ablation, lithotripsy, and physical therapy. There is increasing evidence that low intensity US stimulation of organs can alter physiological and clinical outcomes for treatment of health disorders including rheumatoid arthritis and diabetes. One major translational challenge is designing portable and reliable US devices that can be used by patients in their homes, with automated features to detect rib location and aid in efficient transmission of energy to organs of interest. This feasibility study aimed to assess efficacy in rib bone detection without conventional imaging, using a single channel US pitch-catch technique integrated into an US therapy device to detect pulsed US reflections from ribs. METHODS In 20 healthy volunteers, the location of the ribs and spleen were identified using a diagnostic US imaging system. Reflected ultrasound signals were recorded at five positions over the spleen and adjacent ribs using the therapy device. Signals were classified as between ribs (intercostal), partially over a rib, or fully over a rib using four models: threshold-based time domain classification, threshold-based frequency domain classification, logistic regression, and support vector machine (SVM). RESULTS SVM performed best overall on the All Participants cohort with accuracy up to 96.25%. All models' accuracies were improved by separating participants into two cohorts based on Body Mass Index (BMI) and re-fitting each model. After separation into Low BMI and High BMI cohorts, a simple time-thresholding approach achieved accuracies up to 100% and 93.75%, respectively. CONCLUSION These results demonstrate that US reflection signal classification can accurately provide low complexity, real-time automated onboard rib detection and user feedback to advance at-home therapeutic US delivery.
Collapse
Affiliation(s)
- Claire R W Kaiser
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE 7-105 Nils Hasselmo Hall, Minneapolis, MN, 55455, USA.
| | - Adam B Tuma
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Phillips Wangensteen Building, 516 Delaware St SE, Suite 8-240, Minneapolis, MN, 55455, USA
| | - Maryam Zebarjadi
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Phillips Wangensteen Building, 516 Delaware St SE, Suite 8-240, Minneapolis, MN, 55455, USA
| | - Daniel P Zachs
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Phillips Wangensteen Building, 516 Delaware St SE, Suite 8-240, Minneapolis, MN, 55455, USA
| | - Anna J Organ
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Phillips Wangensteen Building, 516 Delaware St SE, Suite 8-240, Minneapolis, MN, 55455, USA
| | - Hubert H Lim
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE 7-105 Nils Hasselmo Hall, Minneapolis, MN, 55455, USA
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Phillips Wangensteen Building, 516 Delaware St SE, Suite 8-240, Minneapolis, MN, 55455, USA
| | - Morgan N Collins
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Phillips Wangensteen Building, 516 Delaware St SE, Suite 8-240, Minneapolis, MN, 55455, USA
| |
Collapse
|
7
|
Yeats E, Hall TL. Aberration correction in abdominal histotripsy. Int J Hyperthermia 2023; 40:2266594. [PMID: 37813397 PMCID: PMC10637766 DOI: 10.1080/02656736.2023.2266594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
In transabdominal histotripsy, ultrasound pulses are focused on the body to noninvasively destroy soft tissues via cavitation. However, the ability to focus is limited by phase aberration, or decorrelation of the ultrasound pulses due to spatial variation in the speed of sound throughout heterogeneous tissue. Phase aberration shifts, broadens, and weakens the focus, thereby reducing the safety and efficacy of histotripsy therapy. This paper reviews and discusses aberration effects in histotripsy and in related therapeutic ultrasound techniques (e.g., high intensity focused ultrasound), with an emphasis on aberration by soft tissues. Methods for aberration correction are reviewed and can be classified into two groups: model-based methods, which use segmented images of the tissue as input to an acoustic propagation model to predict and compensate phase differences, and signal-based methods, which use a receive-capable therapy array to detect phase differences by sensing acoustic signals backpropagating from the focus. The relative advantages and disadvantages of both groups of methods are discussed. Importantly, model-based methods can correct focal shift, while signal-based methods can restore substantial focal pressure, suggesting that both methods should be combined in a 2-step approach. Aberration correction will be critical to improving histotripsy treatments and expanding the histotripsy treatment envelope to enable non-invasive, non-thermal histotripsy therapy for more patients.
Collapse
Affiliation(s)
- Ellen Yeats
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| | - Timothy L. Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
8
|
Zubair M, Adams MS, Diederich CJ. Deployable ultrasound applicators for endoluminal delivery of volumetric hyperthermia. Int J Hyperthermia 2021; 38:1188-1204. [PMID: 34376103 DOI: 10.1080/02656736.2021.1936216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
PURPOSE To investigate the design of an endoluminal deployable ultrasound applicator for delivering volumetric hyperthermia to deep tissue sites as a possible adjunct to radiation and chemotherapy. METHOD This study considers an ultrasound applicator consisting of two tubular transducers situated at the end of a catheter assembly, encased within a distensible conical shaped balloon-based reflector that redirects acoustic energy distally into the tissue. The applicator assembly can be inserted endoluminally or laparoscopically in a compact form and expanded after delivery to the target site. Comprehensive acoustic and biothermal simulations and parametric studies were employed in generalized 3D and patient-specific pancreatic head and body tumor models to characterize the acoustic performance and evaluate heating capabilities of the applicator by investigating the device at a range of operating frequencies, tissue acoustic and thermal properties, transducer configurations, power modulation, applicator positioning, and by analyzing the resultant 40, 41, and 43 °C isothermal volumes and penetration depth of the heating volume. Intensity distributions and volumetric temperature contours were calculated to define moderate hyperthermia boundaries. RESULTS Parametric studies demonstrated the frequency selection to control volume and depth of therapeutic heating from 62 to 22 cm3 and 4 to 2.6 cm as frequency ranges from 1 MHz to 4.7 MHz, respectively. Width of the heating profile tracks closely with the aperture. Water cooling within the reflector balloon was effective in controlling temperature to 37 °C maximum within the luminal wall. Patient-specific studies indicated that applicators with extended OD in the range of 3.6-6.2 cm with 0.5-1 cm long and 1 cm OD transducers can heat volumes of 1.1-7 cm3, 3-26 cm3, and 3.3-37.4 cm3 of pancreatic body and head tumors above 43, 41, and 40 °C, respectively. CONCLUSION In silico studies demonstrated the feasibility of combining endoluminal ultrasound with an integrated expandable balloon reflector for delivering volumetric hyperthermia in regions adjacent to body lumens and cavities.
Collapse
Affiliation(s)
- Muhammad Zubair
- Thermal Therapy Research Group, Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Matthew S Adams
- Thermal Therapy Research Group, Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Chris J Diederich
- Thermal Therapy Research Group, Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
9
|
Thomas GPL, Khokhlova TD, Bawiec CR, Peek AT, Sapozhnikov OA, O'Donnell M, Khokhlova VA. Phase-Aberration Correction for HIFU Therapy Using a Multielement Array and Backscattering of Nonlinear Pulses. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1040-1050. [PMID: 33052845 PMCID: PMC8476183 DOI: 10.1109/tuffc.2020.3030890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Phase aberrations induced by heterogeneities in body wall tissues introduce a shift and broadening of the high-intensity focused ultrasound (HIFU) focus, associated with decreased focal intensity. This effect is particularly detrimental for HIFU therapies that rely on shock front formation at the focus, such as boiling histotripsy (BH). In this article, an aberration correction method based on the backscattering of nonlinear ultrasound pulses from the focus is proposed and evaluated in tissue-mimicking phantoms. A custom BH system comprising a 1.5-MHz 256-element array connected to a Verasonics V1 engine was used as a pulse/echo probe. Pulse inversion imaging was implemented to visualize the second harmonic of the backscattered signal from the focus inside a phantom when propagating through an aberrating layer. Phase correction for each array element was derived from an aberration-correction method for ultrasound imaging that combines both the beamsum and the nearest neighbor correlation method and adapted it to the unique configuration of the array. The results were confirmed by replacing the target tissue with a fiber-optic hydrophone. Comparing the shock amplitude before and after phase-aberration correction showed that the majority of losses due to tissue heterogeneity were compensated, enabling fully developed shocks to be generated while focusing through aberrating layers. The feasibility of using a HIFU phased-array transducer as a pulse-echo probe in harmonic imaging mode to correct for phase aberrations was demonstrated.
