1
|
Khoperskov AV, Polyakov MV. Improving the Efficiency of Oncological Diagnosis of the Breast Based on the Combined Use of Simulation Modeling and Artificial Intelligence Algorithms. ALGORITHMS 2022; 15:292. [DOI: 10.3390/a15080292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
This work includes a brief overview of the applications of the powerful and easy-to-perform method of microwave radiometry (MWR) for the diagnosis of various diseases. The main goal of this paper is to develop a method for diagnosing breast oncology based on machine learning algorithms using thermometric data, both real medical measurements and simulation results of MWR examinations. The dataset includes distributions of deep and skin temperatures calculated in numerical models of the dynamics of thermal and radiation fields inside biological tissue. The constructed combined dataset allows us to explore the limits of applicability of the MWR method for detecting weak tumors. We use convolutional neural networks and classic machine learning algorithms (k-nearest neighbors, naive Bayes classifier, support vector machine) to classify data. The construction of Kohonen self-organizing maps to explore the structure of our combined dataset demonstrated differences between the temperatures of patients with positive and negative diagnoses. Our analysis shows that the MWR can detect tumors with a radius of up to 0.5 cm if they are at the stage of rapid growth, when the tumor volume doubling occurs in approximately 100 days or less. The use of convolutional neural networks for MWR provides both high sensitivity (sens=0.86) and specificity (spec=0.82), which is an advantage over other methods for diagnosing breast cancer. A new modified scheme for medical measurements of IR temperature and brightness temperature is proposed for a larger number of points in the breast compared to the classical scheme. This approach can increase the effectiveness and sensitivity of diagnostics by several percent.
Collapse
Affiliation(s)
- Alexander V. Khoperskov
- Department of Information Systems and Computer Modelling, Volgograd State University, Universitetsky pr., 100, Volgograd 400062, Russia
| | - Maxim V. Polyakov
- Department of Information Systems and Computer Modelling, Volgograd State University, Universitetsky pr., 100, Volgograd 400062, Russia
| |
Collapse
|
2
|
Raiko J, Koskensalo K, Sainio T. Imaging-based internal body temperature measurements: The journal Temperature toolbox. Temperature (Austin) 2020; 7:363-388. [PMID: 33251282 PMCID: PMC7678923 DOI: 10.1080/23328940.2020.1769006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022] Open
Abstract
Noninvasive imaging methods of internal body temperature are in high demand in both clinical medicine and physiological research. Thermography and thermometry can be used to assess tissue temperature during thermal therapies: ablative and hyperthermia treatments to ensure adequate temperature rise in target tissues but also to avoid collateral damage by heating healthy tissues. In research use, measurement of internal body temperature enables us the production of thermal maps on muscles, internal organs, and other tissues of interest. The most used methods for noninvasive imaging of internal body temperature are based on different parameters acquired with magnetic resonance imaging, ultrasound, computed tomography, microwave radiometry, photoacoustic imaging, and near-infrared spectroscopy. In the current review, we examine the aforementioned imaging methods, their use in estimating internal body temperature in vivo with their advantages and disadvantages, and the physical phenomena the thermography or thermometry modalities are based on.
Collapse
Affiliation(s)
- Juho Raiko
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, The Netherlands
| | - Kalle Koskensalo
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Teija Sainio
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| |
Collapse
|
3
|
Sedankin MK, Leushin VY, Gudkov AG, Vesnin SG, Khromov DA, Porokhov IO, Sidorov IA, Agasieva SV, Gorlacheva EN. Modeling of Thermal Radiation by the Kidney in the Microwave Range. BIOMEDICAL ENGINEERING 2019. [DOI: 10.1007/s10527-019-09878-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Akki RS, Sugumar SP, Venkata KC, Arunachalam K. Multi-physics modeling to study the influence of tissue compression and cold stress on enhancing breast tumor detection using microwave radiometry. Bioelectromagnetics 2019; 40:260-277. [PMID: 30920670 DOI: 10.1002/bem.22184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 03/06/2019] [Indexed: 11/11/2022]
Abstract
The influence of tissue compression and external thermal modulation on passive detection of breast tumors using medical microwave radiometry was investigated using multi-physics numerical modeling. A three-dimensional numerical model of the pendant breast with 10 and 6 mm diameter tumors at varying depths (15 mm, 30 mm) was analyzed at thermodynamic equilibrium using a circular waveguide as the receive antenna. The contrast in the brightness temperature, ΔTB , between the unhealthy and healthy breasts was found to be significantly more for breast compression alone, compared to thermal modulation of the tissue surface, irrespective of tissue composition, tumor size, and depth. The study also concludes that small deep-seated tumor with very low metabolic activity that is not detectable by a radiometer with 0.1 °C sensitivity could be detected under breast compression and short duration cold stress. Thus, detection of deep-seated breast tumors can be significantly improved under controlled tissue compression with an optional cold stress. Bioelectromagnetics. © 2019 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Rachana S Akki
