1
|
Jin Y, Meng LJ. Exploration of Coincidence Detection of Cascade Photons to Enhance Preclinical Multi-Radionuclide SPECT Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1766-1781. [PMID: 38163304 DOI: 10.1109/tmi.2023.3348756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
We proposed a technique of coincidence detection of cascade photons (CDCP) to enhance preclinical SPECT imaging of therapeutic radionuclides emitting cascade photons, such as Lu-177, Ac-225, Ra-223, and In-111. We have carried out experimental studies to evaluate the proposed CDCP-SPECT imaging of low-activity radionuclides using a prototype coincidence detection system constructed with large-volume cadmium zinc telluride (CZT) imaging spectrometers and a pinhole collimator. With In-111 in experimental studies, the CDCP technique allows us to improve the signal-to-contamination in the projection (Projection-SCR) by ~53 times and reduce ~98% of the normalized contamination. Compared to traditional scatter correction, which achieves a Projection-SCR of 1.00, our CDCP method boosts it to 15.91, showing enhanced efficacy in reducing down-scattered contamination, especially at lower activities. The reconstructed images of a line source demonstrated the dramatic enhancement of the image quality with CDCP-SPECT compared to conventional and triple-energy-window-corrected SPECT data acquisition. We also introduced artificial energy blurring and Monte Carlo simulation to quantify the impact of detector performance, especially its energy resolution and timing resolution, on the enhancement through the CDCP technique. We have further demonstrated the benefits of the CDCP technique with simulation studies, which shows the potential of improving the signal-to-contamination ratio by 300 times with Ac-225, which emits cascade photons with a decay constant of ~0.1 ns. These results have demonstrated the potential of CDCP-enhanced SPECT for imaging a super-low level of therapeutic radionuclides in small animals.
Collapse
|
2
|
Ramonaheng K, Qebetu M, Ndlovu H, Swanepoel C, Smith L, Mdanda S, Mdlophane A, Sathekge M. Activity quantification and dosimetry in radiopharmaceutical therapy with reference to 177Lutetium. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1355912. [PMID: 39355215 PMCID: PMC11440950 DOI: 10.3389/fnume.2024.1355912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/12/2024] [Indexed: 10/03/2024]
Abstract
Radiopharmaceutical therapy has been widely adopted owing primarily to the development of novel radiopharmaceuticals. To fully utilize the potential of these RPTs in the era of precision medicine, therapy must be optimized to the patient's tumor characteristics. The vastly disparate dosimetry methodologies need to be harmonized as the first step towards this. Multiple factors play a crucial role in the shift from empirical activity administration to patient-specific dosimetry-based administrations from RPT. Factors such as variable responses seen in patients with presumably similar clinical characteristics underscore the need to standardize and validate dosimetry calculations. These efforts combined with ongoing initiatives to streamline the dosimetry process facilitate the implementation of radiomolecular precision oncology. However, various challenges hinder the widespread adoption of personalized dosimetry-based activity administration, particularly when compared to the more convenient and resource-efficient approach of empiric activity administration. This review outlines the fundamental principles, procedures, and methodologies related to image activity quantification and dosimetry with a specific focus on 177Lutetium-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Keamogetswe Ramonaheng
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Milani Qebetu
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Honest Ndlovu
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Cecile Swanepoel
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Liani Smith
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
| | - Sipho Mdanda
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Amanda Mdlophane
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Mike Sathekge
- Department of Medical Physics and Radiobiology, Nuclear Medicine Research, Infrastructure (NuMeRI) NPC, Pretoria, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Hanes AT, Grieco C, Lalisse RF, Hadad CM, Kohler B. Vibrational relaxation by methylated xanthines in solution: Insights from 2D IR spectroscopy and calculations. J Chem Phys 2023; 158:044302. [PMID: 36725522 DOI: 10.1063/5.0135412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Two-dimensional infrared (2D IR) spectroscopy, infrared pump-infrared probe spectroscopy, and density functional theory calculations were used to study vibrational relaxation by ring and carbonyl stretching modes in a series of methylated xanthine derivatives in acetonitrile and deuterium oxide (heavy water). Isotropic signals from the excited symmetric and asymmetric carbonyl stretch modes decay biexponentially in both solvents. Coherent energy transfer between the symmetric and asymmetric carbonyl stretching modes gives rise to a quantum beat in the time-dependent anisotropy signals. The damping time of the coherent oscillation agrees with the fast decay component of the carbonyl bleach recovery signals, indicating that this time constant reflects intramolecular vibrational redistribution (IVR) to other solute modes. Despite their similar frequencies, the excited ring modes decay monoexponentially with a time constant that matches the slow decay component of the carbonyl modes. The slow decay times, which are faster in heavy water than in acetonitrile, approximately match the ones observed in previous UV pump-IR probe measurements on the same compounds. The slow component is assigned to intermolecular energy transfer to solvent bath modes from low-frequency solute modes, which are populated by IVR and are anharmonically coupled to the carbonyl and ring stretch modes. 2D IR measurements indicate that the carbonyl stretching modes are weakly coupled to the delocalized ring modes, resulting in slow exchange that cannot explain the common solvent-dependence. IVR is suggested to occur at different rates for the carbonyl vs ring modes due to differences in mode-specific couplings and not to differences in the density of accessible states.
