1
|
Morrison A, Srivatsa VM, Ghandi K. Superluminal Molecular and Nanomaterial Probes Based on Fast Ions or Electrons. Molecules 2024; 29:2903. [PMID: 38930968 PMCID: PMC11206977 DOI: 10.3390/molecules29122903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
This work reviews the progression of chemical analysis via Cherenkov emissions, i.e., Cherenkov Photometry and Cherenkov Emission Spectroscopy, from its introduction in the literature up to modern developments. In presenting the history of this field, we aim to consolidate the literature, both for reference and contextualization. We present an argument aiming to untangle why this corner of research has seen little progress while so many other directly related aspects of Cherenkov research have flourished, as well as speak to the progress of the field in recent years and prospective direction in years to come.
Collapse
Affiliation(s)
| | | | - Khashayar Ghandi
- Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (A.M.); (V.M.S.)
| |
Collapse
|
2
|
Aung W, Tsuji AB, Rikiyama K, Nishikido F, Obara S, Higashi T. Imaging assessment of photosensitizer emission induced by radionuclide-derived Cherenkov radiation using charge-coupled device optical imaging and long-pass filters. World J Radiol 2023; 15:315-323. [PMID: 38058603 PMCID: PMC10696188 DOI: 10.4329/wjr.v15.i11.315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/26/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Radionuclides produce Cherenkov radiation (CR), which can potentially activate photosensitizers (PSs) in phototherapy. Several groups have studied Cherenkov energy transfer to PSs using optical imaging; however, cost-effectively identifying whether PSs are excited by radionuclide-derived CR and detecting fluorescence emission from excited PSs remain a challenge. Many laboratories face the need for expensive dedicated equipment. AIM To cost-effectively confirm whether PSs are excited by radionuclide-derived CR and distinguish fluorescence emission from excited PSs. METHODS The absorbance and fluorescence spectra of PSs were measured using a microplate reader and fluorescence spectrometer to examine the photo-physical properties of PSs. To mitigate the need for expensive dedicated equipment and achieve the aim of the study, we developed a method that utilizes a charge-coupled device optical imaging system and appropriate long-pass filters of different wavelengths (manual sequential application of long-pass filters of 515, 580, 645, 700, 750, and 800 nm). Tetrakis (4-carboxyphenyl) porphyrin (TCPP) was utilized as a model PS. Different doses of copper-64 (64CuCl2) (4, 2, and 1 mCi) were used as CR-producing radionuclides. Imaging and data acquisition were performed 0.5 h after sample preparation. Differential image analysis was conducted by using ImageJ software (National Institutes of Health) to visually evaluate TCPP fluorescence. RESULTS The maximum absorbance of TCPP was at 390-430 nm, and the emission peak was at 670 nm. The CR and CR-induced TCPP emissions were observed using the optical imaging system and the high-transmittance long-pass filters described above. The emission spectra of TCPP with a peak in the 645-700 nm window were obtained by calculation and subtraction based on the serial signal intensity (total flux) difference between 64CuCl2 + TCPP and 64CuCl2. Moreover, the differential fluorescence images of TCPP were obtained by subtracting the 64CuCl2 image from the 64CuCl2 + TCPP image. The experimental results considering different 64CuCl2 doses showed a dose-dependent trend. These results demonstrate that a bioluminescence imaging device coupled with different long-pass filters and subtraction image processing can confirm the emission spectra and differential fluorescence images of CR-induced TCPP. CONCLUSION This simple method identifies the PS fluorescence emission generated by radionuclide-derived CR and can contribute to accelerating the development of Cherenkov energy transfer imaging and the discovery of new PSs.
Collapse
Affiliation(s)
- Winn Aung
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Atsushi B Tsuji
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Kazuaki Rikiyama
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Fumihiko Nishikido
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Satoshi Obara
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
3
|
Practical Guidance for Developing Small-Molecule Optical Probes for In Vivo Imaging. Mol Imaging Biol 2023; 25:240-264. [PMID: 36745354 DOI: 10.1007/s11307-023-01800-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 02/07/2023]
Abstract
The WMIS Education Committee (2019-2022) reached a consensus that white papers on molecular imaging could be beneficial for practitioners of molecular imaging at their early career stages and other scientists who are interested in molecular imaging. With this consensus, the committee plans to publish a series of white papers on topics related to the daily practice of molecular imaging. In this white paper, we aim to provide practical guidance that could be helpful for optical molecular imaging, particularly for small molecule probe development and validation in vitro and in vivo. The focus of this paper is preclinical animal studies with small-molecule optical probes. Near-infrared fluorescence imaging, bioluminescence imaging, chemiluminescence imaging, image-guided surgery, and Cerenkov luminescence imaging are discussed in this white paper.
Collapse
|
4
|
Lee SY, Oh HR, Kim YH, Bae SH, Lee Y, Lee YS, Lee BC, Cheon GJ, Kang KW, Youn H. Cerenkov luminescence imaging of interscapular brown adipose tissue using a TSPO-targeting PET probe in the UCP1 ThermoMouse. Am J Cancer Res 2022; 12:6380-6394. [PMID: 36168637 PMCID: PMC9475450 DOI: 10.7150/thno.74828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/20/2022] [Indexed: 11/21/2022] Open
Abstract
Rationale: [18F]fluorodeoxyglucose-positron emission tomography ([18F]FDG-PET) has been widely used as an imaging technique to measure interscapular brown adipose tissue (iBAT) activity. However, it is challenging to obtain iBAT-specific images using [18F]FDG-PET because increased uptake of [18F]FDG is observed in tumors, muscle, and inflamed tissues. Uncoupling protein 1 (UCP1) in the mitochondrial membrane, a well-known molecular marker of BAT, has been proposed as a useful BAT imaging marker. Recently, the UCP1 ThermoMouse was developed as a reporter mouse for monitoring UCP1 expression and investigating BAT activation. In addition, Translocator protein-18 kDa (TSPO) located in the outer mitochondrial membrane is also overexpressed in BAT, suggesting that TSPO-targeting PET has potential for iBAT imaging. However, there are no studies monitoring BAT using TSPO-targeting PET probes in the UCP1 ThermoMouse. Moreover, the non-invasive Cerenkov luminescence imaging (CLI) using Cerenkov radiation from the PET probe has been proposed as an alternative option for PET as it is less expensive and user-friendly. Therefore, we selected [18F]fm-PBR28-d2 as a TSPO-targeting PET probe for iBAT imaging to evaluate the usefulness of CLI in the UCP1 ThermoMouse. Methods: UCP1 ThermoMouse was used to monitor UCP1 expression. Western blotting and immunohistochemistry were performed to measure the level of protein expression. [18F]fm-PBR28-d2 and [18F]FDG were used as radioactive probes for iBAT imaging. PET images were acquired with SimPET, and optical images were acquired with IVIS 100. Results: UCP1 ThermoMouse showed that UCP1 and TSPO expressions were correlated in iBAT. In both PET and CLI, the TSPO-targeting probe [18F]fm-PBR28-d2 was superior to [18F]FDG for acquiring iBAT images. The high molar activity of the probe was essential for CLI and PET imaging. We tested the feasibility of TSPO-targeting probe under cold exposure by imaging with TSPO-PET/CLI. Both signals of iBAT were clearly increased after cold stimulation. Under prolonged isoflurane anesthesia, TSPO-targeting images showed higher signals from iBAT in the short-term than in long-term groups. Conclusion: We demonstrated that TSPO-PET/CLI reflected UCP1 expression in iBAT imaging better than [18F]FDG-PET/CLI under the various conditions. Considering convenience and cost, TSPO-CLI could be used as an alternative TSPO-PET technique for iBAT imaging.
Collapse
Affiliation(s)
- Seok-Yong Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ho Rim Oh
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young-Hwa Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hwan Bae
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yongseok Lee
- Cancer Imaging Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Imaging Center, Seoul National University Hospital, Seoul, Republic of Korea.,Radiation Medicine Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.,Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Imaging Center, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
5
|
Abstract
Malignant tumors rank as a leading cause of death worldwide. Accurate diagnosis and advanced treatment options are crucial to win battle against tumors. In recent years, Cherenkov luminescence (CL) has shown its technical advantages and clinical transformation potential in many important fields, particularly in tumor diagnosis and treatment, such as tumor detection in vivo, surgical navigation, radiotherapy, photodynamic therapy, and the evaluation of therapeutic effect. In this review, we summarize the advances in CL for tumor diagnosis and treatment. We first describe the physical principles of CL and discuss the imaging techniques used in tumor diagnosis, including CL imaging, CL endoscope, and CL tomography. Then we present a broad overview of the current status of surgical resection, radiotherapy, photodynamic therapy, and tumor microenvironment monitoring using CL. Finally, we shed light on the challenges and possible solutions for tumor diagnosis and therapy using CL.