Collapse
|
10
|
Zubair M, Dickinson R. Calculating the Effect of Ribs on the Focus Quality of a Therapeutic Spherical Random Phased Array. SENSORS 2021; 21:s21041211. [PMID: 33572208 PMCID: PMC7915479 DOI: 10.3390/s21041211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 02/03/2023]
Abstract
The overlaying rib cage is a major hindrance in treating liver tumors with high intensity focused ultrasound (HIFU). The problems caused are overheating of the ribs due to its high ultrasonic absorption capability and degradation of the ultrasound intensity distribution in the target plane. In this work, a correction method based on binarized apodization and geometric ray tracing approach was employed to avoid heating the ribs. A detailed calculation of the intensity distribution in the focus plane was undertaken to quantify and avoid the effect on HIFU beam generated by a 1-MHz 256-element random phased array after the ultrasonic beam passes through the rib cage. Focusing through the ribs was simulated for 18 different idealized ribs-array configurations and 10 anatomically correct ribs-array configurations, to show the effect of width of the ribs, intercostal spacing and the relative position of ribs and array on the quality of focus, and to identify the positions that are more effective for HIFU applications in the presence of ribs. Acoustic simulations showed that for a single focus without beam steering and for the same total acoustic power, the peak intensity at the target varies from a minimum of 211 W/cm2 to a maximum of 293 W/cm2 for a nominal acoustic input power of 15 W, whereas the side lobe level varies from 0.07 Ipeak to 0.28 Ipeak and the separation between the main lobe and side lobes varies from 2.5 mm to 6.3 mm, depending on the relative positioning of the array and ribs and the beam alignment. An increase in the side lobe level was observed by increasing the distance between the array and the ribs. The parameters of focus splitting and the deterioration of focus quality caused by the ultrasonic propagation through the ribs were quantified in various possible different clinical scenarios. In addition to idealized rib topology, anatomical realistic ribs were used to determine the focus quality of the HIFU beam when the beam is steered both in axial and transverse directions and when the transducer is positioned at different depths from the rib cage.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Radiation Oncology, University of California, San Francisco, CA 90007, USA
- Correspondence:
| | - Robert Dickinson
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK;
| |
Collapse
|
11
|
Zubair M, Dickinson RJ. 3D synthetic aperture imaging with a therapeutic spherical random phased array for transcostal applications. Phys Med Biol 2021; 66:035024. [PMID: 33276351 DOI: 10.1088/1361-6560/abd0d0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Experimental validation of a synthetic aperture imaging technique using a therapeutic random phased array is described, demonstrating the dual nature of imaging and therapy of such an array. The transducer is capable of generating both continuous wave high intensity beams for ablating the tumor and low intensity ultrasound pulses to image the target area. Pulse-echo data is collected from the elements of the phased array to obtain B-mode images of the targets. Since therapeutic arrays are optimized for therapy only with concave apertures having low f-number and large directive elements often coarsely sampled, imaging can not be performed using conventional beamforming. We show that synthetic aperture imaging is capable of processing the acquired RF data to obtain images of the field of interest. Simulations were performed to compare different synthetic aperture imaging techniques to identify the best algorithm in terms of spatial resolution. Experimental validation was performed using a 1 MHz, 256-elements, spherical random phased array with 130 mm radius of curvature. The array was integrated with a research ultrasound scanner via custom connectors to acquire raw RF data for variety of targets. Imaging was implemented using synthetic aperture beamforming to produce images of a rib phantom and ex vivo ribs. The array was shown to resolve spherical targets within ±15 mm of either side of the axis in the focal plane and obtain 3D images of the rib phantom up to ±40 mm of either side of the central axis and at a depth of 3-9 cm from the array surface. The lateral and axial full width half maximum was 1.15 mm and 2.75 mm, respectively. This study was undertaken to emphasize that both therapy and image guidance with a therapeutic random phased array is possible and such a system has the potential to address some major limitations in the existing high intensity focused ultrasound (HIFU) systems. The 3D images obtained with a therapeutic array can be used to identify and locate strong scattering objects aiding to image guidance and treatment planning of the HIFU procedure.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Bioengineering, Imperial College London, United Kingdom
| | | |
Collapse
|
12
|
Adams MS, Lotz JC, Diederich CJ. In silico feasibility assessment of extracorporeal delivery of low-intensity pulsed ultrasound to intervertebral discs within the lumbar spine. Phys Med Biol 2020; 65:215011. [PMID: 32620003 DOI: 10.1088/1361-6560/aba28d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Low intensity pulsed ultrasound (LIPUS) may have utility for non-invasive treatment of discogenic lower back pain through stimulating, remodeling and accelerating healing of injured or degenerated intervertebral disc (IVD) tissues. This study investigates the feasibility of delivering LIPUS to lumbar IVDs between L2 and S1 spine vertebra using a planar extracorporeal phased array (8 × 8 cm, 1024 elements, 500 kHz). Three 3D anatomical models with heterogenous tissues were generated from patient CT image sets and used in the simulation-based analysis. Time-reversal acoustic modeling techniques were applied to optimize posterior-lateral placement of the array with respect to the body to facilitate energy deposition in discrete target regions spanning the annulus fibrosus and central nucleus of each IVD. Forward acoustic and biothermal simulations were performed with time-reversal optimized array placements and driving amplitude/phase settings to predict LIPUS intensity distributions at target sites and to investigate off-target energy deposition and heating potential. Simulation results demonstrate focal intensity gain of 5-168 across all IVD targets and anatomical models, with greater average intensity gain (>50) and energy localization in posterior, posterolateral, and lateral target sites of IVDs. Localized LIPUS delivery was enhanced in thinner patient anatomies and in the high lumbar levels (L2-L3 and L3-L4). Multiple amplitude/phasing illumination patterns could be sequenced at a fixed array position for larger regional energy coverage in the IVD. Biothermal simulations demonstrated that LIPUS-appropriate exposures of 100 mW cm-2 ISPTA to the target disc region would result in <1 °C global peak temperature elevation for all cases. Hence, simulations suggest that spatially-precise extracorporeal delivery of therapeutically relevant LIPUS doses to discrete regions of lumbar IVDs is feasible and may be useful in clinical management of discogenic back pain.
Collapse
Affiliation(s)
- Matthew S Adams
- Thermal Therapy Research Group, Department of Radiation Oncology, University of California San Francisco, 2340 Sutter Street, S341, San Francisco, CA 94115, United States of America
| | | | | |
Collapse
|
13
|
Cao R, Huang Z, Nabi G, Melzer A. Patient-Specific 3-Dimensional Model for High-Intensity Focused Ultrasound Treatment Through the Rib Cage: A Preliminary Study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:883-899. [PMID: 31721248 DOI: 10.1002/jum.15170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/12/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVES The purpose of this study was to develop a patient-specific 3-dimensional model for high-intensity focused ultrasound (HIFU) treatment through the rib cage using patient data. METHODS Experimental testing to derive parameters used in defining the amount of energy and alteration needed in treatment protocols for upper abdominal disorders under the rib cage was performed. Reconstructed rib cage models based on patient data, tissue-mimicking material phantoms, and magnetic resonance imaging-guided HIFU using a multielement phased array transducer were used in the experiments. Changes in the focal temperature, acoustic power, and acoustic pressure distribution were investigated with and without the presence of the rib cage model. An ExAblate system (InSightec Ltd, Tirat Carmel, Israel) was used to sonicate phantoms by varying the target phantom or rib cage model location. RESULTS The effect of the rib cage on the acoustic pressure distribution and acoustic power was closely related to the anatomic structures of the ribs. Thermometry revealed that heating at the focus could be controlled by changing either the power or duration of HIFU application to improve the focal temperature change. The focal temperature change was found to be related to the distance between the rib cage model and focus and the shadow area on the transducer elements covered by the rib cage model in the beam path. CONCLUSIONS Experimental results suggest that the rib cage model is a valuable and useful tool that can provide realistic human anatomic structures and properties for evaluating the effects of the rib cage on ultrasound propagation.
Collapse
Affiliation(s)
- Rui Cao
- Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, College of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Zhihong Huang
- School of Science and Engineering, University of Dundee, Dundee, UK
| | - Ghulam Nabi
- School of Medicine, Ninewells Hospital, Dundee, UK
| | - Andreas Melzer
- Institute for Medical Science and Technology, Dundee, UK
| |
Collapse
|
14
|
Almekkawy M, Ebbini ES. The Optimization of Transcostal Phased Array Refocusing Using the Semidefinite Relaxation Method. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:318-328. [PMID: 31567081 PMCID: PMC8651278 DOI: 10.1109/tuffc.2019.2944434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tumors in organs partially obscured by the rib cage represent a challenge for high-intensity focused ultrasound (HIFU) therapy. The ribs distort the HIFU beams in a manner that reduces the focusing gain at the target, which could result in treatment-limiting collateral damage. In fact, skin burns are a common complication during the ablation of hepatic tumors. This problem can be addressed by employing optimal refocusing algorithms that are designed to achieve a specified focusing gain at the target while controlling the exposure to the ribs in the path of the HIFU beam. However, previously proposed optimal refocusing algorithms did not allow for the controlled transmission through the ribs. In this article, we introduce a new approach for refocusing that can more efficiently steer power toward the target while limiting the power deposition on the ribs. The approach utilizes the semidefinite relaxation (SDR) technique to approximate the original (nonconvex) optimization problem. An important advantage of the SDR-based method over previously proposed optimization methods is the control of the side lobes in the focal plane. The method also allows for specifying an acceptable level of exposure to the ribs. Simulation results using a 1-MHz spherical concave phased array focused on an inhomogeneous medium are presented to demonstrate the performance of the SDR refocusing approach. A finite-difference time-domain propagation model was used to model the propagation in the inhomogeneous tissues, including the ribs. Temperature simulations based on the inhomogeneous transient bioheat transfer equation (tBHTE) demonstrate the significance of the improvements in the focusing gain when using the limited power deposition (LPD) method. The results also demonstrate that the LPD method yields well-behaved array excitation vectors, realizable by currently existing drivers.