Collapse
Affiliation(s)
- Alex T Hanes
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - Christopher Grieco
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - Remy F Lalisse
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - Christopher M Hadad
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - Bern Kohler
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| |
Collapse
|
4
|
Ramonaheng K, van Staden JA, du Raan H. Accuracy of two dosimetry software programs for 177Lu radiopharmaceutical therapy using voxel-based patient-specific phantoms. Heliyon 2022; 8:e09830. [PMID: 35865988 PMCID: PMC9293745 DOI: 10.1016/j.heliyon.2022.e09830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/18/2022] [Accepted: 06/24/2022] [Indexed: 12/01/2022] Open
Abstract
Purpose Virtual dosimetry using voxel-based patient-specific phantoms and Monte Carlo (MC) simulations offer the advantage of having a gold standard against which absorbed doses may be benchmarked to establish the dosimetry accuracy. Furthermore, these reference values assist in investigating the accuracy of the absorbed dose methodologies from different software programs. Therefore, this study aimed to compare the accuracy of the absorbed doses computed using LundADose and OLINDA/EXM 1.0. Methods The accuracy was based on 177Lu-DOTATATE distributions of three voxel-based phantoms. SPECT projection images were simulated for 1, 24, 96, and 168 h post-administration and reconstructed with LundADose using 3D OS-EM reconstruction. Mono-exponential curves were fitted to the bio-kinetic data for the kidneys, liver, spleen, and tumours resulting in SPECT time-integrated activity (SPECT-TIA). The SPECT-TIA were used to compute mean absorbed doses using LundADose (LND-DSPECT) and OLINDA (OLINDA-DSPECT) for the organs. Pre-defined true activity images, were used to obtain TRUE-TIA and, together with full MC simulations, computed the true doses (MC-DTrue). The dosimetry accuracy was assessed by comparing LND-DSPECT and OLINDA-DSPECT to MC-DTrue. Results Overall, the results presented an overestimation of the mean absorbed dose by LND-DSPECT compared to the MC-DTrue with a dosimetry accuracy ≤6.6%. This was attributed to spill-out activity from the reconstructed LND-DSPECT, resulting in a higher dose contribution than the MC-DTrue. There was a general underestimation (<8.1%) of OLINDA-DSPECT compared to MC-DTrue attributed to the geometrical difference in shape between the voxel-based phantoms and the OLINDA models. Furthermore, OLINDA-DSPECT considers self-doses while MC-DTrue reflects self-doses plus cross-doses. Conclusion The better than 10% accuracy suggests that the mean dose values obtained with LND-DSPECT and OLINDA-DSPECT approximate the true values. The mean absorbed doses of the two software programs, and the gold standard were comparable. This work shall be of use for optimising 177Lu dosimetry for clinical applications.
Collapse
Affiliation(s)
- Keamogetswe Ramonaheng
- Department of Medical Physics, Faculty of Health Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Johannes A van Staden
- Department of Medical Physics, Faculty of Health Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Hanlie du Raan
- Department of Medical Physics, Faculty of Health Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| |
Collapse
|
5
|
Finocchiaro D, Gear JI, Fioroni F, Flux GD, Murray I, Castellani G, Versari A, Iori M, Grassi E. Uncertainty analysis of tumour absorbed dose calculations in molecular radiotherapy. EJNMMI Phys 2020; 7:63. [PMID: 33044651 PMCID: PMC7550507 DOI: 10.1186/s40658-020-00328-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/16/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Internal dosimetry evaluation consists of a multi-step process ranging from imaging acquisition to absorbed dose calculations. Assessment of uncertainty is complicated and, for that reason, it is commonly ignored in clinical routine. However, it is essential for adequate interpretation of the results. Recently, the EANM published a practical guidance on uncertainty analysis for molecular radiotherapy based on the application of the law of propagation of uncertainty. In this study, we investigated the overall uncertainty on a sample of a patient following the EANM guidelines. The aim of this study was to provide an indication of the typical uncertainties that may be expected from performing dosimetry, to determine parameters that have the greatest effect on the accuracy of calculations and to consider the potential improvements that could be made if these effects were reduced. RESULTS Absorbed doses and the relative uncertainties were calculated for a sample of 49 patients and a total of 154 tumours. A wide range of relative absorbed dose uncertainty values was observed (14-102%). Uncertainties associated with each quantity along the absorbed dose calculation chain (i.e. volume, recovery coefficient, calibration factor, activity, time-activity curve fitting, time-integrated activity and absorbed dose) were estimated. An equation was derived to describe the relationship between the uncertainty in the absorbed dose and the volume. The largest source of error was the VOI delineation. By postulating different values of FWHM, the impact of the imaging system spatial resolution on the uncertainties was investigated. DISCUSSION To the best of our knowledge, this is the first analysis of uncertainty in molecular radiotherapy based on a cohort of clinical cases. Wide inter-lesion variability of absorbed dose uncertainty was observed. Hence, a proper assessment of the uncertainties associated with the calculations should be considered as a basic scientific standard. A model for a quick estimate of uncertainty without implementing the entire error propagation schema, which may be useful in clinical practice, was presented. Ameliorating spatial resolution may be in future the key factor for accurate absorbed dose assessment.