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | - Sathya Priya Sugumar
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| | | | - Kavitha Arunachalam
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
5
|
Crandall JP, O JH, Gajwani P, Leal JP, Mawhinney DD, Sterzer F, Wahl RL. Measurement of Brown Adipose Tissue Activity Using Microwave Radiometry and 18F-FDG PET/CT. J Nucl Med 2018; 59:1243-1248. [PMID: 29439011 DOI: 10.2967/jnumed.117.204339] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/20/2017] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to evaluate the operating characteristics of a microwave radiometry system in the noninvasive assessment of activated and nonactivated brown adipose tissue (BAT) and normal-tissue temperatures, reflecting metabolic activity in healthy human subjects. The radiometry data were compared with 18F-FDG PET/CT images in the same subjects. Methods: Microwave radiometry and 18F-FDG PET/CT were sequentially performed on 19 participants who underwent a cold intervention to maximize BAT activation. The cold intervention involved the participants' intermittently placing their feet on an ice block while sitting in a cool room. Participants exhibiting BAT activity qualitatively on PET/CT were scanned again with both modalities after undergoing a BAT minimization protocol (exposure to a warm room and a 20-mg dose of propranolol). Radiometry was performed every 5 min for 2 h before PET/CT imaging during both the warm and the cold interventions. A grid of 15-20 points was drawn on the participant's upper body (data were collected at each point), and a photograph was taken for comparison with PET/CT images. Results: PET/CT identified increased signal consistent with BAT activity in 11 of 19 participants. In 10 of 11 participants with active BAT, radiometry measurements collected during the cold study were modestly, but significantly, higher on points located over areas of active BAT on PET/CT than on points not exhibiting BAT activity (P < 0.01). This difference lessened during the warm studies: 7 of 11 participants showed radiometry measurements that did not differ significantly between the same set of points. The mean radiometry result collected during BAT maximization was 33.2°C ± 1.5°C at points designated as active and 32.7°C ± 1.3°C at points designated as inactive (P < 0.01). Conclusion: Passive microwave radiometry was shown to be feasible and, with substantial improvements, has the potential to noninvasively detect active brown adipose tissue without a radiotracer injection.
Collapse
Affiliation(s)
- John P Crandall
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Joo H O
- Department of Radiology, College of Medicine, Seoul St. Mary's Hospital, Catholic University of Korea, Seoul, Korea
| | - Prateek Gajwani
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Jeffrey P Leal
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | | | | | - Richard L Wahl
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri .,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| |
Collapse
|
6
|
Koutsoupidou M, Groumpas E, Karanasiou IS, Christopoulou M, Nikita K, Uzunoglu N. The effect of using a dielectric matching medium in focused microwave radiometry: an anatomically detailed head model study. Med Biol Eng Comput 2017; 56:809-816. [PMID: 29027087 DOI: 10.1007/s11517-017-1729-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/04/2017] [Indexed: 11/29/2022]
Abstract
Microwave radiometry is a passive technique used to measure in-depth temperature distributions inside the human body, potentially useful in clinical applications. Experimental data imply that it may provide the capability of detecting in-depth local variations of temperature and/or conductivity of excitable tissues at microwave frequencies. Specifically, microwave radiometry may allow the real-time monitoring of brain temperature and/or conductivity changes, associated with local brain activation. In this paper, recent results of our ongoing research regarding the capabilities of focused microwave radiometry for brain intracranial applications are presented. Electromagnetic and thermal simulation analysis was performed using an anatomically detailed head model and a dielectric cap as matching medium placed around it, in order to improve the sensitivity and the focusing attributes of the system. The theoretical results were compared to experimental data elicited while exploring that the sensing depth and spatial resolution of the proposed imaging method at 2.1 GHz areas located 3 cm deep inside the brain can be measured, while at 2.5 GHz, the sensing area is confined specifically to the area of interest. The results exhibit the system's potential as a complementary brain imaging tool for multifrequency in-depth passive monitoring which could be clinically useful for therapeutic, diagnostic, and research applications.