Collapse
|
6
|
Li Y, Liu H, Huang N, Wang Z, Zhang C. The Measurement of the Surface Dose in Regular and Small Radiation Therapy Fields Using Cherenkov Imaging. Technol Cancer Res Treat 2022; 21:15330338211073432. [PMID: 35119327 PMCID: PMC8819764 DOI: 10.1177/15330338211073432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Purpose: The aim of this study is to measure the output factor (OF)
and profile of surface dose in regular and small radiation therapy fields using
Cherenkov imaging (CI). Methods: A medical linear accelerator
(linac) was employed to generate radiation fields, including regular open photon
field (ROPF), regular wedge photon field (RWPF), regular electron field (REF)
and small photon field (SPF). The photon beams consisted of two filter modes
including flattening filter (FF) and flattening filter free (FFF). All fields
were delivered to a solid water phantom. Cherenkov light was captured using a
charge-coupled device system during phantom irradiation. The OF and profile of
surface dose measured by CI were compared with those determined by film
measurement, ionization chamber measurement and treatment planning system
calculation in order to examine the feasibility of measuring surface dose OF and
profile using CI. Results: The discrepancy between surface dose OF
measured by CI and that determined by other methods is less than 6% in ROPFs
with size less than 10 × 10 cm2, REFs with size less than 10 × 10
cm2, and SPFs except for 1 × 1 cm2 field. In the flat
profile region, the discrepancy between surface dose profile measured by CI and
that determined by other methods is less than 4% in REFs and less than 3% in
ROPFs, RWPFs, and SPFs except for 1 × 1 cm2 field. The discrepancy of the
surface dose profile is in compliance with the recommendation by IAEA TRS 430
reports. The discrepancy between field width measured by CI and that determined
by film measurement is equal to or less than 2 mm, which is within the tolerance
recommend by the guidelines of linac quality assurance in regular open FF photon
fields, SPFs, and REFs with cone size of 10 × 10 cm2 in area.
Conclusion: CI can be used to quantitatively measure the OF and
profile of surface dose. It is feasible to use CI to measure the surface dose
profile and field width in regular open FF photon fields and SPFs except for
1 × 1 cm2 field.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Transient Optics and Photonics, Xi’an
Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an
710119, China
- School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
- University of Chinese Academy of Sciences, Beijing 100049,
China
| | - HongJun Liu
- State Key Laboratory of Transient Optics and Photonics, Xi’an
Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an
710119, China
- Collaborative Innovation Center of Extreme Optics, Shanxi
University, Taiyuan 030006, China
- Hongjun Liu, PhD, State Key Laboratory of
Transient Optics and Photonics, Xi’an Institute of Optics and Precision
Mechanics, Chinese Academy of Sciences, Xi’an 710119, China.
Chunmin Zhang, PhD, School of Physics,
Xi’an Jiaotong University, Xi’an 710049, China.
| | - Nan Huang
- State Key Laboratory of Transient Optics and Photonics, Xi’an
Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an
710119, China
| | - Zhaolu Wang
- State Key Laboratory of Transient Optics and Photonics, Xi’an
Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an
710119, China
| | - Chunmin Zhang
- School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
- Hongjun Liu, PhD, State Key Laboratory of
Transient Optics and Photonics, Xi’an Institute of Optics and Precision
Mechanics, Chinese Academy of Sciences, Xi’an 710119, China.
Chunmin Zhang, PhD, School of Physics,
Xi’an Jiaotong University, Xi’an 710049, China.
| |
Collapse
|
7
|
Rahman M, Bruza P, Hachadorian R, Alexander D, Cao X, Zhang R, Gladstone DJ, Pogue BW. Optimization of in vivo Cherenkov imaging dosimetry via spectral choices for ambient background lights and filtering. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210195RR. [PMID: 34643072 PMCID: PMC8510878 DOI: 10.1117/1.jbo.26.10.106003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
SIGNIFICANCE The Cherenkov emission spectrum overlaps with that of ambient room light sources. Choice of room lighting devices dramatically affects the efficient detection of Cherenkov emission during patient treatment. AIM To determine optimal room light sources allowing Cherenkov emission imaging in normally lit radiotherapy treatment delivery rooms. APPROACH A variety of commercial light sources and long-pass (LP) filters were surveyed for spectral band separation from the red to near-infrared Cherenkov light emitted by tissue. Their effects on signal-to-noise ratio (SNR), Cherenkov to background signal ratio, and image artifacts were quantified by imaging irradiated tissue equivalent phantoms with an intensified time-gated CMOS camera. RESULTS Because Cherenkov emission from tissue lies largely in the near-infrared spectrum, a controlled choice of ambient light that avoids this spectral band is ideal, along with a camera that is maximally sensitive to it. An RGB LED light source produced the best SNR out of all sources that mimic room light temperature. A 675-nm LP filter on the camera input further reduced ambient light detected (optical density > 3), achieving maximal SNR for Cherenkov emission near 40. Reduction of the room light signal reduced artifacts from specular reflection on the tissue surface and also minimized spurious Cherenkov signals from non-tissue features such as bolus. CONCLUSIONS LP filtering during image acquisition for near-infrared light in tandem with narrow band LED illuminated rooms improves image quality, trading off the loss of red wavelengths for better removal of room light in the image. This spectral filtering is also critically important to remove specular reflection in the images and allow for imaging of Cherenkov emission through clear bolus. Beyond time-gated external beam therapy systems, the spectral separation methods can be utilized for background removal for continuous treatment delivery methods including proton pencil beam scanning systems and brachytherapy.
Collapse
Affiliation(s)
- Mahbubur Rahman
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Petr Bruza
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Rachael Hachadorian
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Daniel Alexander
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Xu Cao
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Rongxiao Zhang
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Dartmouth College, Geisel School of Medicine, Department of Radiation Oncology, Hanover, New Hampshire, United States
- Dartmouth-Hitchcock Medical Center, Norris Cotton Cancer Center, Lebanon, New Hampshire, United States
| | - David J. Gladstone
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Dartmouth College, Geisel School of Medicine, Department of Radiation Oncology, Hanover, New Hampshire, United States
- Dartmouth-Hitchcock Medical Center, Norris Cotton Cancer Center, Lebanon, New Hampshire, United States
| | - Brian W. Pogue
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Dartmouth-Hitchcock Medical Center, Norris Cotton Cancer Center, Lebanon, New Hampshire, United States
- Dartmouth College, Geisel School of Medicine, Department of Surgery, Hanover, New Hampshire, United States
| |
Collapse
|
8
|
Nakanishi K, Yamamoto S. Comparison of the distributions of bremsstrahlung X-rays, Cerenkov light, and annihilation radiations for positron emitters. Appl Radiat Isot 2021; 176:109861. [PMID: 34265565 DOI: 10.1016/j.apradiso.2021.109861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 11/27/2022]
Abstract
Positron emission tomography (PET) is a powerful tool because we can acquire functional information of tissue from the images with high sensitivity and relatively high spatial resolution. However, high-spatial-resolution PET imaging for high-energy positron emitters is difficult because the positrons have a long range and annihilation radiations are emitted at the endpoints of the positrons' trajectories. Along the trajectories, Cerenkov light (CL) is also emitted in advance of the emission of annihilation radiations. Hence, CL can be used for the imaging of high-energy positron emitters. Bremsstrahlung X-rays are also emitted along the trajectories of positrons, and imaging is possible. However, the differences in the spatial distributions of these three types of radiations are not obvious. Because CL and bremsstrahlung X-rays are produced before the endpoint of the positron, high-spatial-resolution imaging may be possible for high-energy positrons. In this study, to clarify this point, we simulated the spatial distribution of CL, bremsstrahlung X-rays, and annihilation radiations using Monte Carlo simulation and compared the distributions. The distributions of the bremsstrahlung X-rays and CL were smaller than those of the annihilation radiations in case of high energy positrons, and we found that the distributions of bremsstrahlung X-rays nearly matched those of CL for high-energy positron emitters. We concluded that CL and bremsstrahlung X-ray imaging have higher spatial resolution than annihilation radiation imaging for MeV ordered positron emitters, and thus they are promising for high-spatial-resolution imaging of high-energy positron emitters such as O-15 for ion therapy and Ga-68 for PET imaging.