Collapse
|
15
|
Soulioti DE, Espindola D, Dayton PA, Pinton GF. Super-Resolution Imaging Through the Human Skull. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:25-36. [PMID: 31494546 DOI: 10.1109/tuffc.2019.2937733] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High-resolution transcranial ultrasound imaging in humans has been a persistent challenge for ultrasound due to the imaging degradation effects from aberration and reverberation. These mechanisms depend strongly on skull morphology and have high variability across individuals. Here, we demonstrate the feasibility of human transcranial super-resolution imaging using a geometrical focusing approach to efficiently concentrate energy at the region of interest, and a phase correction focusing approach that takes the skull morphology into account. It is shown that using the proposed focused super-resolution method, we can image a 208- [Formula: see text] microtube behind a human skull phantom in both an out-of-plane and an in-plane configuration. Individual phase correction profiles for the temporal region of the human skull were calculated and subsequently applied to transmit-receive a custom focused super-resolution imaging sequence through a human skull phantom, targeting the 208- [Formula: see text] diameter microtube at 68.5 mm in depth and at 2.5 MHz. Microbubble contrast agents were diluted to a concentration of 1.6×106 bubbles/mL and perfused through the microtube. It is shown that by correcting for the skull aberration, the RF signal amplitude from the tube improved by a factor of 1.6 in the out-of-plane focused emission case. The lateral registration error of the tube's position, which in the uncorrected case was 990 [Formula: see text], was reduced to as low as 50 [Formula: see text] in the corrected case as measured in the B-mode images. Sensitivity in microbubble detection for the phase-corrected case increased by a factor of 1.48 in the out-of-plane imaging case, while, in the in-plane target case, it improved by a factor of 1.31 while achieving an axial registration correction from an initial 1885- [Formula: see text] error for the uncorrected emission, to a 284- [Formula: see text] error for the corrected counterpart. These findings suggest that super-resolution imaging may be used far more generally as a clinical imaging modality in the brain.
Collapse
|
16
|
Khokhlova TD, Schade GR, Wang YN, Buravkov SV, Chernikov VP, Simon JC, Starr F, Maxwell AD, Bailey MR, Kreider W, Khokhlova VA. Pilot in vivo studies on transcutaneous boiling histotripsy in porcine liver and kidney. Sci Rep 2019; 9:20176. [PMID: 31882870 PMCID: PMC6934604 DOI: 10.1038/s41598-019-56658-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
Boiling histotripsy (BH) is a High Intensity Focused Ultrasound (HIFU) method for precise mechanical disintegration of target tissue using millisecond-long pulses containing shocks. BH treatments with real-time ultrasound (US) guidance allowed by BH-generated bubbles were previously demonstrated ex vivo and in vivo in exposed porcine liver and small animals. Here, the feasibility of US-guided transabdominal and partially transcostal BH ablation of kidney and liver in an acute in vivo swine model was evaluated for 6 animals. BH parameters were: 1.5 MHz frequency, 5–30 pulses of 1–10 ms duration per focus, 1% duty cycle, peak acoustic powers 0.9–3.8 kW, sonication foci spaced 1–1.5 mm apart in a rectangular grid with 5–15 mm linear dimensions. In kidneys, well-demarcated volumetric BH lesions were generated without respiratory gating and renal medulla and collecting system were more resistant to BH than cortex. The treatment was accelerated 10-fold by using shorter BH pulses of larger peak power without affecting the quality of tissue fractionation. In liver, respiratory motion and aberrations from subcutaneous fat affected the treatment but increasing the peak power provided successful lesion generation. These data indicate BH is a promising technology for transabdominal and transcostal mechanical ablation of tumors in kidney and liver.
Collapse
Affiliation(s)
- Tatiana D Khokhlova
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, WA, USA. .,Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA.
| | - George R Schade
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Yak-Nam Wang
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Sergey V Buravkov
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Julianna C Simon
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Frank Starr
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Adam D Maxwell
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael R Bailey
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA.,Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Wayne Kreider
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
| | - Vera A Khokhlova
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA, USA.,Physics Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
17
|
Qiao S, Elbes D, Boubriak O, Urban JPG, Coussios CC, Cleveland RO. Delivering Focused Ultrasound to Intervertebral Discs Using Time-Reversal. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2405-2416. [PMID: 31155405 DOI: 10.1016/j.ultrasmedbio.2019.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 04/18/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Chronic low back pain causes more disability worldwide than any other condition and is thought to arise in part through loss of biomechanical function of degenerate intervertebral discs (IVDs). Current treatments can involve replacing part or all of the degenerate IVDs by invasive surgery. Our vision is to develop a minimally invasive approach in which high intensity focused ultrasound (HIFU) is used to mechanically fractionate degenerate tissue in an IVD; a fine needle is then used to first remove the fractionated tissue and then inject a biomaterial able to restore normal physiologic function. The goal of this manuscript is to demonstrate the feasibility of trans-spinal HIFU delivery using simulations of 3-D ultrasound propagation in models derived from patient computed tomography (CT) scans. The CT data were segmented into bone, fat and other soft tissue for three patients. Ultrasound arrays were placed around the waist of each patient model, and time-reversal was used to determine the source signals necessary to create a focus in the center of the disc. The simulations showed that for 0.5 MHz ultrasound, a focus could be created in most of the lumbar IVDs, with the pressure focal gain ranging from 3.2-13.7. In conclusion, it is shown that with patient-specific planning, focusing ultrasound into an IVD is possible in the majority of patients despite the complex acoustic path introduced by the bony structures of the spine.
Collapse
Affiliation(s)
- S Qiao
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| | - D Elbes
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| | - O Boubriak
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| | - J P G Urban
- Department of Physiology, Anatomy & Genetics, University of Oxford, UK
| | - C-C Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| | - R O Cleveland
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK.
| |
Collapse
|
18
|
Robin J, Simon A, Arnal B, Tanter M, Pernot M. Self-adaptive ultrasonic beam amplifiers: application to transcostal shock wave therapy. Phys Med Biol 2018; 63:175014. [PMID: 30101750 DOI: 10.1088/1361-6560/aad9b5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ultrasound shock wave therapy is increasingly used for non-invasive surgery. It requires the focusing of very high pressure amplitude in precisely controlled focal spots. In transcostal therapy of the heart or the liver, the high impedance mismatch between the bones and surrounding tissues gives rise to strong aberrations and attenuation of the therapeutic wavefront, with potential risks of injury at the tissue-bone interface. An adaptive propagation of the ultrasonic beam through the intercostal spaces would be required. Several solutions have been developed so far, but they require a prior knowledge of the patient's anatomy or an invasive calibration process, not applicable in clinic. Here, we develop a non-invasive adaptive focusing method for ultrasound therapy through the ribcage using a time reversal cavity (TRC) acting as an ultrasonic beam amplifier. This method is based on ribcage imaging through the TRC and a projection orthogonally to the strongest identified reflectors. The focal pressure of our device was improved by up to 30% using such self-adaptive processing, without degrading the focal spots size and shape. This improvement allowed lesion formation in an Ultracal® phantom through a ribcage without invasive calibration of the device. This adaptive method could be particularly interesting to improve the efficiency and the safety of pulsed cavitational therapy of the heart or the liver.