Collapse
Affiliation(s)
- Domenico Finocchiaro
- Medical Physics Unit, Azienda Unità Sanitaria Locale di Reggio Emilia - IRCCS, Reggio Emilia, Italy.,Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Jonathan I Gear
- The Royal Marsden NHS Foundation Trust & Institute of Cancer Research, Downs Road, Sutton, SM2 5PT, UK
| | - Federica Fioroni
- Medical Physics Unit, Azienda Unità Sanitaria Locale di Reggio Emilia - IRCCS, Reggio Emilia, Italy.
| | - Glenn D Flux
- The Royal Marsden NHS Foundation Trust & Institute of Cancer Research, Downs Road, Sutton, SM2 5PT, UK
| | - Iain Murray
- The Royal Marsden NHS Foundation Trust & Institute of Cancer Research, Downs Road, Sutton, SM2 5PT, UK
| | - Gastone Castellani
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Annibale Versari
- Nuclear Medicine Unit, Azienda Unità Sanitaria Locale di Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Mauro Iori
- Medical Physics Unit, Azienda Unità Sanitaria Locale di Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Elisa Grassi
- Medical Physics Unit, Azienda Unità Sanitaria Locale di Reggio Emilia - IRCCS, Reggio Emilia, Italy
| |
Collapse
|
6
|
Mora-Ramirez E, Santoro L, Cassol E, Ocampo-Ramos JC, Clayton N, Kayal G, Chouaf S, Trauchessec D, Pouget JP, Kotzki PO, Deshayes E, Bardiès M. Comparison of commercial dosimetric software platforms in patients treated with 177 Lu-DOTATATE for peptide receptor radionuclide therapy. Med Phys 2020; 47:4602-4615. [PMID: 32632928 PMCID: PMC7589428 DOI: 10.1002/mp.14375] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose The aim of this study was to quantitatively compare five commercial dosimetric software platforms based on the analysis of clinical datasets of patients who benefited from peptide receptor radionuclide therapy (PRRT) with 177Lu‐DOTATATE (LUTATHERA®). Methods The dosimetric analysis was performed on two patients during two cycles of PRRT with 177Lu. Single photon emission computed tomography/computed tomography images were acquired at 4, 24, 72, and 192 h post injection. Reconstructed images were generated using Dosimetry Toolkit® (DTK) from Xeleris™ and HybridRecon‐Oncology version_1.3_Dicom (HROD) from HERMES. Reconstructed images using DTK were analyzed using the same software to calculate time‐integrated activity coefficients (TIAC), and mean absorbed doses were estimated using OLINDA/EXM V1.0 with mass correction. Reconstructed images from HROD were uploaded into PLANET® OncoDose from DOSIsoft, STRATOS from Phillips, Hybrid Dosimetry Module™ from HERMES, and SurePlan™ MRT from MIM. Organ masses, TIACs, and mean absorbed doses were calculated from each application using their recommendations. Results The majority of organ mass estimates varied by <9.5% between all platforms. The highest variability for TIAC results between platforms was seen for the kidneys (28.2%) for the two patients and the two treatment cycles. Relative standard deviations in mean absorbed doses were slightly higher compared with those observed for TIAC, but remained of the same order of magnitude between all platforms. Conclusions When applying a similar processing approach, results obtained were of the same order of magnitude regardless of the platforms used. However, the comparison of the performances of currently available platforms is still difficult as they do not all address the same parts of the dosimetric analysis workflow. In addition, the way in which data are handled in each part of the chain from data acquisition to absorbed doses may be different, which complicates the comparison exercise. Therefore, the dissemination of commercial solutions for absorbed dose calculation calls for the development of tools and standards allowing for the comparison of the performances between dosimetric software platforms.