Collapse
Affiliation(s)
- Kouhei Nakanishi
- Department of Integrated Health Science, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Radiology, Akita Hospital, Chiryu, Japan
| | - Seiichi Yamamoto
- Department of Integrated Health Science, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
9
|
van Dam RM, Chatziioannou AF. Cerenkov Luminescence Imaging in the Development and Production of Radiopharmaceuticals. FRONTIERS IN PHYSICS 2021; 9:632056. [PMID: 36213527 PMCID: PMC9544387 DOI: 10.3389/fphy.2021.632056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Over the past several years there has been an explosion of interest in exploiting Cerenkov radiation to enable in vivo and intraoperative optical imaging of subjects injected with trace amounts of radiopharmaceuticals. At the same time, Cerenkov luminescence imaging (CLI) also has been serving as a critical tool in radiochemistry, especially for the development of novel microfluidic devices for producing radiopharmaceuticals. By enabling microfluidic processes to be monitored non-destructively in situ, CLI has made it possible to literally watch the activity distribution as the synthesis occurs, and to quantitatively measure activity propagation and losses at each step of synthesis, paving the way for significant strides forward in performance and robustness of those devices. In some cases, CLI has enabled detection and resolution of unexpected problems not observable via standard optical methods. CLI is also being used in analytical radiochemistry to increase the reliability of radio-thin layer chromatography (radio-TLC) assays. Rapid and high-resolution Cerenkov imaging of radio-TLC plates enables detection of issues in the spotting or separation process, improves chromatographic resolution (and/or allows reduced separation distance and time), and enables increased throughput by allowing multiple samples to be spotted side-by-side on a single TLC plate for parallel separation and readout. In combination with new multi-reaction microfluidic chips, this is creating a new possibility for high-throughput optimization in radiochemistry. In this mini review, we provide an overview of the role that CLI has played to date in the radiochemistry side of radiopharmaceuticals.
Collapse
Affiliation(s)
- R. Michael van Dam
- UCLA Crump Institute for Molecular Imaging, Los Angeles, CA, United States
- UCLA Department of Molecular and Medical Pharmacology, Los Angeles, CA, United States
| | - Arion F. Chatziioannou
- UCLA Crump Institute for Molecular Imaging, Los Angeles, CA, United States
- UCLA Department of Molecular and Medical Pharmacology, Los Angeles, CA, United States
| |
Collapse
|
10
|
Li Y, Liu H, Huang N, Wang Z, Zhang C. Using Cherenkov imaging to monitor the match line between photon and electron radiation therapy fields on biological tissue phantoms. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200268RR. [PMID: 33300317 PMCID: PMC7725107 DOI: 10.1117/1.jbo.25.12.125001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
SIGNIFICANCE Due to patients' respiratory movement or involuntary body movements during breast cancer radiotherapy, the mismatched adjacent fields in surface exposure regions could result in insufficient dosage or overdose in these regions, which would lead to tissue injury, excessive skin burns, and potential death. Cherenkov luminescence imaging (CLI) could be used to effectively detect the matching information of adjacent radiation fields without extra radiation or invasive imaging. AIM Our objective was to provide a biological experimental basis for monitoring matching of adjacent radiation fields between photon and electron fields due to introduced shifts during radiotherapy by CLI technique. APPROACH A medical accelerator was used to generate photon and electron fields. An industrial camera system was adopted to image the excited CLI signal during irradiation of chicken tissue with yellow (group A and group C experiments) or black color (group B experiment). The following introduced shifts were tested: 10, 5, 2, and 0 mm toward superior or inferior direction. A model was introduced to deal with matching error analysis of adjacent radiation fields due to introduced shifts with adapted plans used to treat neoplasms of the right breast with supraclavicular nodes or internal mammary lymph node. RESULTS The matching values between photon and electron fields were consistent with the tested introduced shifts during yellow chicken irradiation. In group A, average discrepancies were 0.59 ± 0.35 mm and 0.68 ± 0.37 mm for photon fields and electron fields in anterior/posterior (AP) direction, with 87% and 75% of measurement within 1 mm, respectively. In group C, average discrepancies were 0.80 ± 0.65 mm and 1.07 ± 0.57 mm for oblique photon field with gantry angles of 330 deg and 150 deg, with 66% and 65% of measurement within 1 mm, respectively. The average discrepancies were 0.44 ± 0.30 mm for electron field in the AP direction, with 94% of measurement within 1 mm. The matching error introduced by the proposed method was less than 1.5 mm for AP fields and 2 mm for oblique incidence fields. However, the field matching could not be monitored with black chicken tissue irradiation due to a weak CLI signal that could hardly be extracted from background noise in group B. CONCLUSIONS CLI is demonstrated for the quantitative monitoring of the field match line on light biological tissue phantoms and has potential for monitoring of field matching in surface tissue during breast cancer radiotherapy.
Collapse
Affiliation(s)
- Yi Li
- Chinese Academy of Sciences, Xi’an Institute of Optics and Precision Mechanics, State Key Laboratory of Transient Optics and Photonics, Xi’an, China
- Xi’an Jiaotong University, School of Physics, Xi’an, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongjun Liu
- Chinese Academy of Sciences, Xi’an Institute of Optics and Precision Mechanics, State Key Laboratory of Transient Optics and Photonics, Xi’an, China
- Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan, China
| | - Nan Huang
- Chinese Academy of Sciences, Xi’an Institute of Optics and Precision Mechanics, State Key Laboratory of Transient Optics and Photonics, Xi’an, China
| | - Zhaolu Wang
- Chinese Academy of Sciences, Xi’an Institute of Optics and Precision Mechanics, State Key Laboratory of Transient Optics and Photonics, Xi’an, China
| | - Chunmin Zhang
- Xi’an Jiaotong University, School of Physics, Xi’an, China
| |
Collapse
|
11
|
Boschi F, Spinelli AE. Nanoparticles for Cerenkov and Radioluminescent Light Enhancement for Imaging and Radiotherapy. NANOMATERIALS 2020; 10:nano10091771. [PMID: 32906838 PMCID: PMC7559269 DOI: 10.3390/nano10091771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
Cerenkov luminescence imaging and Cerenkov photodynamic therapy have been developed in recent years to exploit the Cerenkov radiation (CR) generated by radioisotopes, frequently used in Nuclear Medicine, to diagnose and fight cancer lesions. For in vivo detection, the endpoint energy of the radioisotope and, thus, the total number of the emitted Cerenkov photons, represents a very important variable and explains why, for example, 68Ga is better than 18F. However, it was also found that the scintillation process is an important mechanism for light production. Nanotechnology represents the most important field, providing nanosctructures which are able to shift the UV-blue emission into a more suitable wavelength, with reduced absorption, which is useful especially for in vivo imaging and therapy applications. Nanoparticles can be made, loaded or linked to fluorescent dyes to modify the optical properties of CR radiation. They also represent a useful platform for therapeutic agents, such as photosensitizer drugs for the production of reactive oxygen species (ROS). Generally, NPs can be spaced by CR sources; however, for in vivo imaging applications, NPs bound to or incorporating radioisotopes are the most interesting nanocomplexes thanks to their high degree of mutual colocalization and the reduced problem of false uptake detection. Moreover, the distance between the NPs and CR source is crucial for energy conversion. Here, we review the principal NPs proposed in the literature, discussing their properties and the main results obtained by the proponent experimental groups.
Collapse
Affiliation(s)
- Federico Boschi
- Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
- Correspondence:
| | - Antonello Enrico Spinelli
- Experimental Imaging Center, San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy;
| |
Collapse
|
12
|
68Ga-PSMA Cerenkov luminescence imaging in primary prostate cancer: first-in-man series. Eur J Nucl Med Mol Imaging 2020; 47:2624-2632. [PMID: 32242253 PMCID: PMC7515945 DOI: 10.1007/s00259-020-04783-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/19/2020] [Indexed: 12/24/2022]
Abstract
Purpose Currently, approximately 11–38% of prostate cancer (PCa) patients undergoing radical prostatectomy have a positive surgical margin (PSM) on histopathology. Cerenkov luminescence imaging (CLI) using 68Ga-prostate-specific membrane antigen (68Ga-PSMA) is a novel technique for intraoperative margin assessment. The aim of this first-in-man study was to investigate the feasibility of intraoperative 68Ga-PSMA CLI. In this study, feasibility was defined as the ability to distinguish between a positive and negative surgical margin, imaging within 45 min and low radiation exposure to staff. Methods Six patients were included in this ongoing study. Following perioperative i.v. injection of ~ 100 MBq 68Ga-PSMA, the prostate was excised and immediately imaged ex vivo. Different acquisition protocols were tested, and hotspots on CLI images from the intact prostate were marked for comparison with histopathology. Results By using an acquisition protocol with 150 s exposure time, 8 × 8 binning and a 550 nm shortpass filter, PSMs and negative surgical margins (NSMs) were visually correctly identified on CLI in 3 of the 5 patients. Two patients had a hotspot on CLI from cancer < 0.1 mm from the excision margin. Conclusion Overall, the study showed that 68Ga-PSMA CLI is a feasible and low-risk technique for intraoperative margin assessment in PCa. The remaining patients in this ongoing study will be used to assess the diagnostic accuracy of the technique. Trial registration: NL8256 registered at www.trialregister.nl on 04/11/20109.