Collapse
Affiliation(s)
- J Robin
- Institut Langevin, ESPCI Paris, Inserm U979, CNRS UMR 7587, Université Paris Diderot, PSL Research University, Paris, France
| | | | | | | | | |
Collapse
|
19
|
O'Reilly MA, Chinnery T, Yee ML, Wu SK, Hynynen K, Kerbel RS, Czarnota GJ, Pritchard KI, Sahgal A. Preliminary Investigation of Focused Ultrasound-Facilitated Drug Delivery for the Treatment of Leptomeningeal Metastases. Sci Rep 2018; 8:9013. [PMID: 29899537 PMCID: PMC5998139 DOI: 10.1038/s41598-018-27335-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022] Open
Abstract
Leptomeningeal metastases (LM) are a serious complication of cancer in the central nervous system (CNS) and are diagnosed in approximately 5% of patients with solid tumors. Effective treatment using systemically administered therapeutics is hindered by the barriers of the CNS. Ultrasound can mediate delivery of drugs through these barriers. The goal of this study was to test the feasibility of using ultrasound-mediated drug delivery to improve the treatment of LM. LM was induced in the spinal cord of athymic rats by injecting HER2-expressing breast cancer cells into the subarachnoid space of the thoracic spine. Animals were divided into three groups: no treatment (n = 5), trastuzumab only (n = 6) or trastuzumab + focused ultrasound + microbubbles (FUS + MBs) (n = 7). Animals in groups 2 and 3 were treated weekly with intravenous trastuzumab +/− FUS + MBs for three weeks. Suppression in tumor growth was qualitatively observed by MRI in the group receiving ultrasound, and was confirmed by a significant difference in the tumor volume measured from the histology data (25 ± 17 mm3 vs 8 ± 5 mm3, p = 0.04 in the trastuzumab-only vs trastuzumab + FUS + MBs). This pilot study demonstrates the potential of ultrasound-mediated drug delivery as a novel treatment for LM. Future studies will extend this work to larger cohorts and the investigation of LM arising from other cancers.
Collapse
Affiliation(s)
- Meaghan A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| | - Tricia Chinnery
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - My-Linh Yee
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Sheng-Kai Wu
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Robert S Kerbel
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Gregory J Czarnota
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Kathleen I Pritchard
- Evaluative Clinical Sciences, Sunnybrook Health Sciences Centre, Toronto, Canada.,Medical Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Arjun Sahgal
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
20
|
van Breugel JMM, de Greef M, Wijlemans JW, Schubert G, van den Bosch MAAJ, Moonen CTW, Ries MG. Thermal ablation of a confluent lesion in the porcine kidney with a clinically available MR-HIFU system. Phys Med Biol 2017; 62:5312-5326. [PMID: 28557798 DOI: 10.1088/1361-6560/aa75b3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The incidence of small renal masses (SRMs) sized <4 cm has increased over the decades (as co-findings/or due to introduction of cross sectional imaging). Currently, partial nephrectomy (PN) or watchful waiting is advised in these patients. Ultimately, 80-90% of these SRMs require surgical treatment and PN is associated with a 15% complication rate. In this aging population, with possible comorbidities and poor health condition, both PN and watchful waiting are non-ideal treatment options. This resulted in an increased need for early, non-invasive treatment strategies such as MR-guided high intensity focused ultrasound (MR-HIFU). (i) To investigate the feasibility of creating a confluent lesion in the kidney using respiratory-gated MR-HIFU under clinical conditions in a pre-clinical study and (ii) to evaluate the reproducibility of the MR-HIFU ablation strategy. Healthy pigs (n = 10) under general anesthesia were positioned on a clinical MR-HIFU system with integrated cooling. A honeycomb pattern of seven overlapping ablation cells (4 × 4 × 10 mm3, 450 W, <30 s) was ablated successively in the cortex of the porcine kidney. Both MR thermometry and acoustic energy delivery were respiratory gated using a pencil beam navigator on the contralateral kidney. The non-perfused volume (NPV) was visualized after the last sonication by contrast-enhanced (CE) T 1-weighted MR (T 1 w) imaging. Cell viability staining was performed to visualize the extent of necrosis. RESULTS a median NPV of 0.62 ml was observed on CE-T 1 w images (IQR 0.58-1.57 ml, range 0.33-2.75 ml). Cell viability staining showed a median damaged volume of 0.59 ml (IQR 0.24-1.35 ml, range 0-4.1 ml). Overlooking of the false rib, shivering of the pig, and too large depth combined with a large heat-sink effect resulted in insufficient heating in 4 cases. The NPV and necrosed volume were confluent in all cases in which an ablated volume could be observed. Our results demonstrated the feasibility of creating a confluent volume of ablated kidney cortical tissue in vivo with MR-HIFU on a clinically available system using respiratory gating and near-field cooling and showed its reproducibility.
Collapse
Affiliation(s)
- J M M van Breugel
- Center for Imaging Sciences, University Medical Center Utrecht, Utrecht, Netherlands
| | | | | | | | | | | | | |
Collapse
|
21
|
Jakovljevic M, Pinton GF, Dahl JJ, Trahey GE. Blocked Elements in 1-D and 2-D Arrays-Part I: Detection and Basic Compensation on Simulated and In Vivo Targets. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:910-921. [PMID: 28328504 PMCID: PMC5829368 DOI: 10.1109/tuffc.2017.2683559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
During a transcostal ultrasound scan, ribs and other highly attenuating and/or reflective tissue structures can block parts of the array. Blocked elements tend to limit the acoustic window and impede visualization of structures of interest. Here, we demonstrate a method to detect blocked elements and we measure the loss of image quality they introduce in simulation and in vivo. We utilize a fullwave simulation tool and a clinical ultrasound scanner to obtain element signals from fully sampled matrix arrays during simulated and in vivo transcostal liver scans, respectively. The elements that were blocked by a rib showed lower average signal amplitude and lower average nearest-neighbor cross correlation than the elements in the remainder of the 2-D aperture. The growing receive-aperture B-mode images created from the element data indicate that the signals on blocked elements are dominated by noise and that turning them OFF has a potential to improve visibility of liver vasculature. Adding blocked elements to the growing receive apertures for five in vivo transcostal acquisitions resulted in average decrease in vessel contrast and contrast to noise ratio of 19% and 10%, respectively.
Collapse
|
22
|
Jakovljevic M, Bottenus N, Kuo L, Kumar S, Dahl JJ, Trahey GE. Blocked Elements in 1-D and 2-D Arrays-Part II: Compensation Methods as Applied to Large Coherent Apertures. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:922-936. [PMID: 28328505 PMCID: PMC5834306 DOI: 10.1109/tuffc.2017.2683562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In Part I of this paper, we detected elements blocked by ribs during simulated and in vivo transcostal liver scans, and we turned those elements OFF to compensate for the loss in visibility of liver vasculature. Here, we apply blocked-element detection and adaptive compensation to large synthetic-aperture (SA) data collected through rib samples ex vivo, in order to reduce near-field clutter and to recover lateral resolution. To construct large synthetic transmit and receive apertures, we collected the individual-channel signals from a fully sampled matrix array at multiple and known array locations across the tissue samples. The blocked elements in SAs were detected using the method presented in Part I and retroactively turned OFF, while the subapertures covering intercostal spaces were either compounded, or coherently summed using uniform and adaptive element-weighting schemes. Turning OFF the blocked elements reduced the reverberation clutter by 5 dB on average. Adaptive weighing of the nonblocked elements to rescale the attenuated spatial frequencies reduced sidelobe levels by up to 5 dB for the transcostal acquisitions, and demonstrated a potential to restore lateral resolution to the nonblocked levels. In addition, the arrival-time surfaces were reconstructed to estimate the aberration from intercostal spaces and to offer further means to compensate for the loss of focus quality in transthoracic imaging.
Collapse
|
23
|
Rezaei M, Khoshgard K, Mousavi M. The Correction of Focal Point Displacement Caused by the Refraction of the Beams in High-Intensity Focused Ultrasound. JOURNAL OF MEDICAL SIGNALS AND SENSORS 2017; 7:178-184. [PMID: 28840119 PMCID: PMC5551302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nowadays, high-intensity focused ultrasound (HIFU) as nonionizing radiation is used for cancer treatment. Basically, the function of HIFU is similar to conventional ultrasound. Ultrasound beams are perverted when crossing the border of different environments. This decreases the beam's focus within the tumor and may induce damage to the normal tissues. In this study, we aim to develop appropriate algorithms for correcting the focal point displacement duced by the beam's refraction. First, the level of displacement due to difference in two specific tissues was calculated for one element of the transducer and, then, it extended to all of the elements. Finally, a new focal point was calculated, which is considered as a desired focal point of the transducer in which the maximum temperature occurs. Designed algorithms were implemented in MATLAB software. A HIFU simulator (by the Food and Drug Administration of US) was used to simulate HIFU therapy. The proposed algorithm was tested on four models with two layers of tissue. Results illustrated the use of proposed algorithm results for 78% correction in the focal point displacement. In addition, it was noted that a part of this displacement was caused by the absorption of the beam in the tissues. The proposed algorithm can significantly correct the focal point displacement in HIFU therapy and consequently prevent damage to the normal tissues.