Collapse
Affiliation(s)
- Maria Koutsoupidou
- School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, Athens, Greece. .,School of Natural & Mathematical Sciences, King's College London, Strand Campus, London, UK.
| | - Evangelos Groumpas
- School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, Athens, Greece
| | - Irene S Karanasiou
- School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, Athens, Greece.,Department of Mathematics and Engineering Science, Hellenic Army University, Vari, Athens, Greece
| | - Maria Christopoulou
- School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, Athens, Greece
| | - Konstantina Nikita
- School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, Athens, Greece
| | - Nikolaos Uzunoglu
- School of Electrical and Computer Engineering, National Technical University of Athens, Zografou Campus, Athens, Greece
| |
Collapse
|
7
|
Schooneveldt G, Bakker A, Balidemaj E, Chopra R, Crezee J, Geijsen ED, Hartmann J, Hulshof MC, Kok HP, Paulides MM, Sousa-Escandon A, Stauffer PR, Maccarini PF. Thermal dosimetry for bladder hyperthermia treatment. An overview. Int J Hyperthermia 2016; 32:417-33. [DOI: 10.3109/02656736.2016.1156170] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
8
|
Rodrigues DB, Stauffer PR, Colebeck E, Hood AZ, Salahi S, Maccarini PF, Topsakal E. Dielectric properties measurements of brown and white adipose tissue in rats from 0.5 to 10 GHz. Biomed Phys Eng Express 2016; 2:025005. [PMID: 29354288 PMCID: PMC5773071 DOI: 10.1088/2057-1976/2/2/025005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Brown adipose tissue (BAT) plays an important role in whole body metabolism and with appropriate stimulus could potentially mediate weight gain and insulin sensitivity. Although imaging techniques are available to detect subsurface BAT, there are currently no viable methods for continuous acquisition of BAT energy expenditure. Microwave (MW) radiometry is an emerging technology that allows the quantification of tissue temperature variations at depths of several centimeters. Such temperature differentials may be correlated with variations in metabolic rate, thus providing a quantitative approach to monitor BAT metabolism. In order to optimize MW radiometry, numerical and experimental phantoms with accurate dielectric properties are required to develop and calibrate radiometric sensors. Thus, we present for the first time, the characterization of relative permittivity and electrical conductivity of brown (BAT) and white (WAT) adipose tissues in rats across the MW range 0.5-10GHz. Measurements were carried out in situ and post mortem in six female rats of approximately 200g. A Cole-Cole model was used to fit the experimental data into a parametric model that describes the variation of dielectric properties as a function of frequency. Measurements confirm that the dielectric properties of BAT (εr = 14.0-19.4, σ = 0.3-3.3S/m) are significantly higher than those of WAT (εr = 9.1-11.9, σ = 0.1-1.9S/m), in accordance with the higher water content of BAT.
Collapse
Affiliation(s)
- D B Rodrigues
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - P R Stauffer
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - E Colebeck
- Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS 39762, USA
| | - A Z Hood
- Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS 39762, USA
| | | | - P F Maccarini
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - E Topsakal
- Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS 39762, USA
- Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
9
|
Rodrigues DB, Maccarini PF, Salahi S, Oliveira TR, Pereira PJS, Limao-Vieira P, Snow BW, Reudink D, Stauffer PR. Design and optimization of an ultra wideband and compact microwave antenna for radiometric monitoring of brain temperature. IEEE Trans Biomed Eng 2014; 61:2154-60. [PMID: 24759979 DOI: 10.1109/tbme.2014.2317484] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We present the modeling efforts on antenna design and frequency selection to monitor brain temperature during prolonged surgery using noninvasive microwave radiometry. A tapered log-spiral antenna design is chosen for its wideband characteristics that allow higher power collection from deep brain. Parametric analysis with the software HFSS is used to optimize antenna performance for deep brain temperature sensing. Radiometric antenna efficiency (η) is evaluated in terms of the ratio of power collected from brain to total power received by the antenna. Anatomical information extracted from several adult computed tomography scans is used to establish design parameters for constructing an accurate layered 3-D tissue phantom. This head phantom includes separate brain and scalp regions, with tissue equivalent liquids circulating at independent temperatures on either side of an intact skull. The optimized frequency band is 1.1-1.6 GHz producing an average antenna efficiency of 50.3% from a two turn log-spiral antenna. The entire sensor package is contained in a lightweight and low-profile 2.8 cm diameter by 1.5 cm high assembly that can be held in place over the skin with an electromagnetic interference shielding adhesive patch. The calculated radiometric equivalent brain temperature tracks within 0.4 °C of the measured brain phantom temperature when the brain phantom is lowered 10 °C and then returned to the original temperature (37 °C) over a 4.6-h experiment. The numerical and experimental results demonstrate that the optimized 2.5-cm log-spiral antenna is well suited for the noninvasive radiometric sensing of deep brain temperature.