Collapse
|
13
|
Genovese D, Petrizza L, Prodi L, Rampazzo E, De Sanctis F, Spinelli AE, Boschi F, Zaccheroni N. Tandem Dye-Doped Nanoparticles for NIR Imaging via Cerenkov Resonance Energy Transfer. Front Chem 2020; 8:71. [PMID: 32175305 PMCID: PMC7056810 DOI: 10.3389/fchem.2020.00071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/22/2020] [Indexed: 11/13/2022] Open
Abstract
The detection of the Cerenkov radiation (CR) is an emerging preclinical imaging technique which allows monitoring the in vivo distribution of radionuclides. Among its possible advantages, the most interesting is the simplicity and cost of the required instrumentation compared, e.g., to that required for PET scans. On the other hand, one of its main drawbacks is related to the fact that CR, presenting the most intense component in the UV-vis region, has a very low penetration in biological tissues. To address this issue, we present here multifluorophoric silica nanoparticles properly designed to efficiently absorb the CR radiation and to have a quite high fluorescence quantum yield (0.12) at 826 nm. Thanks to a highly efficient series of energy transfer processes, each nanoparticle can convert part of the CR into NIR light, increasing its detection even under 1.0-cm thickness of muscle.
Collapse
Affiliation(s)
- Damiano Genovese
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna, Italy
| | - Luca Petrizza
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna, Italy
| | - Luca Prodi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna, Italy
| | - Enrico Rampazzo
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna, Italy
| | - Francesco De Sanctis
- Immunologic Section, Department of Medicine, Policlinico G.B. Rossi, Verona, Italy
| | | | - Federico Boschi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Nelsi Zaccheroni
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna, Italy
| |
Collapse
|
14
|
High-throughput radio-TLC analysis. Nucl Med Biol 2019; 82-83:41-48. [PMID: 31891883 DOI: 10.1016/j.nucmedbio.2019.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/04/2019] [Accepted: 12/12/2019] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Radio thin layer chromatography (radio-TLC) is commonly used to analyze purity of radiopharmaceuticals or to determine the reaction conversion when optimizing radiosynthesis processes. In applications where there are few radioactive species, radio-TLC is preferred over radio-high-performance liquid chromatography due to its simplicity and relatively quick analysis time. However, with current radio-TLC methods, it remains cumbersome to analyze a large number of samples during reaction optimization. In a couple of studies, Cerenkov luminescence imaging (CLI) has been used for reading radio-TLC plates spotted with a variety of isotopes. We show that this approach can be extended to develop a high-throughput approach for radio-TLC analysis of many samples. METHODS The high-throughput radio-TLC analysis was carried out by performing parallel development of multiple radioactive samples spotted on a single TLC plate, followed by simultaneous readout of the separated samples using Cerenkov imaging. Using custom-written MATLAB software, images were processed and regions of interest (ROIs) were drawn to enclose the radioactive regions/spots. For each sample, the proportion of integrated signal in each ROI was computed. Various crude samples of [18F]fallypride, [18F]FET and [177Lu]Lu-PSMA-617 were prepared for demonstration of this new method. RESULTS Benefiting from a parallel developing process and high resolution of CLI-based readout, total analysis time for eight [18F]fallypride samples was 7.5 min (2.5 min for parallel developing, 5 min for parallel readout), which was significantly shorter than the 48 min needed using conventional approaches (24 min for sequential developing, 24 min for sequential readout on a radio-TLC scanner). The greater separation resolution of CLI enabled the discovery of a low-abundance side product from a crude [18F]FET sample that was not discernable using the radio-TLC scanner. Using the CLI-based readout method, we also observed that high labeling efficiency (99%) of [177Lu]Lu-PSMA-617 can be achieved in just 10 min, rather than the typical 30 min timeframe used. CONCLUSIONS Cerenkov imaging in combination with parallel developing of multiple samples on a single TLC plate proved to be a practical method for rapid, high-throughput radio-TLC analysis.
Collapse
|
15
|
Removal of random-valued impulse noise from Cerenkov luminescence images. Med Biol Eng Comput 2019; 58:131-141. [PMID: 31754979 DOI: 10.1007/s11517-019-02069-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/05/2019] [Indexed: 10/25/2022]
Abstract
Cerenkov luminescence imaging(CLI) is an emerging molecular imaging technology able to optically visualize radioactive decay signals from medical isotopes and has found wide application in tumor diagnose, cancer therapy, drug development, intraoperative guidance, and so on. When Cerenkov luminescence data are collected, the high-energy particles from the radioactive nucleus will be detected by the sensitive CCD camera and lead to impulse noise. To suppress the impulse noise and improve the contrast of the useful signal to the background, the detection-based fuzzy switching median filtering framework is proposed in this paper. Several experiments were conducted respectively to investigate the statistical feature of the noise and to evaluate the performance of the proposed noise removal framework. The results show that the signal-to-noise ratio is improved after noise elimination. The proposed filtering framework outperforms the classical median filter in terms of root mean squared error and the structural similarity index. It also preserves the maximum value and the mean value in the regions of interest better than the median filter does. In addition, compared with the FLICMCDD algorithm, the proposed method works much faster while getting similar results. Graphical abstract.
Collapse
|
16
|
Olde Heuvel J, de Wit-van der Veen BJ, Vyas KN, Tuch DS, Grootendorst MR, Stokkel MPM, Slump CH. Performance evaluation of Cerenkov luminescence imaging: a comparison of 68Ga with 18F. EJNMMI Phys 2019; 6:17. [PMID: 31650365 PMCID: PMC6813407 DOI: 10.1186/s40658-019-0255-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/27/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cerenkov Luminescence Imaging (CLI) is an emerging technology for intraoperative margin assessment. Previous research only evaluated radionuclide 18-Fluorine (18F); however, for future applications in prostate cancer, 68-Gallium (68Ga) seems more suitable, given its higher positron energy. Theoretical calculations predict that 68Ga should offer a higher signal-to-noise ratio than 18F; this is the first experimental confirmation. The aim of this study is to investigate the technical performance of CLI by comparing 68Ga to 18F. RESULTS The linearity of the system, detection limit, spatial resolution, and uniformity were determined with the LightPath imaging system. All experiments were conducted with clinically relevant activity levels in vitro, using dedicated phantoms. For both radionuclides, a linear relationship between the activity concentration and detected light yield was observed (R2 = 0.99). 68Ga showed approximately 22 times more detectable Cerenkov signal compared to 18F. The detectable activity concentration after a 120 s exposure time and 2 × 2 binning of 18F was 23.7 kBq/mL and 1.2 kBq/mL for 68Ga. The spatial resolution was 1.31 mm for 18F and 1.40 mm for 68Ga. The coefficient of variance of the uniformity phantom was 0.07 for the central field of view. CONCLUSION 68Ga was superior over 18F in terms of light yield and minimal detection limit. However, as could be expected, the resolution was 0.1 mm less for 68Ga. Given the clinical constraints of an acquisition time less than 120 s and a spatial resolution < 2 mm, CLI for intraoperative margin assessment using 68Ga could be feasible.
Collapse
Affiliation(s)
- J Olde Heuvel
- Department of Nuclear Medicine, Netherlands Cancer Institute, Amsterdam, The Netherlands. .,Robotics and Mechatronics , Technical Medical Centre, University of Twente, Enschede, The Netherlands.
| | | | - K N Vyas
- Lightpoint Medical Ltd, Misbourne Works, Waterside, Chesham, HP5 1PE, UK
| | - D S Tuch
- Lightpoint Medical Ltd, Misbourne Works, Waterside, Chesham, HP5 1PE, UK
| | - M R Grootendorst
- Lightpoint Medical Ltd, Misbourne Works, Waterside, Chesham, HP5 1PE, UK
| | - M P M Stokkel
- Department of Nuclear Medicine, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - C H Slump
- Robotics and Mechatronics , Technical Medical Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
17
|
Ferreira CA, Ni D, Rosenkrans ZT, Cai W. Radionuclide-Activated Nanomaterials and Their Biomedical Applications. Angew Chem Int Ed Engl 2019; 58:13232-13252. [PMID: 30779286 PMCID: PMC6698437 DOI: 10.1002/anie.201900594] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Indexed: 02/06/2023]
Abstract
Radio-nanomedicine, or the use of radiolabeled nanoparticles in nuclear medicine, has attracted much attention in the last few decades. Since the discovery of Cerenkov radiation and its employment in Cerenkov luminescence imaging, the combination of nanomaterials and Cerenkov radiation emitters has been revolutionizing the way nanomaterials are perceived in the field: from simple inert carriers of radioactivity to activatable nanomaterials for both diagnostic and therapeutic applications. Herein, we provide a comprehensive review on the types of nanomaterials that have been used to interact with Cerenkov radiation and the gamma and beta scintillation of radionuclides, as well as on their biological applications.