Collapse
Affiliation(s)
- Erick Mora-Ramirez
- Centre de Recherches en Cancérologie de Toulouse, UMR 1037, Toulouse, F-31037, France.,INSERM, UMR 1037, Université Toulouse III Paul Sabatier, Toulouse, F-31062, France.,Escuela de Física - CICANUM, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Lore Santoro
- Département de Médecine Nucléaire, Institut Régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Emmanuelle Cassol
- Centre de Recherches en Cancérologie de Toulouse, UMR 1037, Toulouse, F-31037, France.,INSERM, UMR 1037, Université Toulouse III Paul Sabatier, Toulouse, F-31062, France.,Département de Médecine Nucléaire, Hôpitaux Toulouse, Toulouse, F-31059, France.,Faculté de Médecine Rangueil, Université Toulouse III Paul Sabatier, Toulouse, F-31062, France
| | - Juan C Ocampo-Ramos
- Centre de Recherches en Cancérologie de Toulouse, UMR 1037, Toulouse, F-31037, France.,INSERM, UMR 1037, Université Toulouse III Paul Sabatier, Toulouse, F-31062, France
| | - Naomi Clayton
- Centre de Recherches en Cancérologie de Toulouse, UMR 1037, Toulouse, F-31037, France.,INSERM, UMR 1037, Université Toulouse III Paul Sabatier, Toulouse, F-31062, France
| | - Gunjan Kayal
- Centre de Recherches en Cancérologie de Toulouse, UMR 1037, Toulouse, F-31037, France.,INSERM, UMR 1037, Université Toulouse III Paul Sabatier, Toulouse, F-31062, France.,SCK CEN, Belgian Nuclear Research Centre, Boeretang 200, Mol, BE-2400, Belgium
| | - Soufiane Chouaf
- Département de Médecine Nucléaire, Institut Régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Dorian Trauchessec
- Département de Médecine Nucléaire, Institut Régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, F-34298, France
| | - Pierre-Olivier Kotzki
- Département de Médecine Nucléaire, Institut Régional du Cancer de Montpellier, Montpellier, F-34298, France.,Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, F-34298, France
| | - Emmanuel Deshayes
- Département de Médecine Nucléaire, Institut Régional du Cancer de Montpellier, Montpellier, F-34298, France.,Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, F-34298, France
| | - Manuel Bardiès
- Centre de Recherches en Cancérologie de Toulouse, UMR 1037, Toulouse, F-31037, France.,INSERM, UMR 1037, Université Toulouse III Paul Sabatier, Toulouse, F-31062, France
| |
Collapse
|
7
|
Schiano-di-Cola C, Røjel N, Jensen K, Kari J, Sørensen TH, Borch K, Westh P. Systematic deletions in the cellobiohydrolase (CBH) Cel7A from the fungus Trichoderma reesei reveal flexible loops critical for CBH activity. J Biol Chem 2018; 294:1807-1815. [PMID: 30538133 DOI: 10.1074/jbc.ra118.006699] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/08/2018] [Indexed: 11/06/2022] Open
Abstract
Glycoside hydrolase family 7 (GH7) cellulases are some of the most efficient degraders of cellulose, making them particularly relevant for industries seeking to produce renewable fuels from lignocellulosic biomass. The secretome of the cellulolytic model fungus Trichoderma reesei contains two GH7s, termed TrCel7A and TrCel7B. Despite having high structural and sequence similarities, the two enzymes are functionally quite different. TrCel7A is an exolytic, processive cellobiohydrolase (CBH), with high activity on crystalline cellulose, whereas TrCel7B is an endoglucanase (EG) with a preference for more amorphous cellulose. At the structural level, these functional differences are usually ascribed to the flexible loops that cover the substrate-binding areas. TrCel7A has an extensive tunnel created by eight peripheral loops, and the absence of four of these loops in TrCel7B makes its catalytic domain a more open cleft. To investigate the structure-function relationships of these loops, here we produced and kinetically characterized several variants in which four loops unique to TrCel7A were individually deleted to resemble the arrangement in the TrCel7B structure. Analysis of a range of kinetic parameters consistently indicated that the B2 loop, covering the substrate-binding subsites -3 and -4 in TrCel7A, was a key determinant for the difference in CBH- or EG-like behavior between TrCel7A and TrCel7B. Conversely, the B3 and B4 loops, located closer to the catalytic site in TrCel7A, were less important for these activities. We surmise that these results could be useful both in further mechanistic investigations and for guiding engineering efforts of this industrially important enzyme family.
Collapse
Affiliation(s)
- Corinna Schiano-di-Cola
- From the Department of Science and Environment, Roskilde University, Universitetsvej 1, Building 28, DK-4000 Roskilde, Denmark
| | - Nanna Røjel
- From the Department of Science and Environment, Roskilde University, Universitetsvej 1, Building 28, DK-4000 Roskilde, Denmark
| | - Kenneth Jensen
- Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsværd, Denmark, and
| | - Jeppe Kari
- From the Department of Science and Environment, Roskilde University, Universitetsvej 1, Building 28, DK-4000 Roskilde, Denmark
| | - Trine Holst Sørensen
- From the Department of Science and Environment, Roskilde University, Universitetsvej 1, Building 28, DK-4000 Roskilde, Denmark
| | - Kim Borch
- Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsværd, Denmark, and
| | - Peter Westh
- the Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
Gear JI, Cox MG, Gustafsson J, Gleisner KS, Murray I, Glatting G, Konijnenberg M, Flux GD. EANM practical guidance on uncertainty analysis for molecular radiotherapy absorbed dose calculations. Eur J Nucl Med Mol Imaging 2018; 45:2456-2474. [PMID: 30218316 PMCID: PMC6208822 DOI: 10.1007/s00259-018-4136-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 11/30/2022]
Abstract
A framework is proposed for modelling the uncertainty in the measurement processes constituting the dosimetry chain that are involved in internal absorbed dose calculations. The starting point is the basic model for absorbed dose in a site of interest as the product of the cumulated activity and a dose factor. In turn, the cumulated activity is given by the area under a time-activity curve derived from a time sequence of activity values. Each activity value is obtained in terms of a count rate, a calibration factor and a recovery coefficient (a correction for partial volume effects). The method to determine the recovery coefficient and the dose factor, both of which are dependent on the size of the volume of interest (VOI), are described. Consideration is given to propagating estimates of the quantities concerned and their associated uncertainties through the dosimetry chain to obtain an estimate of mean absorbed dose in the VOI and its associated uncertainty. This approach is demonstrated in a clinical example.