Collapse
Affiliation(s)
- Mohammad Rezaei
- Sleep Disorders Research Center, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Karim Khoshgard
- Department of Medical Physics, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran,Address for correspondence: Dr. Karim Khoshgard, Kermanshah University of Medical Sciences, Parastar Ave., Kermanshah, Iran. E-mail:
| | - Mehdi Mousavi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Peng S, Zhou P, He W, Liao M, Chen L, Ma CM. Treatment of hepatic tumors by thermal versus mechanical effects of pulsed high intensity focused ultrasound in vivo. Phys Med Biol 2016; 61:6754-6769. [PMID: 27580168 DOI: 10.1088/0031-9155/61/18/6754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The purpose of this study is to comparatively assess the thermal versus mechanical effects of pulsed high intensity focused ultrasound (HIFU) treatment on hepatic tumors in vivo. Forty-five rabbits with hepatic VX2 tumors were randomly separated into three groups (15 animals per group) before HIFU ablation. The total HIFU energy (in situ) of 1250 J was used for each tumor for three groups. In groups I and II, animals were treated with 1 MHz pulsed ultrasound at 1 Hz pulsed repetition frequency (PRF), 0.5 duty cycle (0.5 s on and 0.5 s off) and10 s duration for one spot sonication. For group II, in addition to HIFU treatment, microbubbles (SonoVue, Bracco, Milan, Italy) were injected via vein before sonication acting as a synergist. In group III, animals were treated with 1 MHz pulsed ultrasound at 10 Hz PRF, 0.1 duty cycle (0.1 s on and 0.9 s off) and 10 s duration for one sonication. The total treatment spots were calculated according to the tumor volume. Tumors were examined with contrast-enhanced computed tomography (CECT) immediately prior to and post HIFU treatment. Histopathologic assessment was performed 3 h after treatment. Our study showed that all animals tolerated the HIFU treatment well. Our data showed that mechanical HIFU could lead to controlled injury in rabbit hepatic tumors with different histological changes in comparison to thermal HIFU with or without microbubbles.
Collapse
Affiliation(s)
- Song Peng
- Department of Diagnostic Imaging, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, People's Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
Lesser TG, Boltze C, Schubert H, Wolfram F. Flooded Lung Generates a Suitable Acoustic Pathway for Transthoracic Application of High Intensity Focused Ultrasound in Liver. Int J Med Sci 2016; 13:741-748. [PMID: 27766022 PMCID: PMC5069408 DOI: 10.7150/ijms.16411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/22/2016] [Indexed: 01/20/2023] Open
Abstract
Background: In recent years, high intensity focused ultrasound (HIFU) has gained increasing clinical interest as a non-invasive method for local therapy of liver malignancies. HIFU treatment of tumours and metastases in the liver dome is limited due to the adjacent ultrasound blocking lung. One-lung flooding (OLF) enables complete sonography of lung and adjoining organs including liver. HIFU liver ablation passing through the flooded lung could enable a direct intercostal beam path and thus improve dose deposition in liver. In this study, we evaluate the feasibility of an ultrasound guided transthoracic, transpulmonary HIFU ablation of liver using OLF. Methods: After right-side lung flooding, ultrasound guided HIFU was applied transthoracic- transpulmonary into liver to create thermal lesions in three pigs. The HIFU beam was targeted five times into liver, two times at the liver surface and three times deeper into the tissue. During autopsy examinations of lung, diaphragm and liver located in the HIFU path were performed. The focal liver lesions and lung tissue out of the beam path were examined histologically. Results: Fifteen thermal liver lesions were generated by transpulmonary HIFU sonication in all targeted regions. The lesions appeared well-demarcated in grey color with a cigar-shaped configuration. The mean length and width of the superficial and deeper lesions were 15.8 mm (range: 13-18 mm) and 5.8 mm (range: 5-7 mm), and 10.9 mm (range: 9-13 mm) and 3.3 mm (range: 2-5 mm), respectively. Histopathological, all liver lesions revealed a homogeneous thermal necrosis lacking vitality. There were no signs of damage of the overlying diaphragm and lung tissue. Conclusions: Flooded lung is a suitable pathway for applying HIFU to the liver, thus enabling a transthoracic, transpulmonary approach. The enlarged acoustic window could enhance the ablation speed for targets in the hepatic dome.
Collapse
Affiliation(s)
- Thomas Günther Lesser
- Department of Thoracic and Vascular Surgery, SRH Wald-Klinikum Gera, Teaching Hospital of Friedrich-Schiller University of Jena, Germany
| | - Carsten Boltze
- Institute of Pathology, SRH Wald-Klinikum Gera, Teaching Hospital of Friedrich-Schiller University Jena, Germany
| | - Harald Schubert
- Institute of Animal Experimentation and Animal Welfare, Jena University Hospital, Friedrich-Schiller University Jena, Germany
| | - Frank Wolfram
- Department of Thoracic and Vascular Surgery, SRH Wald-Klinikum Gera, Teaching Hospital of Friedrich-Schiller University of Jena, Germany
| |
Collapse
|
26
|
Hynynen K, Jones RM. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy. Phys Med Biol 2016; 61:R206-48. [PMID: 27494561 PMCID: PMC5022373 DOI: 10.1088/0031-9155/61/17/r206] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.
Collapse
Affiliation(s)
- Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada. Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | | |
Collapse
|
27
|
Fortin PY, Lepetit-Coiffé M, Genevois C, Debeissat C, Quesson B, Moonen CTW, Konsman JP, Couillaud F. Spatiotemporal control of gene expression in bone-marrow derived cells of the tumor microenvironment induced by MRI guided focused ultrasound. Oncotarget 2016; 6:23417-26. [PMID: 26299614 PMCID: PMC4695127 DOI: 10.18632/oncotarget.4288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/02/2015] [Indexed: 11/25/2022] Open
Abstract
The tumor microenvironment is an interesting target for anticancer therapies but modifying this compartment is challenging. Here, we demonstrate the feasibility of a gene therapy strategy that combined targeting to bone marrow-derived tumor microenvironment using genetically modified bone-marrow derived cells and control of transgene expression by local hyperthermia through a thermo-inducible promoter. Chimera were obtained by engraftment of bone marrow from transgenic mice expressing reporter genes under transcriptional control of heat shock promoter and inoculated sub-cutaneously with tumors cells. Heat shocks were applied at the tumor site using a water bath or magnetic resonance guided high intensity focused ultrasound device. Reporter gene expression was followed by bioluminescence and fluorescence imaging and immunohistochemistry. Bone marrow-derived cells expressing reporter genes were identified to be mainly tumor-associated macrophages. We thus provide the proof of concept for a gene therapy strategy that allows for spatiotemporal control of transgenes expression by macrophages targeted to the tumor microenvironment.
Collapse
Affiliation(s)
- Pierre-Yves Fortin
- Laboratoire d'Imagerie Moléculaire et Fonctionnelle (IMF), CNRS/UMR 5231, Université de Bordeaux, Bordeaux, France.,Institut de Bio-Imagerie (IBIO), CNRS/UMS 3428, Université de Bordeaux, Bordeaux, France
| | - Matthieu Lepetit-Coiffé
- Laboratoire d'Imagerie Moléculaire et Fonctionnelle (IMF), CNRS/UMR 5231, Université de Bordeaux, Bordeaux, France
| | - Coralie Genevois
- Laboratoire d'Imagerie Moléculaire et Fonctionnelle (IMF), CNRS/UMR 5231, Université de Bordeaux, Bordeaux, France.,Institut de Bio-Imagerie (IBIO), CNRS/UMS 3428, Université de Bordeaux, Bordeaux, France
| | - Christelle Debeissat
- Laboratoire d'Imagerie Moléculaire et Fonctionnelle (IMF), CNRS/UMR 5231, Université de Bordeaux, Bordeaux, France
| | - Bruno Quesson
- Laboratoire d'Imagerie Moléculaire et Fonctionnelle (IMF), CNRS/UMR 5231, Université de Bordeaux, Bordeaux, France
| | - Chrit T W Moonen
- Laboratoire d'Imagerie Moléculaire et Fonctionnelle (IMF), CNRS/UMR 5231, Université de Bordeaux, Bordeaux, France
| | - Jan Pieter Konsman
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), CNRS/UMR 5536, Université de Bordeaux, Bordeaux, France
| | - Franck Couillaud
- Laboratoire d'Imagerie Moléculaire et Fonctionnelle (IMF), CNRS/UMR 5231, Université de Bordeaux, Bordeaux, France.,Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), CNRS/UMR 5536, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
28
|
Villemain O, Kwiecinski W, Bel A, Robin J, Bruneval P, Arnal B, Tanter M, Pernot M, Messas E. Pulsed cavitational ultrasound for non-invasive chordal cutting guided by real-time 3D echocardiography. Eur Heart J Cardiovasc Imaging 2016; 17:1101-7. [DOI: 10.1093/ehjci/jew145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 04/10/2016] [Indexed: 01/12/2023] Open
|
29
|
Abstract
High intensity focused ultrasound (HIFU) is rapidly gaining clinical acceptance as a technique capable of providing non-invasive heating and ablation for a wide range of applications. Usually requiring only a single session, treatments are often conducted as day case procedures, with the patient either fully conscious, lightly sedated or under light general anesthesia. HIFU scores over other thermal ablation techniques because of the lack of necessity for the transcutaneous insertion of probes into the target tissue. Sources placed either outside the body (for treatment of tumors or abnormalities of the liver, kidney, breast, uterus, pancreas brain and bone), or in the rectum (for treatment of the prostate), provide rapid heating of a target tissue volume, the highly focused nature of the field leaving tissue in the ultrasound propagation path relatively unaffected. Numerous extra-corporeal, transrectal and interstitial devices have been designed to optimize application-specific treatment delivery for the wide-ranging areas of application that are now being explored with HIFU. Their principle of operation is described here, and an overview of their design principles is given.