Collapse
Affiliation(s)
- Carolina A. Ferreira
- Departments of Radiology, Biomedical Engineering, and Medical Physics, University of Wisconsin – Madison, Madison, Wisconsin 53705, United States
| | - Dalong Ni
- Departments of Radiology, Biomedical Engineering, and Medical Physics, University of Wisconsin – Madison, Madison, Wisconsin 53705, United States
| | - Zachary T. Rosenkrans
- Departments of Radiology, Biomedical Engineering, and Medical Physics, University of Wisconsin – Madison, Madison, Wisconsin 53705, United States
| | - Weibo Cai
- Departments of Radiology, Biomedical Engineering, and Medical Physics, University of Wisconsin – Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
18
|
Boschi F, Basso PR, Corridori I, Durando G, Sandri A, Segalla G, Raspanti M, Spinelli AE. Weak biophoton emission after laser surgery application in soft tissues: Analysis of the optical features. JOURNAL OF BIOPHOTONICS 2019; 12:e201800260. [PMID: 31095886 DOI: 10.1002/jbio.201800260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 04/05/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Nowadays, laser scalpels are commonly used in surgery, replacing the traditional surgical scalpels for several applications involving cutting or ablating living biological tissue. Laser scalpels are generally used to concentrate light energy in a very small-sized area; light energy is then converted in heat by the tissues. In other cases, the fiber glass tip of the laser scalpel is heated to high temperature and used to cut the tissues. Depending on the temperature reached in the irradiated area, different effects are visible in the tissues. In this study, we report the discovery and characterization of the light emitted by soft mammalian biological tissues from seconds to hours after laser surgery application. A laser diode (with hot fiber glass tip) working at 808 nm and commercially available for medical and dentistry applications was used. The irradiated tissues (red meat, chicken breast and fat) showed light emission in the visible range, well detectable with a commercial charge coupled device (CCD) camera. The time decay of the light emission, the laser power effects and the spectral features in the range 500 to 840 nm in the different tissues are here reported.
Collapse
Affiliation(s)
- Federico Boschi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Petra R Basso
- Department of Medicine and Surgery, Insubria University, Varese, Italy
| | - Ilaria Corridori
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | | | - Angela Sandri
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Gabriel Segalla
- OROTIG S.r.l., Via XXV Aprile 47, Cavalcaselle del Garda VR, Italy
| | - Mario Raspanti
- Department of Medicine and Surgery, Insubria University, Varese, Italy
| | | |
Collapse
|
19
|
Ferreira CA, Ni D, Rosenkrans ZT, Cai W. Radionuklidaktivierte Nanomaterialien und ihre biomedizinische Anwendung. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Carolina A. Ferreira
- Departments of Radiology, Biomedical Engineering, and Medical PhysicsUniversity of Wisconsin – Madison Madison Wisconsin 53705 USA
| | - Dalong Ni
- Departments of Radiology, Biomedical Engineering, and Medical PhysicsUniversity of Wisconsin – Madison Madison Wisconsin 53705 USA
| | - Zachary T. Rosenkrans
- Departments of Radiology, Biomedical Engineering, and Medical PhysicsUniversity of Wisconsin – Madison Madison Wisconsin 53705 USA
| | - Weibo Cai
- Departments of Radiology, Biomedical Engineering, and Medical PhysicsUniversity of Wisconsin – Madison Madison Wisconsin 53705 USA
| |
Collapse
|
20
|
Jiménez-Mancilla NP, Isaac-Olivé K, Torres-García E, Camacho-López MA, Ramírez-Nava GJ, Mendoza-Nava HJ. Theoretical and experimental characterization of emission and transmission spectra of Cerenkov radiation generated by 177Lu in tissue. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-10. [PMID: 31313539 PMCID: PMC6995956 DOI: 10.1117/1.jbo.24.7.076002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/20/2019] [Indexed: 05/11/2023]
Abstract
Cerenkov radiation (CR) is the emission of UV-vis light generated by the de-excitation of the molecules in the medium, after being polarized by an excited particle traveling faster than the speed of light. When β particles travel through tissue with energies greater than 219 keV, CR occurs. Tissues possess a spectral optical window of 600 to 1100 nm. The CR within this range can be useful for quantitative preclinical studies using optical imaging and for the in-vivo evaluation of Lu177-radiopharmaceuticals (β-particle emitters). The objective of our research was to determine the experimental emission light spectrum of Lu177-CR and evaluate its transmission properties in tissue as well as the feasibility to applying CR imaging in the preclinical studies of Lu177-radiopharmaceuticals. The theoretical and experimental characterizations of the emission and transmission spectra of Lu177-CR in tissue, in the vis-NIR region (350 to 900 nm), were performed using Monte Carlo simulation and UV-vis spectroscopy. Mice Lu177-CR images were acquired using a charge-coupled detector camera and were quantitatively analyzed. The results demonstrated good agreement between the theoretical and the experimental Lu177-CR emission spectra. Preclinical CR imaging demonstrated that the biokinetics of Lu177-radiopharmaceuticals in the main organs of mice can be acquired.
Collapse
Affiliation(s)
- Nallely P. Jiménez-Mancilla
- CONACyT, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México, Mexico
- Address all correspondence to Nallely P. Jiménez-Mancilla, E-mail:
| | - Keila Isaac-Olivé
- Universidad Autónoma del Estado de México, Facultad de Medicina, Laboratorio de Fotomedicina, Biofotónica y Espectroscopía Láser de Pulsos Ultracortos, Toluca, Estado de México, Mexico
| | - Eugenio Torres-García
- Universidad Autónoma del Estado de México, Facultad de Medicina, Laboratorio de Simulación Monte Carlo y Dosimetría, Toluca, Estado de México, Mexico
| | - Miguel A. Camacho-López
- Universidad Autónoma del Estado de México, Facultad de Medicina, Laboratorio de Fotomedicina, Biofotónica y Espectroscopía Láser de Pulsos Ultracortos, Toluca, Estado de México, Mexico
| | | | | |
Collapse
|
21
|
Geng C, Ai Y, Tang X, Shu D, Gong C, Guan F. A Monte Carlo study of pinhole collimated Cerenkov luminescence imaging integrated with radionuclide treatment. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2019; 42:481-487. [PMID: 30830649 DOI: 10.1007/s13246-019-00744-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/26/2019] [Indexed: 12/20/2022]
Abstract
Cerenkov luminescence imaging (CLI) is an emerging optical imaging technique, which has been widely investigated for biological imaging. In this study, we proposed to integrate the CLI technique with the radionuclide treatment as a "see-and-treat" approach, and evaluated the performance of the pinhole collimator-based CLI technique. The detection of Cerenkov luminescence during radionuclide therapy was simulated using the Monte Carlo technique for breast cancer treatment as an example. Our results show that with the pinhole collimator-based configuration, the location, size and shape of the tumors can be clearly visualized on the Cerenkov luminescence images of the breast phantom. In addition, the CLI of multiple tumors can reflect the relative density of radioactivity among tumors, indicating that the intensity of Cerenkov luminescence is independent of the size and shape of a tumor. The current study has demonstrated the high-quality performance of the pinhole collimator-based CLI in breast tumor imaging for the "see-and-treat" multi-modality treatment.
Collapse
Affiliation(s)
- Changran Geng
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Nanjing, 210016, China
| | - Yao Ai
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Nanjing, 210016, China
| | - Xiaobin Tang
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Nanjing, 210016, China.
| | - Diyun Shu
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Nanjing, 210016, China
| | - Chunhui Gong
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Nanjing, 210016, China
| | - Fada Guan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
22
|
Komarov S, Liu Y, Tai YC. Cherenkov luminescence imaging of shallow sources in semitransparent media. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-9. [PMID: 30724042 PMCID: PMC6988091 DOI: 10.1117/1.jbo.24.2.026001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
We experimentally investigated the Cherenkov luminescence imaging (CLI) of the isotopes with different beta particles energies (Cu64, F18, Au198, P32, and Br76) in semitransparent biological equivalent media. The main focus of this work is to characterize the CLI when the sources are at the depth comparable with the range of beta particles. The experimental results were compared with Monte Carlo (MC) simulation results to fine tune the simulation parameters to better model the phantom materials. This approach can be applied to estimate the CLI performance for different phantom materials and isotopes. This work also demonstrates some unique properties of high energy beta particles that can be beneficial for CLI, including the possibility to utilize the betas escaped from the object for imaging purposes.