Collapse
Affiliation(s)
- Jonathan I Gear
- The Royal Marsden NHS Foundation Trust & Institute of Cancer Research, Downs Road, Sutton, SM2 5PT, UK.
| | - Maurice G Cox
- National Physical Laboratory, Teddington, TW11 0LW, UK
| | - Johan Gustafsson
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Iain Murray
- The Royal Marsden NHS Foundation Trust & Institute of Cancer Research, Downs Road, Sutton, SM2 5PT, UK
| | - Gerhard Glatting
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | | | - Glenn D Flux
- The Royal Marsden NHS Foundation Trust & Institute of Cancer Research, Downs Road, Sutton, SM2 5PT, UK
| |
Collapse
|
9
|
Deshayes E, Ladjohounlou R, Le Fur P, Pichard A, Lozza C, Boudousq V, Sevestre S, Jarlier M, Kashani R, Koch J, Sosabowski J, Foster J, Chouin N, Bruchertseifer F, Morgenstern A, Kotzki PO, Navarro-Teulon I, Pouget JP. Radiolabeled Antibodies Against Müllerian-Inhibiting Substance Receptor, Type II: New Tools for a Theranostic Approach in Ovarian Cancer. J Nucl Med 2018; 59:1234-1242. [DOI: 10.2967/jnumed.118.208611] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022] Open
|
10
|
Kurth J, Krause BJ, Schwarzenböck SM, Stegger L, Schäfers M, Rahbar K. External radiation exposure, excretion, and effective half-life in 177Lu-PSMA-targeted therapies. EJNMMI Res 2018; 8:32. [PMID: 29651569 PMCID: PMC5897276 DOI: 10.1186/s13550-018-0386-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/02/2018] [Indexed: 12/26/2022] Open
Abstract
Background Prostate-specific membrane antigen (PSMA)-targeted therapy with 177Lu-PSMA-617 is a therapeutic option for patients with metastatic castration-resistant prostate cancer (mCRPC). To optimize the therapy procedure, it is necessary to determine relevant parameters to define radiation protection and safety necessities. Therefore, this study aimed at estimating the ambient radiation exposure received by the patient. Moreover, the excreted activity was quantified. Results In total, 50 patients with mCRPC and treated with 177Lu-PSMA-617 (mean administered activity 6.3 ± 0.5 GBq) were retrospectively included in a bi-centric study. Whole-body dose rates were measured at a distance of 2 m at various time points after application of 177Lu-PSMA-617, and effective half-lives for different time points were calculated and compared. Radiation exposure to the public was approximated using the dose integral. For the estimation of the excreted activity, whole body measurements of 25 patients were performed at 7 time points. Unbound 177Lu-PSMA-617 was rapidly cleared from the body. After 4 h, approximately 50% and, after 12 h, approximately 70% of the administered activity were excreted, primarily via urine. The mean dose rates were the following: 3.6 ± 0.7 μSv/h at 2 h p. i., 1.6 ± 0.6 μSv/h at 24 h, 1.1 ± 0.5 μSv/h at 48 h, and 0.7 ± 0.4 μSv/h at 72 h. The mean effective half-life of the cohort was 40.5 ± 9.6 h (min 21.7 h; max 85.7 h). The maximum dose to individual members of the public per treatment cycle was ~ 250 ± 55 μSv when the patient was discharged from the clinic after 48 h and ~ 190 ± 36 μSv when the patient was discharged after 72 h. Conclusions In terms of the radiation exposure to the public, 177Lu-PSMA is a safe option of radionuclide therapy. As usually four (sometimes more) cycles of the therapy are performed, it must be conducted in a way that ensures that applicable legal requirements can be followed. In other words, the radiation exposure to the public and the concentration of activity in wastewater must be sub-marginal. Therefore, in certain countries, hospitalization of these patients is mandatory.
Collapse
Affiliation(s)
- J Kurth
- Department of Nuclear Medicine, Rostock University Medical Center, Gertrudenplatz 1, 18057, Rostock, Germany.