Collapse
|
10
|
Stauffer PR, Snow BW, Rodrigues DB, Salahi S, Oliveira TR, Reudink D, Maccarini PF. Non-invasive measurement of brain temperature with microwave radiometry: demonstration in a head phantom and clinical case. Neuroradiol J 2014; 27:3-12. [PMID: 24571829 DOI: 10.15274/nrj-2014-10001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 12/14/2013] [Indexed: 12/27/2022] Open
Abstract
This study characterizes the sensitivity and accuracy of a non-invasive microwave radiometric thermometer intended for monitoring body core temperature directly in brain to assist rapid recovery from hypothermia such as occurs during surgical procedures. To study this approach, a human head model was constructed with separate brain and scalp regions consisting of tissue equivalent liquids circulating at independent temperatures on either side of intact skull. This test setup provided differential surface/deep tissue temperatures for quantifying sensitivity to change in brain temperature independent of scalp and surrounding environment. A single band radiometer was calibrated and tested in a multilayer model of the human head with differential scalp and brain temperature. Following calibration of a 500MHz bandwidth microwave radiometer in the head model, feasibility of clinical monitoring was assessed in a pediatric patient during a 2-hour surgery. The results of phantom testing showed that calculated radiometric equivalent brain temperature agreed within 0.4°C of measured temperature when the brain phantom was lowered 10°C and returned to original temperature (37°C), while scalp was maintained constant over a 4.6-hour experiment. The intended clinical use of this system was demonstrated by monitoring brain temperature during surgery of a pediatric patient. Over the 2-hour surgery, the radiometrically measured brain temperature tracked within 1-2°C of rectal and nasopharynx temperatures, except during rapid cooldown and heatup periods when brain temperature deviated 2-4°C from slower responding core temperature surrogates. In summary, the radiometer demonstrated long term stability, accuracy and sensitivity sufficient for clinical monitoring of deep brain temperature during surgery.
Collapse
Affiliation(s)
- Paul R Stauffer
- Departments of Radiation Oncology and Biomedical Engineering, Duke University; Durham, NC, USA - Department of Radiation Oncology, Thomas Jefferson University; Philadelphia PA, USA -
| | - Brent W Snow
- Department of Surgery and Urology, University of Utah; Salt Lake City, UT, USA - Thermimage Inc.; Salt Lake City, UT, USA
| | - Dario B Rodrigues
- Departments of Radiation Oncology and Biomedical Engineering, Duke University; Durham, NC, USA - CEFITEC, FCT, New University of Lisbon; Caparica, Portugal
| | - Sara Salahi
- Departments of Radiation Oncology and Biomedical Engineering, Duke University; Durham, NC, USA - ANSYS, Inc.; Irvine, CA, USA
| | - Tiago R Oliveira
- Departments of Radiation Oncology and Biomedical Engineering, Duke University; Durham, NC, USA - Institute of Physics, University of São Paulo; São Paulo, Brazil
| | | | - Paolo F Maccarini
- Departments of Radiation Oncology and Biomedical Engineering, Duke University; Durham, NC, USA
| |
Collapse
|
11
|
Rodrigues DB, Maccarini PF, Salahi S, Colebeck E, Topsakal E, Pereira PJS, Limão-Vieira P, Stauffer PR. Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of brown fat metabolism. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2013; 8584:10.1117/12.2004931. [PMID: 24244831 PMCID: PMC3824263 DOI: 10.1117/12.2004931] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. METHODS A multilayer 3D computational model was created in HFSS™ with 1.5 mm skin, 3-10 mm subcutaneous fat, 200 mm muscle and a BAT region (2-6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSS™ were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. RESULTS The optimized frequency band was 1.5-2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2-9 mdBm (noradrenergic stimulus) and 4-15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. CONCLUSIONS Results demonstrated the ability to detect thermal radiation from small volumes (2-6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5 °C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism.