Collapse
Affiliation(s)
- Sergey Komarov
- Washington University in St. Louis, Department of Radiology, St. Louis, Missouri, United States
| | - Yongjian Liu
- Washington University in St. Louis, Department of Radiology, St. Louis, Missouri, United States
| | - Yuan-Chuan Tai
- Washington University in St. Louis, Department of Radiology, St. Louis, Missouri, United States
| |
Collapse
|
23
|
Zhang Z, Cai M, Bao C, Hu Z, Tian J. Endoscopic Cerenkov luminescence imaging and image-guided tumor resection on hepatocellular carcinoma-bearing mouse models. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:62-70. [PMID: 30654183 DOI: 10.1016/j.nano.2018.12.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/16/2018] [Accepted: 12/26/2018] [Indexed: 02/07/2023]
Abstract
Detecting deep tumors inside living subject is still challenging for Cerenkov luminescence imaging (CLI). In this study, a high-sensitivity endoscopic CLI (ECLI) system was developed with a dual-mode deep cooling approach to improve the imaging sensitivity. System was characterized through a series of ex vivo studies. Furthermore, subcutaneous and orthotropic human hepatocellular carcinoma (HCC) mouse models were established for ECLI guided tumor resection in vivo. The results showed that the ECLI system had spatial resolution (62.5 μm) and imaging sensitivity (6.29 × 10-2 kBq/μl 18F-FDG). The in vivo experimental data from the HCC mouse models demonstrated that the system was effective to intraoperatively guide the surgery of deep tumors such as liver cancer. Overall, the developed system exhibits promising potential for the applications of tumor precise resection and novel nanoprobe based optical imaging.
Collapse
Affiliation(s)
- Zeyu Zhang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Meishan Cai
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chengpeng Bao
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Jie Tian
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
24
|
Habte F, Natarajan A, Paik DS, Gambhir SS. Quantification of Cerenkov Luminescence Imaging (CLI) Comparable With 3-D PET Standard Measurements. Mol Imaging 2018; 17:1536012118788637. [PMID: 30043654 PMCID: PMC6077879 DOI: 10.1177/1536012118788637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cerenkov luminescence imaging (CLI) is commonly performed using two-dimensional (2-D) conventional optical imaging systems for its cost-effective solution. However, quantification of CLI comparable to conventional three-dimensional positron emission tomography (PET) is challenging using these systems due to both the high attenuation of Cerenkov radiation (CR) on mouse tissue and nonexisting depth resolution of CLI using 2-D imaging systems (2-D CLI). In this study, we developed a model that estimates effective tissue attenuation coefficient and corrects the tissue attenuation of CLI signal intensity independent of tissue depth and size. To evaluate this model, we used several thin slices of ham as a phantom and placed a radionuclide (89Zr and 64Cu) inside the phantom at different tissue depths and sizes (2, 7, and 12 mm). We performed 2-D CLI and MicroPET/CT (Combined small animal PET and Computed Tomography (CT)) imaging of the phantom and in vivo mouse model after administration of 89Zr tracer. Estimates of the effective tissue attenuation coefficient (μeff) for 89Zr and 64Cu were ∼2.4 and ∼2.6 cm−1, respectively. The computed unit conversion factor to %ID/g from 2-D CLI signal was 2.74 × 10−3 μCi/radiance estimated from phantom study. After applying tissue attenuation correction and unit conversion to the in vivo animal study, an average quantification difference of 10% for spleen and 35% for liver was obtained compared to PET measurements. The proposed model provides comparable quantification accuracy to standard PET system independent of deep tissue CLI signal attenuation.
Collapse
Affiliation(s)
- Frezghi Habte
- 1 Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Arutselvan Natarajan
- 1 Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - David S Paik
- 1 Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Sanjiv Sam Gambhir
- 1 Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
25
|
Boschi F, De Sanctis F, Ugel S, Spinelli AE. T-cell tracking using Cerenkov and radioluminescence imaging. JOURNAL OF BIOPHOTONICS 2018; 11:e201800093. [PMID: 29770603 DOI: 10.1002/jbio.201800093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
Cancer immunotherapy is a promising strategy based on the ability of the immune system to kill selected cells. In the development of an effective T-cell therapy, the noninvasive cell tracking methods play a crucial role. Here, we investigate the potentialities of T-cell marked with radionuclides in order to detect their localization with imaging techniques in small animal rodents. A protocol to label T-cells with 32 P-ATP was tested and evaluated. The homing of 32 P-ATP labeled T lymphocytes was investigated by Cerenkov luminescence imaging (CLI) and radioluminescence imaging (RLI). The first approach relies on the acquisition of Cerenkov photons produced by the beta particles emitted by the 32 P internalized by lymphocytes; the second one on the detection of photons coming from the conversion of radioactive energy in light done by scintillator crystals layered on the animals. The results show that T-cell biodistribution can be optically observed by both CLI and RLI in small animal rodents in in vivo and ex vivo acquisitions. T-cell localization in the tumor mass was definitively confirmed by flow cytometry.
Collapse
Affiliation(s)
- Federico Boschi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Francesco De Sanctis
- Department of Medicine, Immunology Section, Policlinico G.B. Rossi, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, Immunology Section, Policlinico G.B. Rossi, Verona, Italy
| | | |
Collapse
|
26
|
Pogue BW, Wilson BC. Optical and x-ray technology synergies enabling diagnostic and therapeutic applications in medicine. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-17. [PMID: 30350489 PMCID: PMC6197862 DOI: 10.1117/1.jbo.23.12.121610] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/24/2018] [Indexed: 05/10/2023]
Abstract
X-ray and optical technologies are the two central pillars for human imaging and therapy. The strengths of x-rays are deep tissue penetration, effective cytotoxicity, and the ability to image with robust projection and computed-tomography methods. The major limitations of x-ray use are the lack of molecular specificity and the carcinogenic risk. In comparison, optical interactions with tissue are strongly scatter dominated, leading to limited tissue penetration, making imaging and therapy largely restricted to superficial or endoscopically directed tissues. However, optical photon energies are comparable with molecular energy levels, thereby providing the strength of intrinsic molecular specificity. Additionally, optical technologies are highly advanced and diversified, being ubiquitously used throughout medicine as the single largest technology sector. Both have dominant spatial localization value, achieved with optical surface scanning or x-ray internal visualization, where one often is used with the other. Therapeutic delivery can also be enhanced by their synergy, where radio-optical and optical-radio interactions can inform about dose or amplify the clinical therapeutic value. An emerging trend is the integration of nanoparticles to serve as molecular intermediates or energy transducers for imaging and therapy, requiring careful design for the interaction either by scintillation or Cherenkov light, and the nanoscale design is impacted by the choices of optical interaction mechanism. The enhancement of optical molecular sensing or sensitization of tissue using x-rays as the energy source is an important emerging field combining x-ray tissue penetration in radiation oncology with the molecular specificity and packaging of optical probes or molecular localization. The ways in which x-rays can enable optical procedures, or optics can enable x-ray procedures, provide a range of new opportunities in both diagnostic and therapeutic medicine. Taken together, these two technologies form the basis for the vast majority of diagnostics and therapeutics in use in clinical medicine.
Collapse
Affiliation(s)
- Brian W. Pogue
- Dartmouth College, Thayer School of Engineering, Geisel School of Medicine, Hanover, New Hampshire, United States
| | - Brian C. Wilson
- University of Toronto, Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Ciarrocchi E, Vanhove C, Descamps B, De Lombaerde S, Vandenberghe S, Belcari N. Performance evaluation of the LightPath imaging system for intra-operative Cerenkov luminescence imaging. Phys Med 2018; 52:122-128. [PMID: 30139600 DOI: 10.1016/j.ejmp.2018.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 01/17/2023] Open
Abstract
The performances of an intra-operative optical imaging system for Cerenkov luminescence imaging of resected tumor specimens were evaluated with phantom studies. The spatial resolution, the linearity of the measured signal with the activity concentration and the minimum detectable activity concentration were considered. A high linearity was observed over a broad range of activity concentration (R2⩾0.99 down to ∼40 kBq/ml of 18F-FDG). For 18F-FDG activity distributions 2 mm deep in biological tissue, the measured detection limit was 8 kBq/ml and a spatial resolution of 2.5 mm was obtained. The detection limit of the imaging system is comparable with clinical activity concentrations in tumor specimens, and the spatial resolution is compatible with clinical requirements.