| | - B J Krause
- Department of Nuclear Medicine, Rostock University Medical Center, Gertrudenplatz 1, 18057, Rostock, Germany
| | - S M Schwarzenböck
- Department of Nuclear Medicine, Rostock University Medical Center, Gertrudenplatz 1, 18057, Rostock, Germany
| | - L Stegger
- Department of Nuclear Medicine, University Hospital Muenster, Muenster, Germany
| | - M Schäfers
- Department of Nuclear Medicine, University Hospital Muenster, Muenster, Germany
| | - K Rahbar
- Department of Nuclear Medicine, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
11
|
Pinto PA, Bezerra RMF, Dias AA. Discrimination between rival laccase inhibition models from data sets with one inhibitor concentration using a penalized likelihood analysis and Akaike weights. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2018.1425401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Paula A. Pinto
- Centre for the Research and Technology of Agro-Environment and Biological Sciences – CITAB, Universidade de Trás-os-Montes e Alto Douro – UTAD, Vila Real, Portugal
| | - Rui M. F. Bezerra
- Centre for the Research and Technology of Agro-Environment and Biological Sciences – CITAB, Universidade de Trás-os-Montes e Alto Douro – UTAD, Vila Real, Portugal
| | - Albino A. Dias
- Centre for the Research and Technology of Agro-Environment and Biological Sciences – CITAB, Universidade de Trás-os-Montes e Alto Douro – UTAD, Vila Real, Portugal
| |
Collapse
|
12
|
Delker A, Ilhan H, Zach C, Brosch J, Gildehaus FJ, Lehner S, Bartenstein P, Böning G. The Influence of Early Measurements Onto the Estimated Kidney Dose in [(177)Lu][DOTA(0),Tyr(3)]Octreotate Peptide Receptor Radiotherapy of Neuroendocrine Tumors. Mol Imaging Biol 2016; 17:726-34. [PMID: 25790773 DOI: 10.1007/s11307-015-0839-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Multiple measurements have been required to estimate the radiation dose to the kidneys resulting from [(177)Lu]DOTATATE therapy for neuroendocrine tumors. The aim of this study was to investigate the influence of early time-point measurement in the renal dose calculation. PROCEDURES Anterior/posterior whole-body planar scintigraphy images were acquired at approx. 1, 24, 48, and 72 h after administration of [(177)Lu]DOTATATE. Furthermore, we acquired planar 1-bed dynamic recordings in 12 frames (5 min each) during the first hour. We assessed kidney exposure with a three-phase model consisting of a linear increase to the maximum within the initial minutes p.i., followed a bi-exponential decline. This three-phase-model served as reference for evaluating accuracy of dose estimates in 105 kidneys calculated by conventional mono-exponential fitting of the final three and four whole-body images. RESULTS Mean effective half-life times for the reference model were 25.8 ± 12.0 min and 63.9 ± 17.6 h, predicting a mean renal dose of 5.7 ± 2.1 Gy. The effective half-life time was 46.3 ± 15.4 h for the last four and 63.3 ± 17.0 h for the last three data points. The mean start of the first whole-body measurement was 1.2 ± 0.1 h p.i. The ratio of fast to slow phases was 28.1 ± 23.9% at this time point, which caused a mean absolute percentage dose deviation of 12.4% for four data points, compared to 3.1% for three data points. At a mean time of 2.4 h p.i. (max 5.1 h), the ratio of fast to slow phase declined below 5%. CONCLUSIONS Kinetic analysis of renal uptake using dynamic planar scans from the first hour after injection revealed a fast and a slow washout phase. Although the fast phase did not contribute substantially to the estimated renal dose, it could influence planar measurements performed within the first hours. We found that the presence of two clearance phases can hamper accurate dose estimation based on a single-phase model, resulting in approximately 12.4% dose underestimation, thus potentially resulting in overtreatment. In the absence of dynamic initial recordings, the first dosimetry measurements should therefore be obtained later than 3-5 h after [(177)Lu]DOTATATE injection. Omitting the early whole-body image reduced the dose estimation error to 3.1%.
Collapse
Affiliation(s)
- Andreas Delker
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Harun Ilhan
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Christian Zach
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Julia Brosch
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Franz Josef Gildehaus
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sebastian Lehner
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Guido Böning
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
13
|
Olsen JP, Alasepp K, Kari J, Cruys-Bagger N, Borch K, Westh P. Mechanism of product inhibition for cellobiohydrolase Cel7A during hydrolysis of insoluble cellulose. Biotechnol Bioeng 2016; 113:1178-86. [DOI: 10.1002/bit.25900] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/23/2015] [Accepted: 11/29/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Johan P. Olsen
- Research Unit for Functional Biomaterials; Roskilde University; NSM, 1 Universitetsvej, Build. 28 DK-4000 Roskilde Denmark
| | - Kadri Alasepp
- Research Unit for Functional Biomaterials; Roskilde University; NSM, 1 Universitetsvej, Build. 28 DK-4000 Roskilde Denmark
| | - Jeppe Kari
- Research Unit for Functional Biomaterials; Roskilde University; NSM, 1 Universitetsvej, Build. 28 DK-4000 Roskilde Denmark
| | - Nicolaj Cruys-Bagger
- Research Unit for Functional Biomaterials; Roskilde University; NSM, 1 Universitetsvej, Build. 28 DK-4000 Roskilde Denmark
- Novozymes A/S; Bagsvaerd Denmark
| | | | - Peter Westh
- Research Unit for Functional Biomaterials; Roskilde University; NSM, 1 Universitetsvej, Build. 28 DK-4000 Roskilde Denmark
| |
Collapse
|
14
|
Williams LE, Wu AM, Kenanova VE, Olafsen T, Yazaki PJ. Numerical Comparison of Iodine-Based and Indium-Based Antibody Biodistributions. Cancer Biother Radiopharm 2014; 29:91-8. [DOI: 10.1089/cbr.2013.1564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lawrence E. Williams
- Division of Diagnostic Radiology, City of Hope National Medical Center, Duarte, California
| | - Anna M. Wu
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Vania E. Kenanova
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Tove Olafsen
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Paul J. Yazaki
- Department of Immunology, City of Hope National Medical Center, Duarte, California
| |
Collapse
|
15
|
Kwok CS, Frankel PH, Lopatin G, Williams LE. Using a single parameter to describe time-activity curves. Cancer Biother Radiopharm 2014; 29:83-6. [PMID: 24383763 DOI: 10.1089/cbr.2013.1568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Time-activity uptake curves [u(t) in % injected dose per gram of tissue] may be described by different--often complicated--functional forms. Because of the need to readily compare sequences of engineered radiopharmaceuticals, it is efficient to use mean residence time (MRT) as a one-parameter descriptor. In applying this computation to a sequence of five cognate anti-carcinoembryonic antigen (CEA) antibodies, it was found that the intact form had the longest MRT in the blood with the other four cognates having values less by approximately a factor of 10 or more. This difference probably follows from the lack of an intact Fc segment on the latter engineered molecules. MRT values for a sequence of six scFv-Fc engineered fragments demonstrated that the double mutant had the shortest blood residence time--30-fold less compared with the wild type. Whereas it is not possible to directly apply the MRT to nonbolus (tumor or organ) curves, a residence time (τ) may be assigned using the uptake function. Using τ, it was found that the intact (natural) form of the anti-CEA cognate set had the longest time at the tumor site in the human xenograft model in nude mice. The MRT and τ concept are proposed to also allow comparison of possible relative blood and tissue exposures, respectively, for cognate sets of unlabeled engineered antibodies used to treat malignancies although no data are yet available in the literature for this application.