Collapse
Affiliation(s)
- Dario B. Rodrigues
- Department of Radiation Oncology, Hyperthermia Division, PO BOX 3085 Duke University Medical Center, Durham, NC 27710, USA
- CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Paolo F. Maccarini
- Department of Radiation Oncology, Hyperthermia Division, PO BOX 3085 Duke University Medical Center, Durham, NC 27710, USA
| | | | - Erin Colebeck
- Department of Electrical and Computer Engineering, Mississippi State University, Mississippi State, MS 39762, USA
| | - Erdem Topsakal
- Department of Electrical and Computer Engineering, Mississippi State University, Mississippi State, MS 39762, USA
| | - Pedro J. S. Pereira
- CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Departament of Mathematics, Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
| | - Paulo Limão-Vieira
- CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Paul R. Stauffer
- Department of Radiation Oncology, Hyperthermia Division, PO BOX 3085 Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
12
|
Klemetsen Ø, Jacobsen S, Birkelund Y. Radiometric temperature reading of a hot ellipsoidal object inside the oral cavity by a shielded microwave antenna put flush to the cheek. Phys Med Biol 2012; 57:2633-52. [PMID: 22504068 DOI: 10.1088/0031-9155/57/9/2633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A new scheme for detection of vesicoureteral reflux (VUR) in children has recently been proposed in the literature. The idea is to warm bladder urine via microwave exposure to at least fever temperatures and observe potential urine reflux from the bladder back to the kidney(s) by medical radiometry. As a preliminary step toward realization of this detection device, we present non-invasive temperature monitoring by use of microwave radiometry in adults to observe temperature dynamics in vivo of a water-filled balloon placed within the oral cavity. The relevance of the approach with respect to detection of VUR in children is motivated by comparing the oral cavity and cheek tissue with axial CT images of young children in the bladder region. Both anatomical locations reveal a triple-layered tissue structure consisting of skin-fat-muscle with a total thickness of about 8-10 mm. In order to mimic variations in urine temperature, the target balloon was flushed with water coupled to a heat exchanger, that was moved between water baths of different temperatures, to induce measurable temperature gradients. The applied radiometer has a center frequency of 3.5 GHz and provides a sensitivity (accuracy) of 0.03 °C for a data acquisition time of 2 s. Three different scenarios were tested and included observation through the cheek tissue with and without an intervening water bolus compartment present. In all cases, radiometric readings observed over a time span of 900 s were shown to be highly correlated (R ~ 0.93) with in situ temperatures obtained by fiberoptic probes.
Collapse
Affiliation(s)
- Øystein Klemetsen
- Faculty of Science, Department of Physics and Technology, University of Tromsø, Tromsø, Norway.
| | | | | |
Collapse
|
13
|
Karathanasis KT, Gouzouasis IA, Karanasiou IS, Uzunoglu NK. Experimental study of a hybrid microwave radiometry-hyperthermia apparatus with the use of an anatomical head phantom. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE : A PUBLICATION OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY 2012; 16:241-7. [PMID: 22334031 DOI: 10.1109/titb.2012.2187301] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This paper presents the latest progress made concerning a hybrid diagnostic and therapeutic system able to provide focused microwave radiometric temperature and/or conductivity variation measurements and hyperthermia treatment. Previous experimental studies of our group have demonstrated the system performance and focusing properties in phantom as well as human experiments. The system is able to detect temperature and conductivity variations with frequency-dependent detection depth and spatial sensitivity. Numerous studies have also demonstrated the improvement of the system focusing properties attributed to the use of dielectric and left handed matching layers. In this study, similar experimental procedures are performed but this time using an anatomical head model as phantom aiming to achieve a more accurate modeling of the system's future real function. This way, another step is made toward the deeper understanding of the system's capabilities, with the view to further use it in experimental procedures with laboratory animals and human volunteers.
Collapse
Affiliation(s)
- Konstantinos T Karathanasis
- Department of Electrical and Computer Engineering, National Technical University of Athens, Athens 15780, Greece.
| | | | | | | |
Collapse
|
14
|
Snow BW, Arunachalam K, De Luca V, Maccarini PF, Klemetsen O, Birkelund Y, Pysher TJ, Stauffer PR. Non-invasive vesicoureteral reflux detection: heating risk studies for a new device. J Pediatr Urol 2011; 7:624-30. [PMID: 21664874 PMCID: PMC3178666 DOI: 10.1016/j.jpurol.2011.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/10/2011] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate a novel non-invasive device developed to warm bladder urine and to measure kidney temperature to detect vesicoureteral reflux. MATERIALS AND METHODS Microwave antennas focused energy within the bladder. Phantom experiments measured the results. The heating protocol was optimized in an in-vivo porcine model, and then tested once, twice and three times consecutively in three pigs followed by pathologic examinations. RESULTS Computer simulations showed a dual concentric conductor square slot antenna to be the best. Phantom studies revealed that this antenna easily heated a bladder phantom without over heating intervening layers. In-vivo a bladder heating protocol of 3 min with 30 W each to two adjacent antennas 45 s on 15 s off followed by 15 min of 15 s on and 45 s off was sufficient. When pigs were heated once, twice and three times with this heating protocol, pathologic examination of all tissues in the heated area showed no thermal changes. More intensive heating in the animal may have resulted in damage to muscle fibers in the anterior abdominal wall. CONCLUSIONS Selective warming of bladder urine was successfully demonstrated in phantom and animals. Localized heating for this novel vesicoureteral reflux device requires low-power levels and should be safe for humans.