Collapse
Affiliation(s)
- Esther Ciarrocchi
- University of Pisa, Department of Physics, Largo Bruno Pontecorvo 3, Pisa 56127, Italy.
| | - Christian Vanhove
- University of Ghent, IBiTech-MEDISIP, C. Heymanslaan 10, Ghent B-9000, Belgium.
| | - Benedicte Descamps
- University of Ghent, IBiTech-MEDISIP, C. Heymanslaan 10, Ghent B-9000, Belgium.
| | - Stef De Lombaerde
- University of Ghent, Faculty of Pharmaceutical Sciences Laboratory of Radiopharmacy, Ottergemsesteenweg 460, Ghent B-9000, Belgium.
| | | | - Nicola Belcari
- University of Pisa, Department of Physics, Largo Bruno Pontecorvo 3, Pisa 56127, Italy.
| |
Collapse
|
28
|
Zhang X, Zhu S, Li Y, Zhan Y, Chen X, Kang F, Wang J, Cao X. Gamma rays excited radioluminescence tomographic imaging. Biomed Eng Online 2018; 17:45. [PMID: 29690883 PMCID: PMC5916826 DOI: 10.1186/s12938-018-0480-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/18/2018] [Indexed: 11/26/2022] Open
Abstract
Background Radionuclide-excited luminescence imaging is an optical radionuclide imaging strategy to reveal the distributions of radioluminescent nanophosphors (RLNPs) inside small animals, which uses radioluminescence emitted from RLNPs when excited by high energy rays such as gamma rays generated during the decay of radiotracers used in clinical nuclear medicine imaging. Currently, there is no report of tomographic imaging based on radioluminescence. Methods In this paper, we proposed a gamma rays excited radioluminescence tomography (GRLT) to reveal three-dimensional distributions of RLNPs inside a small animal using radioluminescence through image reconstruction from surface measurements of radioluminescent photons using an inverse algorithm. The diffusion equation was employed to model propagations of radioluminescent photons in biological tissues with highly scattering and low absorption characteristics. Results Phantom and artificial source-implanted mouse model experiments were employed to test the feasibility of GRLT, and the results demonstrated that the ability of GRLT to reveal the distribution of RLNPs such as Gd2O2S:Tb using the radioluminescent signals when excited by gamma rays produced from 99mTc. Conclusions With the emerging of targeted RLNPs, GRLT can provide new possibilities for in vivo and noninvasive examination of biological processes at cellular levels. Especially, combining with Cerenkov luminescence imaging, GRLT can achieve dual molecular information of RLNPs and nuclides using single optical imaging technology.
Collapse
Affiliation(s)
- Xuanxuan Zhang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Shouping Zhu
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Yang Li
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Yonghua Zhan
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xu Cao
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China.
| |
Collapse
|
29
|
LaRochelle EPM, Shell JR, Gunn JR, Davis SC, Pogue BW. Signal intensity analysis and optimization for in vivo imaging of Cherenkov and excited luminescence. Phys Med Biol 2018; 63:085019. [PMID: 29558363 DOI: 10.1088/1361-6560/aab83b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During external beam radiotherapy (EBRT), in vivo Cherenkov optical emissions can be used as a dosimetry tool or to excite luminescence, termed Cherenkov-excited luminescence (CEL) with microsecond-level time-gated cameras. The goal of this work was to develop a complete theoretical foundation for the detectable signal strength, in order to provide guidance on optimization of the limits of detection and how to optimize near real time imaging. The key parameters affecting photon production, propagation and detection were considered and experimental validation with both tissue phantoms and a murine model are shown. Both the theoretical analysis and experimental data indicate that the detection level is near a single photon-per-pixel for the detection geometry and frame rates commonly used, with the strongest factor being the signal decrease with the square of distance from tissue to camera. Experimental data demonstrates how the SNR improves with increasing integration time, but only up to the point where the dominance of camera read noise is overcome by stray photon noise that cannot be suppressed. For the current camera in a fixed geometry, the signal to background ratio limits the detection of light signals, and the observed in vivo Cherenkov emission is on the order of 100× stronger than CEL signals. As a result, imaging signals from depths <15 mm is reasonable for Cherenkov light, and depths <3 mm is reasonable for CEL imaging. The current investigation modeled Cherenkov and CEL imaging of two oxygen sensing phosphorescent compounds, but the modularity of the code allows for easy comparison of different agents or alternative cameras, geometries or tissues.
Collapse
Affiliation(s)
- Ethan P M LaRochelle
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | | | | | | | | |
Collapse
|
30
|
Boschi F, De Sanctis F, Spinelli AE. Optical emission of 223 Radium: in vitro and in vivo preclinical applications. JOURNAL OF BIOPHOTONICS 2018; 11:e201700209. [PMID: 29055100 DOI: 10.1002/jbio.201700209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/05/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
223 Radium (223 Ra) is widely used in nuclear medicine to treat patients with osseous metastatic prostate cancer. In clinical practice 223 Ra cannot be imaged directly; however, gamma photons produced by its short-lived daughter nuclides can be captured by conventional gamma cameras. In this work, we show that 223 Ra and its short-lived daughter nuclides can be detected with optical imaging techniques. The light emission of 223 Ra was investigated in vitro using different setups in order to clarify the mechanism of light production. The results demonstrate that the luminescence of the 223 Ra chloride solution, usually employed in clinical treatments, is compatible with Cerenkov luminescence having an emission spectrum that is almost indistinguishable from CR one. This study proves that luminescence imaging can be successfully employed to detect 223 Ra in vivo in mice by imaging whole body 223 Ra biodistribution and more precisely its uptake in bones.
Collapse
Affiliation(s)
- Federico Boschi
- Department of Computer Science, University of Verona, Verona, Italy
| | | | | |
Collapse
|
31
|
Spinelli AE, Durando G, Boschi F. Weak light emission of soft tissues induced by heating. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-5. [PMID: 29651823 DOI: 10.1117/1.jbo.23.4.046003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
The main goal of this work is to show that soft tissue interaction with high-intensity focused ultrasound (HIFU) or direct heating leads to a weak light emission detectable using a small animal optical imaging system. Our results show that the luminescence signal is detectable after 30 min of heating, resembling the time scale of delayed luminescence. The imaging of a soft tissue after heating it using an HIFU field shows that the luminescence pattern closely matches the shape of the cone typical of the HIFU beam. We conclude that heating a soft tissue using two different sources leads to the emission of a weak luminescence signal from the heated region with a decay half-life of a few minutes (4 to 6 min). The origin of such light emission needs to be further investigated.
Collapse
Affiliation(s)
| | - Giovanni Durando
- Istituto Nazionale di Ricerca Metrologica, Ultrasound Laboratory, Torino, Italy
| | - Federico Boschi
- University of Verona, Department of Computer Science, Verona, Italy
| |
Collapse
|
32
|
Ackerman NL, Boschi F, Spinelli AE. Radioluminescence from Tc-99m in glass predicts local dose. Phys Med 2017; 42:112-115. [DOI: 10.1016/j.ejmp.2017.09.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/19/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022] Open
|
33
|
Galiè M, Boschi F, Scambi I, Merigo F, Marzola P, Altabella L, Lavagnolo U, Sbarbati A, Spinelli AE. Theranostic Role of 32P-ATP as Radiopharmaceutical for the Induction of Massive Cell Death within Avascular Tumor Core. Theranostics 2017; 7:4399-4409. [PMID: 29158835 PMCID: PMC5695139 DOI: 10.7150/thno.21403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/01/2017] [Indexed: 01/04/2023] Open
Abstract
Drug inaccessibility to vast areas of the tumor parenchyma is amongst the major hurdles for conventional therapies. Treatment efficacy rapidly decreases with distance from vessels and most of the tumor cells survive therapy. Also, between subsequent cycles of treatment, spared cancer cells replace those killed near the vessels, improving their access to nutrients, boosting their proliferation rate, and thus enabling tumor repopulation. Because of their property of "acting at a distance," radioisotopes are believed to overcome the physical barrier of vascular inaccessibility. Methods A novel molecular imaging tool called Cerenkov Luminescence Imaging (CLI) was employed for the detection of Cerenkov radiation emitted by beta particles, allowing in vivo tracking of beta-emitters. More precisely we investigated using a xenograft model of colon carcinoma the potential use of 32P-ATP as a novel theranostic radiopharmaceutical for tracing tumor lesions while simultaneously hampering their growth. Results Our analyses demonstrated that 32P-ATP injected into tumor-bearing mice reaches tumor lesions and persists for days and weeks within the tumor parenchyma. Also, the high-penetrating beta particles of 32P-ATP exert a "cross-fire" effect that induces massive cell death throughout the entire tumor parenchyma including core regions. Conclusion Our findings suggest 32P-ATP treatment as a potential approach to complement conventional therapies that fail to reach the tumor core and to prevent tumor repopulation.