Collapse
Affiliation(s)
- Cheuk S Kwok
- 1 Division of Cancer Immunotherapy and Tumor Immunology, City of Hope National Medical Center , Duarte, California
| | | | | | | |
Collapse
|
16
|
Kidney dosimetry in ¹⁷⁷Lu and ⁹⁰Y peptide receptor radionuclide therapy: influence of image timing, time-activity integration method, and risk factors. BIOMED RESEARCH INTERNATIONAL 2013; 2013:935351. [PMID: 23865075 PMCID: PMC3705840 DOI: 10.1155/2013/935351] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/31/2013] [Indexed: 11/17/2022]
Abstract
Kidney dosimetry in 177Lu and 90Y PRRT requires 3 to 6 whole-body/SPECT scans to extrapolate the peptide kinetics, and it is considered time and resource consuming. We investigated the most adequate timing for imaging and time-activity interpolating curve, as well as the performance of a simplified dosimetry, by means of just 1-2 scans. Finally the influence of risk factors and of the peptide (DOTATOC versus DOTATATE) is considered. 28 patients treated at first cycle with 177Lu DOTATATE and 30 with 177Lu DOTATOC underwent SPECT scans at 2 and 6 hours, 1, 2, and 3 days after the radiopharmaceutical injection. Dose was calculated with our simplified method, as well as the ones most used in the clinic, that is, trapezoids, monoexponential, and biexponential functions. The same was done skipping the 6 h and the 3 d points. We found that data should be collected until 100 h for 177Lu therapy and 70 h for 90Y therapy, otherwise the dose calculation is strongly influenced by the curve interpolating the data and should be carefully chosen.
Risk factors (hypertension, diabetes) cause a rather statistically significant 20% increase in dose (t-test, P < 0.10), with DOTATATE affecting an increase of 25% compared to DOTATOC (t-test, P < 0.05).
Collapse
|
17
|
Glatting G, Bardiès M, Lassmann M. Treatment planning in molecular radiotherapy. Z Med Phys 2013; 23:262-9. [PMID: 23597414 DOI: 10.1016/j.zemedi.2013.03.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/05/2013] [Accepted: 03/14/2013] [Indexed: 01/09/2023]
Abstract
In molecular radiotherapy a radionuclide or a radioactively labelled pharmaceutical is administered to the patient. Treatment planning therefore comprises the determination of activity to administer. This administered activity should maximize tumour cell sterilization while minimizing normal tissue damage. In this work we present different approaches that are frequently used for determining the suitable activity. These approaches may be cohort- based as in chemotherapy, or patient-specific using dosimetry based on individual biokinetics. The approaches are different with respect to the input complexity, the corresponding costs and - in consequence - the quality of the therapy. In addition, a general scheme for data collection and analysis is proposed. To develop an effective and safe treatment, elaborate data need to be obtained. The main challenges, however, are collecting these complex data and analyse them properly.
Collapse
Affiliation(s)
- Gerhard Glatting
- Medical Radiation Physics/Radiation Protection, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | | | | |
Collapse
|
18
|
Kletting P, Muller B, Erentok B, Schmaljohann J, Behrendt FF, Reske SN, Mottaghy FM, Glatting G. Differences in predicted and actually absorbed doses in peptide receptor radionuclide therapy. Med Phys 2012; 39:5708-17. [PMID: 22957636 DOI: 10.1118/1.4747266] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE An important assumption in dosimetry prior to radionuclide therapy is the equivalence of pretherapeutic and therapeutic biodistribution. In this study the authors investigate if this assumption is justified in sst2-receptor targeting peptide therapy, as unequal amounts of peptide and different peptides for pretherapeutic measurements and therapy are commonly used. METHODS Physiologically based pharmacokinetic models were developed. Gamma camera and serum measurements of ten patients with metastasizing neuroendocrine tumors were conducted using (111)In-DTPAOC. The most suitable model was selected using the corrected Akaike information criterion. Based on that model and the estimated individual parameters, predicted and measured (90)Y-DOTATATE excretions during therapy were compared. The residence times for the pretherapeutic (measured) and therapeutic scenarios (simulated) were calculated. RESULTS Predicted and measured therapeutic excretion differed in three patients by 10%, 31%, and 7%. The measured pretherapeutic and therapeutic excretion differed by 53%, 56%, and 52%. The simulated therapeutic residence times of kidney and tumor were 3.1 ± 0.6 and 2.5 ± 1.2 fold higher than the measured pretherapeutic ones. CONCLUSIONS To avoid the introduction of unnecessary inaccuracy in dosimetry, using the same substance along with the same amount for pretherapeutic measurements and therapy is recommended.