Collapse
Affiliation(s)
- Gail Ter Haar
- Joint Department of Physics, The Institute of Cancer Research, Sutton, London, UK.
| |
Collapse
|
30
|
MRI-Guided HIFU Methods for the Ablation of Liver and Renal Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:43-63. [DOI: 10.1007/978-3-319-22536-4_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
van 't Wout E, Gélat P, Betcke T, Arridge S. A fast boundary element method for the scattering analysis of high-intensity focused ultrasound. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:2726-37. [PMID: 26627749 DOI: 10.1121/1.4932166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
High-intensity focused ultrasound (HIFU) techniques are promising modalities for the non-invasive treatment of cancer. For HIFU therapies of, e.g., liver cancer, one of the main challenges is the accurate focusing of the acoustic field inside a ribcage. Computational methods can play an important role in the patient-specific planning of these transcostal HIFU treatments. This requires the accurate modeling of acoustic scattering at ribcages. The use of a boundary element method (BEM) is an effective approach for this purpose because only the boundaries of the ribs have to be discretized instead of the standard approach to model the entire volume around the ribcage. This paper combines fast algorithms that improve the efficiency of BEM specifically for the high-frequency range necessary for transcostal HIFU applications. That is, a Galerkin discretized Burton-Miller formulation is used in combination with preconditioning and matrix compression techniques. In particular, quick convergence is achieved with the operator preconditioner that has been designed with on-surface radiation conditions for the high-frequency approximation of the Neumann-to-Dirichlet map. Realistic computations of acoustic scattering at 1 MHz on a human ribcage model demonstrate the effectiveness of this dedicated BEM algorithm for HIFU scattering analysis.
Collapse
Affiliation(s)
- Elwin van 't Wout
- Department of Computer Science, University College London, London, United Kingdom
| | - Pierre Gélat
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Timo Betcke
- Department of Mathematics, University College London, London, United Kingdom
| | - Simon Arridge
- Department of Computer Science, University College London, London, United Kingdom
| |
Collapse
|
32
|
de Greef M, Schubert G, Wijlemans JW, Koskela J, Bartels LW, Moonen CTW, Ries M. Intercostal high intensity focused ultrasound for liver ablation: The influence of beam shaping on sonication efficacy and near-field risks. Med Phys 2015; 42:4685-97. [DOI: 10.1118/1.4925056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
33
|
Ramaekers P, de Greef M, Moonen CTW, Ries MG. Cavitation-enhanced back projection for acoustic rib detection and attenuation mapping. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:1726-1736. [PMID: 25843516 DOI: 10.1016/j.ultrasmedbio.2015.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 01/19/2015] [Accepted: 01/25/2015] [Indexed: 06/04/2023]
Abstract
High-intensity focused ultrasound allows for minimally invasive, highly localized cancer therapies that can complement surgical procedures or chemotherapy. For high-intensity focused ultrasound interventions in the upper abdomen, the thoracic cage obstructs and aberrates the ultrasonic beam, causing undesired heating of healthy tissue. When a phased array therapeutic transducer is used, such complications can be minimized by applying an apodization law based on analysis of beam path obstructions. In this work, a rib detection method based on cavitation-enhanced ultrasonic reflections is introduced and validated on a porcine tissue sample containing ribs. Apodization laws obtained for different transducer positions were approximately 90% similar to those obtained using image analysis. Additionally, the proposed method provides information on attenuation between transducer elements and the focus. This principle was confirmed experimentally on a polymer phantom. The proposed methods could, in principle, be implemented in real time for determination of the optimal shot position in intercostal high-intensity focused ultrasound therapy.
Collapse
Affiliation(s)
- Pascal Ramaekers
- Imaging Division, UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Martijn de Greef
- Imaging Division, UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Chrit T W Moonen
- Imaging Division, UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Mario G Ries
- Imaging Division, UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
34
|
Chao YT, Hsu CJ, Yu YL, Yen JY, Ho MC, Chen YY, Chang HC, Lian FL. A novel sound-blocking structure based on the muffler principle for rib-sparing transcostal high-intensity focused ultrasound treatment. Int J Hyperthermia 2015; 31:507-27. [DOI: 10.3109/02656736.2015.1028483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Yu-Tin Chao
- Department of Mechanical Engineering, National Taiwan University, Taipei,
| | - Che-Jung Hsu
- Department of Mechanical Engineering, National Taiwan University, Taipei,
| | - Ya-Lin Yu
- Department of Mechanical Engineering, National Taiwan University, Taipei,
| | - Jia-Yush Yen
- Department of Mechanical Engineering, National Taiwan University, Taipei,
| | - Ming-Chih Ho
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei, and
| | - Yung-Yaw Chen
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Hung-Cheng Chang
- Department of Mechanical Engineering, National Taiwan University, Taipei,
| | - Feng-Li Lian
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
| |
Collapse
|
35
|
Schwenke M, Strehlow J, Haase S, Jenne J, Tanner C, Langø T, Loeve AJ, Karakitsios I, Xiao X, Levy Y, Sat G, Bezzi M, Braunewell S, Guenther M, Melzer A, Preusser T. An integrated model-based software for FUS in moving abdominal organs. Int J Hyperthermia 2015; 31:240-50. [DOI: 10.3109/02656736.2014.1002817] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
36
|
Civale J, Rivens I, ter Haar G. Quality assurance for clinical high intensity focused ultrasound fields. Int J Hyperthermia 2015; 31:193-202. [PMID: 25677839 DOI: 10.3109/02656736.2014.1002435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As the use of HIFU in the clinic becomes more widespread there is an ever increasing need to standardise quality assurance protocols, an important step in facilitating the wider acceptance of HIFU as a therapeutic modality. This article reviews pertinent aspects of HIFU treatment delivery, encompassing the closely related aspects of quality assurance and calibration. Particular attention is given to the description and characterisation of relevant acoustic field parameters and the measurement of acoustic power. Where appropriate, recommendations are made.
Collapse
Affiliation(s)
- John Civale
- Division of Radiotherapy and Imaging, Institute of Cancer Research , Sutton, Surrey , UK
| | | | | |
Collapse
|
37
|
Kim YS. Advances in MR image-guided high-intensity focused ultrasound therapy. Int J Hyperthermia 2014; 31:225-32. [DOI: 10.3109/02656736.2014.976773] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
38
|
Sonographic analysis of the intercostal spaces for the application of high-intensity focused ultrasound therapy to the liver. AJR Am J Roentgenol 2014; 203:201-8. [PMID: 24951216 DOI: 10.2214/ajr.13.11744] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The purposes of this study were to assess the widths of the intercostal spaces of the right inferior human rib cage through which high-intensity focused ultrasound therapy would be applied for treating liver cancer and to elucidate the demographic factors associated with intercostal space width. SUBJECTS AND METHODS From March 2013 to June 2013, the widths of the intercostal spaces and the ribs at six areas of the right inferior rib cage (area 1, lowest intercostal space on anterior axillary line and the adjacent upper rib; area 2, second-lowest intercostal space on anterior axillary line and the adjacent upper rib; areas 3 and 4, lowest and second-lowest spaces on midaxillary line; areas 5 and 6, lowest and second-lowest spaces on posterior axillary line) were sonographically measured in 466 patients (214 men, 252 women; mean age, 53.0 years) after an abdominal sonographic examination. Demographic factors and the presence or absence of chronic liver disease were evaluated by multivariate analysis to investigate which factors influence intercostal width. RESULTS The width of the intercostal space was 19.7 ± 3.7 mm (range, 9-33 mm) at area 1, 18.3 ± 3.4 mm (range, 9-33 mm) at area 2, 17.4 ± 4.0 mm (range, 7-33 mm) at area 3, 15.4 ± 3.5 mm (range, 5-26 mm) at area 4, 17.2 ± 3.7 mm (range, 7-28 mm) at area 5, and 14.5 ± 3.6 mm (range, 4-26 mm) at area 6. The corresponding widths of the ribs were 15.2 ± 2.3 mm (range, 8-22 mm), 14.5 ± 2.3 mm (range, 9-22 mm), 13.2 ± 2.0 mm (range, 9-20), 14.3 ± 2.2 mm (range, 9-20 mm), 15.0 ± 2.2 mm (range, 10-22 mm), and 15.1 ± 2.3 mm (range, 8-21 mm). Only female sex was significantly associated with the narrower intercostal width at areas 1, 2, 3, and 5 (regression coefficient, 1.124-1.885; p = 0.01-0.04). CONCLUSION There was substantial variation in the widths of the intercostal spaces of the right inferior rib cage such that the anterior and inferior aspects of the intercostal space were relatively wider. Women had significantly narrower intercostal spaces than men.