Collapse
Affiliation(s)
- B W Snow
- University of Utah and Primary Children's Medical Center, Salt Lake City, UT 84113, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Klemetsen Ø, Jacobsen S. Improved radiometric performance attained by an elliptical microwave antenna with suction. IEEE Trans Biomed Eng 2011; 59:263-71. [PMID: 22020663 DOI: 10.1109/tbme.2011.2172441] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We present a new way to securely mount a medical microwave antenna onto the human body for improved in vivo temperature measurements by microwave radiometry. A low cost and simple vacuum pressure source is used to provide suction (negative pressure) on the aperture of an elliptical antenna with vacuum chamber cavity backing. The concept offers improved electromechanical coupling between the antenna surface and the skin of the body. The proposed solution is evaluated experimentally to test repeatability of radiometric temperature measurements by remounting the antenna many times in one sequence on a given anatomical location. Four representative locations (hand, belly, hip, and chest) were used to test the suction antenna concept against anatomical curvature and load variations. Statistical analysis shows a marked decrease in the standard deviation of measured temperatures with the use of suction compared to conventional manual fixation. At repeated measurements, the vacuum antenna produces less uncertainty and improved estimate of the true lossy load temperature. During body movement, the antenna mounted at bone-filled areas shows greatest potential for improved performance.
Collapse
Affiliation(s)
- Øystein Klemetsen
- Department of Physics and Technology, Faculty of Science and Technology, University of Tromsø, N-9037 Tromsø, Norway.
| | | |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The undesirable nature of bladder imaging in children for vesicoureteral reflux detection makes the search for noninvasive bladder imaging methods and devices an urgent concern. RECENT FINDINGS Ultrasound imaging of the bladder aided by contrast agents can be performed without ionizing radiation. However, urethral catheterization and contrast instillation is still necessary. The accuracy and reliability are still significant problems with this method. A new method of 'hiding' gadolinium in lysosomes followed by external energy application to rupture the lysosomes releasing the gadolinium for MRI holds future hope, but this research is in its infancy. A novel method to apply external microwave energy to warm the bladder urine with microwave kidney temperature monitoring is being developed. Temperature changes noted in the kidney after bladder warming would indicate vesicoureteral reflux. Further studies are ongoing. SUMMARY Ultrasonography imaging of the bladder to find vesicoureteral reflux has yet to be refined enough to be accurate and reliable for clinical use. MRI studies are in their infancy but may hold future benefit. Noninvasive bladder heating and kidney temperature monitoring is showing promise in animal studies to be a completely noninvasive reflux detection device.
Collapse
|
17
|
Birkelund Y, Klemetsen Ø, Jacobsen SK, Arunachalam K, Maccarini P, Stauffer PR. Vesicoureteral reflux in children: a phantom study of microwave heating and radiometric thermometry of pediatric bladder. IEEE Trans Biomed Eng 2011; 58:3269-78. [PMID: 21900069 DOI: 10.1109/tbme.2011.2167148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have investigated the use of microwave heating and radiometry to safely heat urine inside a pediatric bladder. The medical application for this research is to create a safe and reliable method to detect vesicoureteral reflux, a pediatric disorder, where urine flow is reversed and flows from the bladder back up into the kidney. Using fat and muscle tissue models, we have performed both experimental and numerical simulations of a pediatric bladder model using planar dual concentric conductor microstrip antennas at 915 MHz for microwave heating. A planar elliptical antenna connected to a 500 MHz bandwidth microwave radiometer centered at 3.5 GHz was used for noninvasive temperature measurement inside tissue. Temperatures were measured in the phantom models at points during the experiment with implanted fiberoptic sensors, and 2-D distributions in cut planes at depth in the phantom with an infrared camera at the end of the experiment. Cycling between 20 s with 20 Watts power for heating, and 10 s without power to allow for undisturbed microwave radiometry measurements, the experimental results show that the target tissue temperature inside the phantom increases fast and that the radiometer provides useful measurements of spatially averaged temperature of the illuminated volume. The presented numerical and experimental results show excellent concordance, which confirms that the proposed system for microwave heating and radiometry is applicable for safe and reliable heating of pediatric bladder.