Collapse
Affiliation(s)
- Peter Kletting
- Klinik für Nuklearmedizin, Universität Ulm, Ulm, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kletting P, Kull T, Bunjes D, Luster M, Reske SN, Glatting G. Optimal preloading in radioimmunotherapy with anti-cD45 antibody. Med Phys 2011; 38:2572-8. [PMID: 21776793 DOI: 10.1118/1.3581059] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Anti-CD45 antibody is predominantly used in the treatment of acute leukemia. CD45 is stably expressed on all leukocytes and their precursors, and therefore the liver and spleen constitute major antigen sinks. Thus, as the red marrow is the target organ, in radioimmunotherapy with anti-CD45 antibody, preloading with unlabeled antibody is a method to increase the absorbed dose to the target cells. In a previous study, a method to individually determine the optimal preload for five patients with acute leukemia was developed. Here, this method is examined and improved using two pretherapeutic measurement series and a refined pharmacokinetic model. METHODS To obtain the biodistribution of 111In-labeled anti-CD45 antibody under different saturation conditions, two measurement series one with and one without preloading were conducted in five patients. For each patient, two physiologically based pharmacokinetic models were fitted to the data and the corrected Akaike information criterion was used to identify the model, which was empirically most supported. The resultant parameter values were compared to values reported in the literature. To individually determine the optimal amount of unlabeled antibody for therapy, computer simulations for preloads ranging from 0 to 60 mg were performed based on the estimated parameters of each patient. The prediction power of the model was assessed by comparing the simulated therapeutic serum curves to the actual 90Y measurements. RESULTS Visual inspection showed good fits and the adjusted R2 was >0.90 for all patients. All parameters were in a physiologically reasonable range. The relative deviation of the predicted area under the therapeutic serum curve and the measured curve was 15%-33%. The optimal preloading increased the marrow-over-liver selectivity up to 3.9 fold compared to the simulated biodistribution using a standard dose (0.5 mg/kg). CONCLUSIONS The presented method can be used to individually determine the optimal preload and the corresponding residence times in radioimmunotherapy with anti-CD45 antibody.
Collapse
Affiliation(s)
- Peter Kletting
- Klinik für Nuklearmedizin, Universität Ulm, D-89070 Ulm, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Kaur H, Singh J, Gupta S. Prediction of in vitro Drug Release Mechanisms from Extended Release Matrix Tablets using SSR/R2 Technique. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/tasr.2011.400.409] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Kletting P, Kiryakos H, Reske SN, Glatting G. Analysing saturable antibody binding based on serum data and pharmacokinetic modelling. Phys Med Biol 2010; 56:73-86. [DOI: 10.1088/0031-9155/56/1/005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Kletting P, Kull T, Bunjes D, Mahren B, Luster M, Reske SN, Glatting G. Radioimmunotherapy with anti-CD66 antibody: improving the biodistribution using a physiologically based pharmacokinetic model. J Nucl Med 2010; 51:484-91. [PMID: 20150257 DOI: 10.2967/jnumed.109.067546] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED To improve radioimmunotherapy with anti-CD66 antibody, a physiologically based pharmacokinetic (PBPK) model was developed that was capable of describing the biodistribution and extrapolating between different doses of anti-CD66 antibody. METHODS The biodistribution of the (111)In-labeled anti-CD66 antibody of 8 patients with acute leukemia was measured. The data were fitted to 2 PBPK models. Model A incorporated effective values for antibody binding, and model B explicitly described mono- and bivalent binding. The best model was selected using the corrected Akaike information criterion. The predictive power of the model was validated comparing simulations and (90)Y-anti-CD66 serum measurements. The amount of antibody (range, 0.1-4 mg) leading to the most favorable therapeutic distribution was determined using simulations. RESULTS Model B was better supported by the data. The fits of the selected model were good (adjusted R(2) > 0.91), and the estimated parameters were in a physiologically reasonable range. The median deviation of the predicted and measured (90)Y-anti-CD66 serum concentration values and the residence times were 24% (range, 17%-31%) and 9% (range, 1%-64%), respectively. The validated model predicted considerably different biodistributions for dosimetry and therapeutic settings. The smallest (0.1 mg) simulated amount of antibody resulted in the most favorable therapeutic biodistribution. CONCLUSION The developed model is capable of adequately describing the anti-CD66 antibody biodistribution and accurately predicting the time-activity serum curve of (90)Y-anti-CD66 antibody and the therapeutic serum residence time. Simulations indicate that an improvement of radioimmunotherapy with anti-CD66 antibody is achievable by reducing the amount of administered antibody; for example, the residence time of the red marrow could be increased by a factor of 1.9 +/- 0.3 using 0.27 mg of anti-CD66 antibody.
Collapse
Affiliation(s)
- Peter Kletting
- Klinik für Nuklearmedizin, Universität Ulm, Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|