Collapse
|
39
|
Gélat P, Ter Haar G, Saffari N. A comparison of methods for focusing the field of a HIFU array transducer through human ribs. Phys Med Biol 2014; 59:3139-71. [PMID: 24861888 DOI: 10.1088/0031-9155/59/12/3139] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A forward model, which predicts the scattering by human ribs of a multi-element high-intensity focused ultrasound transducer, was used to investigate the efficacy of a range of focusing approaches described in the literature. This forward model is based on the boundary element method and was described by Gélat et al (2011 Phys. Med. Biol. 56 5553-81; 2012 Phys. Med. Biol. 57 8471-97). The model has since been improved and features a complex surface impedance condition at the surface of the ribs. The inverse problem of focusing through the ribs was implemented on six transducer array-rib topologies and five methods of focusing were investigated, including spherical focusing, binarized apodization based on geometric ray tracing, phase conjugation and the decomposition of the time-reversal operator method. The excitation frequency was 1 MHz and the array was of spherical-section type. Both human and idealized rib topologies were considered. The merit of each method of focusing was examined. It was concluded that the constrained optimization approach offers greater potential than the other focusing methods in terms of maximizing the ratio of acoustic pressure magnitudes at the focus to those on the surface of the ribs whilst taking full advantage of the dynamic range of the phased array.
Collapse
Affiliation(s)
- P Gélat
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK. Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | | | | |
Collapse
|
40
|
Kim Y, Vlaisavljevich E, Owens GE, Allen SP, Cain CA, Xu Z. In vivotranscostal histotripsy therapy without aberration correction. Phys Med Biol 2014; 59:2553-68. [DOI: 10.1088/0031-9155/59/11/2553] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
41
|
Anzidei M, Napoli A, Sandolo F, Marincola BC, Di Martino M, Berloco P, Bosco S, Bezzi M, Catalano C. Magnetic resonance-guided focused ultrasound ablation in abdominal moving organs: a feasibility study in selected cases of pancreatic and liver cancer. Cardiovasc Intervent Radiol 2014; 37:1611-7. [PMID: 24595660 DOI: 10.1007/s00270-014-0861-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 02/01/2014] [Indexed: 01/20/2023]
Abstract
PURPOSE This study was designed to evaluate preliminarily the feasibility and safety of magnetic resonance-guided focused ultrasound (MRgFUS) for treatment of solid tumors in the upper abdomen. METHODS We enrolled one patient with hepatocellular carcinoma and two patients with pancreatic adenocarcinoma for MRgFUS ablation. Treatments were performed on a 3T scanner under controlled respiration. Treatment response was evaluated at 1, 3, and 6 months by assessing the nonperfused volume (NPV) of ablated tissue at MR and the degree of pain severity and pain interference. RESULTS In the patient with HCC, NPV was 100% after treatment and 85% at 3 and 6 months follow-up. Histological analysis after liver transplantation showed fibrosis in the ablated area with minimal local tumor recurrence. In the two patients with pancreatic adenocarcinoma, NPV was 80 and 85% after treatment and 70 and 80% at 3 and 6 months follow-up. Pain severity and pain interference respectively decreased from a mean of 7 and 6.7 points, respectively, to a mean of 3 and 2 points after treatment. CONCLUSIONS MRgFUS can be feasible and safe in selected patients with solid tumors in abdominal moving organs. However, this technique has several limitations due to the interposition of the rib cage or intestinal loops into the path of the ultrasonic beam, as well as to organ motion. Future technical developments are needed to implement advanced motion detection within the system to control organ and lesion position in real-time and keep the focus of the ultrasound beam on the targeted lesion.
Collapse
Affiliation(s)
- Michele Anzidei
- Department of Radiological, Oncological and Anatomopathological Sciences, Sapienza University of Rome, Rome, Italy,
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tyshlek D, Aubry JF, ter Haar G, Hananel A, Foley J, Eames M, Kassell N, Simonin HH. Focused ultrasound development and clinical adoption: 2013 update on the growth of the field. J Ther Ultrasound 2014; 2:2. [PMID: 25512866 PMCID: PMC4265987 DOI: 10.1186/2050-5736-2-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 01/24/2014] [Indexed: 12/12/2022] Open
Abstract
The field of therapeutic focused ultrasound, which first emerged in the 1940s, has seen significant growth, particularly over the past decade. The eventual widespread clinical adoption of this non-invasive therapeutic modality require continued progress, in a multitude of activities including technical, pre-clinical, and clinical research, regulatory approval and reimbursement, manufacturer growth, and other commercial and public sector investments into the field, all within a multi-stakeholder environment. We present here a snapshot of the field of focused ultrasound and describe how it has progressed over the past several decades. It is assessed using metrics which include quantity and breadth of academic work (presentations, publications), funding trends, manufacturer presence in the field, number of treated patients, number of indications reaching first-in-human status, and quantity and breadth of clinical indications.
Collapse
Affiliation(s)
- Dasha Tyshlek
- Focused Ultrasound Foundation, Charlottesville, VA 22903, USA
| | - Jean-Francois Aubry
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22901, USA
- Institut Langevin, CNRS UMR 7587, ESPCI ParisTech, INSERM U979, Paris 75005, France
| | - Gail ter Haar
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Royal Marsden Hospital, Sutton, Surrey, UK
| | - Arik Hananel
- Focused Ultrasound Foundation, Charlottesville, VA 22903, USA
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22901, USA
| | - Jessica Foley
- Focused Ultrasound Foundation, Charlottesville, VA 22903, USA
| | - Matthew Eames
- Focused Ultrasound Foundation, Charlottesville, VA 22903, USA
| | - Neal Kassell
- Focused Ultrasound Foundation, Charlottesville, VA 22903, USA
- Department of Neurosurgery, University of Virginia, Charlottesville, VA 22901, USA
| | | |
Collapse
|
43
|
Keyhole acceleration for magnetic resonance acoustic radiation force imaging (MR ARFI). Magn Reson Imaging 2013; 31:1695-703. [DOI: 10.1016/j.mri.2013.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 07/21/2013] [Indexed: 11/19/2022]
|
44
|
Leonard M, Tait C, Gillan A, Rai B, Byrne D, Nabi G. Impact of multiple deprivations on detection, progression and interventions in small renal masses (less than 4 cm) in a population based study. Eur J Surg Oncol 2013; 39:1157-63. [DOI: 10.1016/j.ejso.2013.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022] Open
|
45
|
Foley JL, Eames M, Snell J, Hananel A, Kassell N, Aubry JF. Image-guided focused ultrasound: state of the technology and the challenges that lie ahead. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/iim.13.38] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Elbes D, Denost Q, Laurent C, Trillaud H, Rullier A, Quesson B. Pre-clinical study of in vivo magnetic resonance-guided bubble-enhanced heating in pig liver. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1388-1397. [PMID: 23562012 DOI: 10.1016/j.ultrasmedbio.2013.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 01/16/2013] [Accepted: 01/21/2013] [Indexed: 06/02/2023]
Abstract
Bubble-enhanced heating (BEH) can be exploited to increase heating efficiency in treatment of liver tumors with non-invasive high-intensity focused ultrasound (HIFU). The objectives of this study were: (i) to demonstrate the feasibility of increasing the heating efficiency of sonication exploiting BEH in pig liver in vivo using a clinical platform; (ii) to determine the acoustic threshold for such effects with real-time, motion-compensated magnetic resonance-guided thermometry; and (iii) to compare the heating patterns and thermal lesion characteristics resulting from continuous sonication and sonication including a burst pulse. The threshold acoustic power for generation of BEH in pig liver in vivo was determined using sonication of 0.5-s duration ("burst pulse") under real-time magnetic resonance thermometry. In a second step, experimental sonication composed of a burst pulse followed by continuous sonication (14.5 s) was compared with conventional sonication (15 s) of identical energy (1.8 kJ). Modification of the heating pattern at the targeted region located at a liver depth between 20 and 25 mm required 600-800 acoustic watts. The experimental group exhibited near-spherical heating with 40% mean enhancement of the maximal temperature rise as compared with the conventional sonication group, a mean shift of 7 ± 3.3 mm toward the transducer and reduction of the post-focal temperature increase. Magnetic resonance thermometry can be exploited to control acoustic BEH in vivo in the liver. By use of experimental sonication, more efficient heating can be achieved while protecting tissues located beyond the focal point.