Collapse
Affiliation(s)
- Yngve Birkelund
- Department of Physics and Technology, University of Tromsø, Tromsø, Norway.
| | | | | | | | | | | |
Collapse
|
18
|
Bibliography. Female urology. Current world literature. Curr Opin Urol 2011; 21:343-6. [PMID: 21654401 DOI: 10.1097/mou.0b013e3283486a38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Stauffer PR, Maccarini PF, Arunachalam K, De Luca V, Salahi S, Boico A, Klemetsen O, Birkelund Y, Jacobsen SK, Bardati F, Tognolatti P, Snow B. Microwave Radiometry for Non-Invasive Detection of Vesicoureteral Reflux (VUR) Following Bladder Warming. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2011; 7901:79010V. [PMID: 22866211 PMCID: PMC3409575 DOI: 10.1117/12.875636] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BACKGROUND: Vesicoureteral reflux (VUR) is a serious health problem leading to renal scarring in children. Current VUR detection involves traumatic x-ray imaging of kidneys following injection of contrast agent into bladder via invasive Foley catheter. We present an alternative non-invasive approach for detecting VUR by radiometric monitoring of kidney temperature while gently warming the bladder. METHODS: We report the design and testing of: i) 915MHz square slot antenna array for heating bladder, ii) EMI-shielded log spiral microstrip receive antenna, iii) high-sensitivity 1.375GHz total power radiometer, iv) power modulation approach to increase urine temperature relative to overlying perfused tissues, and v) invivo porcine experiments characterizing bladder heating and radiometric temperature of aaline filled 30mL balloon "kidney" implanted 3-4cm deep in thorax and varied 2-6°C from core temperature. RESULTS: SAR distributions are presented for two novel antennas designed to heat bladder and monitor deep kidney temperatures radiometrically. We demonstrate the ability to heat 180mL saline in in vivo porcine bladder to 40-44°C while maintaining overlying tissues <38°C using time-modulated square slot antennas coupled to the abdomen with room temperature water pad. Pathologic evaluations confirmed lack of acute thermal damage in pelvic tissues for up to three 20min bladder heat exposures. The radiometer clearly recorded 2-6°C changes of 30mL "kidney" targets at depth in 34°C invivo pig thorax. CONCLUSION: A 915MHz antenna array can gently warm in vivo pig bladder without toxicity while a 1.375GHz radiometer with log spiral receive antenna detects ≥2°C rise in 30mL "urine" located 3-4cm deep in thorax, demonstrating more than sufficient sensitivity to detect Grade 4-5 reflux of warmed urine for non-invasive detection of VUR.
Collapse
Affiliation(s)
- Paul R. Stauffer
- Radiation Oncology Department, Duke University, Durham NC, 27710
| | | | - Kavitha Arunachalam
- Department of Engineering Design, Indian Institute of Technology, Madras India
| | - Valeria De Luca
- Radiation Oncology Department, Duke University, Durham NC, 27710
| | - Sara Salahi
- Radiation Oncology Department, Duke University, Durham NC, 27710
| | - Alina Boico
- Radiation Oncology Department, Duke University, Durham NC, 27710
| | - Oystein Klemetsen
- Department of Physics and Technology, University of Tromso, Norway N-9037
| | - Yngve Birkelund
- Department of Physics and Technology, University of Tromso, Norway N-9037
| | - Svein K. Jacobsen
- Department of Physics and Technology, University of Tromso, Norway N-9037
| | | | - Piero Tognolatti
- Dipartimento di Ingegneria Elettrica e dell’Informazione - Universita’ dell’Aquila, L’Aquila, Italy
| | - Brent Snow
- Department of Pediatrics, University of Utah, Salt Lake City, UT
| |
Collapse
|
20
|
Arunachalam K, Maccarini P, De Luca V, Tognolatti P, Bardati F, Snow B, Stauffer P. Detection of vesicoureteral reflux using microwave radiometry-system characterization with tissue phantoms. IEEE Trans Biomed Eng 2011; 58:1629-36. [PMID: 21257366 DOI: 10.1109/tbme.2011.2107515] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Microwave (MW) radiometry is proposed for passive monitoring of kidney temperature to detect vesicoureteral reflux (VUR) of urine that is externally heated by a MW hyperthermia device and thereafter reflows from the bladder to kidneys during reflux. Here, we characterize in tissue-mimicking phantoms the performance of a 1.375 GHz radiometry system connected to an electromagnetically (EM) shielded microstrip log spiral antenna optimized for VUR detection. Phantom EM properties are characterized using a coaxial dielectric probe and network analyzer (NA). Power reflection and receive patterns of the antenna are measured in layered tissue phantom. Receiver spectral measurements are used to assess EM shielding provided by a metal cup surrounding the antenna. Radiometer and fiberoptic temperature data are recorded for varying volumes (10-30 mL) and temperaturesg (40-46°C) of the urine phantom at 35 mm depth surrounded by 36.5°C muscle phantom. Directional receive pattern with about 5% power spectral density at 35 mm target depth and better than -10 dB return loss from tissue load are measured for the antenna. Antenna measurements demonstrate no deterioration in power reception and effective EM shielding in the presence of the metal cup. Radiometry power measurements are in excellent agreement with the temperature of the kidney phantom. Laboratory testing of the radiometry system in temperature-controlled phantoms supports the feasibility of passive kidney thermometry for VUR detection.