Collapse
Affiliation(s)
- Delphine Elbes
- Centre de Recherche Cardio-Thoracique, Université de Bordeaux, Bordeaux, France.
| | | | | | | | | | | |
Collapse
|
47
|
Aubry JF, Pauly KB, Moonen C, Haar GT, Ries M, Salomir R, Sokka S, Sekins KM, Shapira Y, Ye F, Huff-Simonin H, Eames M, Hananel A, Kassell N, Napoli A, Hwang JH, Wu F, Zhang L, Melzer A, Kim YS, Gedroyc WM. The road to clinical use of high-intensity focused ultrasound for liver cancer: technical and clinical consensus. J Ther Ultrasound 2013; 1:13. [PMID: 25512859 PMCID: PMC4265946 DOI: 10.1186/2050-5736-1-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/12/2013] [Indexed: 01/20/2023] Open
Abstract
Clinical use of high-intensity focused ultrasound (HIFU) under ultrasound or MR guidance as a non-invasive method for treating tumors is rapidly increasing. Tens of thousands of patients have been treated for uterine fibroid, benign prostate hyperplasia, bone metastases, or prostate cancer. Despite the methods' clinical potential, the liver is a particularly challenging organ for HIFU treatment due to the combined effect of respiratory-induced liver motion, partial blocking by the rib cage, and high perfusion/flow. Several technical and clinical solutions have been developed by various groups during the past 15 years to compensate for these problems. A review of current unmet clinical needs is given here, as well as a consensus from a panel of experts about technical and clinical requirements for upcoming pilot and pivotal studies in order to accelerate the development and adoption of focused ultrasound for the treatment of primary and secondary liver cancer.
Collapse
Affiliation(s)
- Jean-Francois Aubry
- Institut Langevin, ESPCI ParisTech, CNRS UMR 7587, INSERM U979, Université Denis Diderot, Paris VII, Paris, France
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | - Kim Butts Pauly
- Radiological Sciences Laboratory, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Chrit Moonen
- Imaging Division, University Medical Center Utrecht, Amsterdam, The Netherlands
| | - Gail ter Haar
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Royal Marsden Hospital, Sutton, Surrey, UK
| | - Mario Ries
- Imaging Division, University Medical Center Utrecht, Amsterdam, The Netherlands
| | - Rares Salomir
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | | | - Fangwei Ye
- Chongqing Haifu Medical Technology Co., Ltd, Chongqing, China
| | | | - Matt Eames
- Focused Ultrasound Foundation, Charlottesville, VA, USA
| | - Arik Hananel
- Focused Ultrasound Foundation, Charlottesville, VA, USA
| | - Neal Kassell
- Focused Ultrasound Foundation, Charlottesville, VA, USA
| | | | - Joo Ha Hwang
- Digestive Disease Center, University of Washington, Seattle, WA, USA
| | - Feng Wu
- Institute of Ultrasonic Engineering in Medicine, Chongqing Medical University, Chongqing, China
| | - Lian Zhang
- Clinical Center for Tumor Therapy, Second Affiliated Hospital of Chongqing University of Medical Sciences, Chongqing, China
| | - Andreas Melzer
- Institute for Medical Science and Technology, University of Dundee, Dundee, Scotland, UK
| | - Young-sun Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Wladyslaw M Gedroyc
- Department of Medicine, Imperial College, South Kensington Campus, Exhibition Rd, London SW7 2AZ, UK
- Saint Mary’s Hospital, Praed St, W2 1NY, London, UK
| |
Collapse
|
48
|
Qiao S, Shen G, Bai J, Chen Y. Transcostal high-intensity focused ultrasound treatment using phased array with geometric correction. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:1503-1514. [PMID: 23927190 DOI: 10.1121/1.4812869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the high-intensity focused ultrasound treatment of liver tumors, ultrasound propagation is affected by the rib cage. Because of the diffraction and absorption of the bone, the sound distribution at the focal plane is altered, and more importantly, overheating on the rib surface might occur. To overcome these problems, a geometric correction method is applied to turn off the elements blocked by the ribs. The potential of steering the focus of the phased-array along the propagation direction to improve the transcostal treatment was investigated by simulations and experiments using different rib models and transducers. The ultrasound propagation through the ribs was computed by a hybrid method including the Rayleigh-Sommerfeld integral, k-space method, and angular spectrum method. A modified correction method was proposed to adjust the output of elements based on their relative area in the projected "shadow" of the ribs. The simulation results showed that an increase in the specific absorption rate gain up to 300% was obtained by varying the focal length although the optimal value varied in each situation. Therefore, acoustic simulation is required for each clinical case to determine a satisfactory treatment plan.
Collapse
Affiliation(s)
- Shan Qiao
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | | | | | | |
Collapse
|
49
|
Yuldashev PV, Shmeleva SM, Ilyin SA, Sapozhnikov OA, Gavrilov LR, Khokhlova VA. The role of acoustic nonlinearity in tissue heating behind a rib cage using a high-intensity focused ultrasound phased array. Phys Med Biol 2013; 58:2537-59. [PMID: 23528338 DOI: 10.1088/0031-9155/58/8/2537] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The goal of this study was to investigate theoretically the effects of nonlinear propagation in a high-intensity focused ultrasound (HIFU) field produced by a therapeutic phased array and the resultant heating of tissue behind a rib cage. Three configurations of focusing were simulated: in water, in water with ribs in the beam path and in water with ribs backed by a layer of soft tissue. The Westervelt equation was used to model the nonlinear HIFU field, and a 1 MHz phased array consisting of 254 circular elements was used as a boundary condition to the model. The temperature rise in tissue was modelled using the bioheat equation, and thermally necrosed volumes were calculated using the thermal dose formulation. The shapes of lesions predicted by the modelling were compared with those previously obtained in in vitro experiments at low-power sonications. Intensity levels at the face of the array elements that corresponded to the formation of high-amplitude shock fronts in the focal region were determined as 10 W cm(-2) in the free field in water and 40 W cm(-2) in the presence of ribs. It was shown that exposures with shocks provided a substantial increase in tissue heating, and its better spatial localization in the main focal region only. The relative effects of overheating ribs and splitting of the focus due to the periodic structure of the ribs were therefore reduced. These results suggest that utilizing nonlinear propagation and shock formation effects can be beneficial for inducing confined HIFU lesions when irradiating through obstructions such as ribs. Design of compact therapeutic arrays to provide maximum power outputs with lower intensity levels at the elements is necessary to achieve shock wave regimes for clinically relevant sonication depths in tissue.
Collapse
|
50
|
Gélat P, Ter Haar G, Saffari N. The optimization of acoustic fields for ablative therapies of tumours in the upper abdomen. Phys Med Biol 2012. [PMID: 23207408 DOI: 10.1088/0031-9155/57/24/8471] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
High intensity focused ultrasound (HIFU) enables highly localized, non-invasive tissue ablation and its efficacy has been demonstrated in the treatment of a range of cancers, including those of the kidney, prostate and breast. HIFU offers the ability to treat deep-seated tumours locally, and potentially bears fewer side effects than more invasive treatment modalities such as resection, chemotherapy and ionizing radiation. There remains however a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to ablate tissue at the required foci whilst minimizing the formation of side lobes and sparing healthy tissue. Ribs both absorb and reflect ultrasound strongly. This sometimes results in overheating of bone and overlying tissue during treatment, leading to skin burns. Successful treatment of a patient with tumours in the upper abdomen therefore requires a thorough understanding of the way acoustic and thermal energy is deposited. Previously, a boundary element approach based on a Generalized Minimal Residual (GMRES) implementation of the Burton-Miller formulation was developed to predict the field of a multi-element HIFU array scattered by human ribs, the topology of which was obtained from CT scan data (Gélat et al 2011 Phys. Med. Biol. 56 5553-81). The present paper describes the reformulation of the boundary element equations as a least-squares minimization problem with nonlinear constraints. The methodology has subsequently been tested at an excitation frequency of 1 MHz on a spherical multi-element array in the presence of ribs. A single array-rib geometry was investigated on which a 50% reduction in the maximum acoustic pressure magnitude on the surface of the ribs was achieved with only a 4% reduction in the peak focal pressure compared to the spherical focusing case. This method was then compared with a binarized apodization approach based on ray tracing and against the decomposition of the time-reversal operator (DORT). In both cases, the constrained optimization provided a superior ratio of focal peak pressure to maximum pressure magnitude on the surface of the ribs.
Collapse
Affiliation(s)
- P Gélat
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
| | | | | |
Collapse
|