Collapse
|
21
|
Klemetsen O, Birkelund Y, Jacobsen SK, Maccarini PF, Stauffer PR. DESIGN OF MEDICAL RADIOMETER FRONT-END FOR IMPROVED PERFORMANCE. ACTA ACUST UNITED AC 2011; 27:289-306. [PMID: 21779411 DOI: 10.2528/pierb10101204] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have investigated the possibility of building a singleband Dicke radiometer that is inexpensive, small-sized, stable, highly sensitive, and which consists of readily available microwave components. The selected frequency band is at 3.25-3.75 GHz which provides a reasonable compromise between spatial resolution (antenna size) and sensing depth for radiometry applications in lossy tissue. Foreseen applications of the instrument are non-invasive temperature monitoring for breast cancer detection and temperature monitoring during heating. We have found off-the-shelf microwave components that are sufficiently small (< 5 mm × 5 mm) and which offer satisfactory overall sensitivity. Two different Dicke radiometers have been realized: one is a conventional design with the Dicke switch at the front-end to select either the antenna or noise reference channels for amplification. The second design places a matched pair of low noise amplifiers in front of the Dicke switch to reduce system noise figure.Numerical simulations were performed to test the design concepts before building prototype PCB front-end layouts of the radiometer. Both designs provide an overall power gain of approximately 50 dB over a 500 MHz bandwidth centered at 3.5 GHz. No stability problems were observed despite using triple-cascaded amplifier configurations to boost the thermal signals. The prototypes were tested for sensitivity after calibration in two different water baths. Experiments showed superior sensitivity (36% higher) when implementing the low noise amplifier before the Dicke switch (close to the antenna) compared to the other design with the Dicke switch in front. Radiometer performance was also tested in a multilayered phantom during alternating heating and radiometric reading. Empirical tests showed that for the configuration with Dicke switch first, the switch had to be locked in the reference position during application of microwave heating to avoid damage to the active components (amplifiers and power meter). For the configuration with a low noise amplifier up front, damage would occur to the active components of the radiometer if used in presence of the microwave heating antenna. Nevertheless, this design showed significantly improved sensitivity of measured temperatures and merits further investigation to determine methods of protecting the radiometer for amplifier first front ends.
Collapse
Affiliation(s)
- O Klemetsen
- Department of Physics and Technology, University of Tromsø, NO-9037 Tromsø, Norway
| | | | | | | | | |
Collapse
|
22
|
Stauffer P, Maccarini P. EVOLUTION OF ANTENNA PERFORMANCE FOR APPLICATIONS IN THERMAL MEDICNE. PROCEEDINGS OF THE EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION. EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION 2011:3080-3083. [PMID: 23487445 PMCID: PMC3593730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This presentation provides an overview of electromagnetic heating technology that has proven useful in clinical applications of hyperthermia therapy for cancer. Several RF and microwave antenna designs are illustrated which highlight the evolution of technology from simple waveguide antennas to spatially and temporally adjustable multiple antenna phased arrays for deep heating, conformal arrays for superficial heating, and compatible approaches for radiometric and magnetic resonance image based non-invasive thermal monitoring. Examples of heating capabilities for several recently developed applicators demonstrate highly adjustable power deposition that has not been possible in the past.
Collapse
Affiliation(s)
- P.R. Stauffer
- Duke University Radiation Oncology Department Durham NC
| | | |
Collapse
|