Collapse
|
34
|
Hybrid Light Imaging Using Cerenkov Luminescence and Liquid Scintillation for Preclinical Optical Imaging In Vivo. Mol Imaging Biol 2017; 18:500-9. [PMID: 26819217 DOI: 10.1007/s11307-016-0928-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE Cerenkov luminescence imaging (CLI) has recently emerged as a molecular imaging modality for radionuclides emitting β-particles. The aim of this study was to develop a hybrid light imaging (HLI) technique using a liquid scintillator to assist CLI by increasing the optical signal intensity from both β-particle and γ-ray emitting radionuclides located at deep regions in vivo. PROCEDURES A commercial optical imaging system was employed to collect all images by HLI and CLI. To investigate the performance characteristics of HLI with a commercially available liquid scintillator (Emulsifier-safe), phantom experiments were conducted for two typical β-particle and γ-ray emitters, sodium iodide (Na[(131)I]I) and 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG), respectively. To evaluate the feasibility of HLI for in vivo imaging, HLI was applied to a Na[(131)I]I injected nu/nu mouse and an [(18)F]FDG injected Balb-c mouse and compared with CLI alone. RESULTS Measured HLI wavelength spectra with Emulsifier-safe showed higher signal intensities than for CLI at 500-600 nm. For material preventing light transmission of 12-mm thickness, CLI imaging provided quite low intensity and obscure signals of the source. However, despite degraded spatial resolution, HLI imaging provided sustained visualization of the source shape, with signal intensities 10-14 times higher than for CLI at 10-mm thickness. Furthermore, at 0, 4, and 8-mm material thicknesses, HLI showed a strong correlation between Na[(131)I]I or [(18)F]FDG radioactivity and signal intensity, as for CLI. In vivo studies also demonstrated that HLI could successfully visualize Na[(131)I]I uptake in the mouse thyroid gland in the prone position and [(18)F]FDG accumulation in the heart in the supine position, which were not observed with CLI. CONCLUSION Our preliminary studies suggest that HLI can provide enhanced imaging of a β-particle probe emitting together with γ-rays at deep tissue locations. HLI may be a promising imaging technique to assist with preclinical in vivo imaging using CLI.
Collapse
|
35
|
Ai Y, Tang X, Shu D, Shao W, Gong C, Geng C, Zhang X, Yu H. Measurement of dose in radionuclide therapy by using Cerenkov radiation. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2017; 40:695-705. [PMID: 28808904 DOI: 10.1007/s13246-017-0579-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/06/2017] [Indexed: 12/23/2022]
Abstract
This work aims to determine the relationship between Cerenkov photon emission and radiation dose from internal radionuclide irradiation. Water and thyroid phantoms were used to simulate the distribution of Cerenkov photon emission and dose deposition through Monte Carlo method. The relationship between Cerenkov photon emission and dose deposition was quantitatively analyzed. A neck phantom was also used to verify Cerenkov photon detection for thyroid radionuclide therapy. Results show that Cerenkov photon emission and dose deposition exhibit the same distribution pattern in water phantom, and this relative distribution relationship also existed in the thyroid phantom. Moreover, Cerenkov photon emission exhibits a specific quantitative relation to dose deposition. For thyroid radionuclide therapy, only a part of Cerenkov photon produced by thyroid could penetrate the body for detection; therefore, the use of Cerenkov radiation for measurement of radionuclide therapy dose may be more suitable for superficial tumors. This study demonstrated that Cerenkov radiation has the potential to be used for measuring radiation dose for radionuclide therapy.
Collapse
Affiliation(s)
- Yao Ai
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao St., Nanjing, 210016, China
| | - Xiaobin Tang
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao St., Nanjing, 210016, China.
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 29 Yudao St., Nanjing, 210016, China.
| | - Diyun Shu
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao St., Nanjing, 210016, China
| | - Wencheng Shao
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao St., Nanjing, 210016, China
| | - Chunhui Gong
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao St., Nanjing, 210016, China
| | - Changran Geng
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao St., Nanjing, 210016, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 29 Yudao St., Nanjing, 210016, China
| | - Xudong Zhang
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao St., Nanjing, 210016, China
| | - Haiyan Yu
- Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao St., Nanjing, 210016, China
| |
Collapse
|
36
|
Ackerman NL, Boschi F, Spinelli AE. Monte Carlo simulations support non-Cerenkov radioluminescence production in tissue. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-11. [PMID: 28819962 DOI: 10.1117/1.jbo.22.8.086002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
There is experimental evidence for the production of non-Cerenkov radioluminescence in a variety of materials, including tissue. We constructed a Geant4 Monte Carlo simulation of the radiation from P32 and Tc99m interacting in chicken breast and used experimental imaging data to model a scintillation-like emission. The same radioluminescence spectrum is visible from both isotopes and cannot otherwise be explained through fluorescence or filter miscalibration. We conclude that chicken breast has a near-infrared scintillation-like response with a light yield three orders of magnitude smaller than BGO.
Collapse
Affiliation(s)
- Nicole L Ackerman
- Agnes Scott College, Department of Physics and Astronomy, Decatur, Georgia, United States
| | - Federico Boschi
- University of Verona, Department of Computer Science, Verona, Italy
| | - Antonello E Spinelli
- San Raffaele Scientific Institute, Centre for Experimental Imaging, Department of Medical Physics, M, Italy
| |
Collapse
|
37
|
Luminescence Imaging of Water During Irradiation of Beta Particles With Energy Lower Than Cerenkov-Light Threshold. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2017. [DOI: 10.1109/trpms.2017.2710080] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Nakamura Y, Nagaya T, Sato K, Okuyama S, Ogata F, Wong K, Adler S, Choyke PL, Kobayashi H. Cerenkov Radiation-Induced Photoimmunotherapy with 18F-FDG. J Nucl Med 2017; 58:1395-1400. [PMID: 28408528 DOI: 10.2967/jnumed.116.188789] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 04/03/2017] [Indexed: 12/25/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with toxicity induced by photoabsorbers after irradiation with NIR light. A limitation of NIR-PIT is the inability to deliver NIR light to a tumor located deep inside the body. Cerenkov radiation (CR) is the ultraviolet and blue light that is produced by a charged particle traveling through a dielectric medium faster than the speed of light in that medium and is commonly produced during radioactive decay. Here, we demonstrate the feasibility of using CR generated by 18F-FDG accumulated in tumors to induce photoimmunotherapy. Methods: Using A431-luc cells, we evaluated the therapeutic effects of CR-PIT in vitro and in vivo using bioluminescence imaging. Results: CR-PIT showed significant suppression of tumor size, but the decrease of bioluminescence after CR-PIT was not observed consistently over the entire time course. Conclusion: Although CR-PIT can induce tumor killing deep within body, it is less effective than NIR-PIT, possibly related to the relatively lower efficiency of short wavelength light than NIR.
Collapse
Affiliation(s)
- Yuko Nakamura
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; and
| | - Tadanobu Nagaya
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; and
| | - Kazuhide Sato
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; and
| | - Shuhei Okuyama
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; and
| | - Fusa Ogata
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; and
| | - Karen Wong
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; and
| | - Stephen Adler
- Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., National Cancer Institute Campus at Frederick, Frederick, Maryland
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; and
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; and
| |
Collapse
|
39
|
King MT, Jenkins CH, Sun C, Carpenter CM, Ma X, Cheng K, Le QT, Sunwoo JB, Cheng Z, Pratx G, Xing L. Flexible radioluminescence imaging for FDG-guided surgery. Med Phys 2017; 43:5298. [PMID: 27782732 DOI: 10.1118/1.4961745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Flexible radioluminescence imaging (Flex-RLI) is an optical method for imaging 18F-fluorodeoxyglucose (FDG)-avid tumors. The authors hypothesize that a gadolinium oxysulfide: terbium (GOS:Tb) flexible scintillator, which loosely conforms to the body contour, can enhance tumor signal-to-background ratio (SBR) compared with RLI, which utilizes a flat scintillator. The purpose of this paper is to characterize flex-RLI with respect to alternative modalities including RLI, beta-RLI (RLI with gamma rejection), and Cerenkov luminescence imaging (CLI). METHODS The photon sensitivity, spatial resolution, and signal linearity of flex-RLI were characterized with in vitro phantoms. In vivo experiments utilizing 13 nude mice inoculated with the head and neck (UMSCC1-Luc) cell line were then conducted in accordance with the institutional Administrative Panel on Laboratory Animal Care. After intravenous injection of 18F-FDG, the tumor SBR values for flex-RLI were compared to those for RLI, beta-RLI, and CLI using the Wilcoxon signed rank test. RESULTS With respect to photon sensitivity, RLI, beta-RLI, and flex-RLI produced 1216.2, 407.0, and 98.6 times more radiance per second than CLI. Respective full-width half maximum values across a 0.5 mm capillary tube were 6.9, 6.4, 2.2, and 1.5 mm, respectively. Flex-RLI demonstrated a near perfect correlation with 18F activity (r = 0.99). Signal uniformity for flex-RLI improved after more aggressive homogenization of the GOS powder with the silicone elastomer during formulation. In vivo, the SBR value for flex-RLI (median 1.29; interquartile range 1.18-1.36) was statistically greater than that for RLI (1.08; 1.02-1.14; p < 0.01) by 26%. However, there was no statistically significant difference in SBR values between flex-RLI and beta-RLI (p = 0.92). Furthermore, there was no statistically significant difference in SBR values between flex-RLI and CLI (p = 0.11) in a more limited dataset. CONCLUSIONS Flex-RLI provides high quality images with SBRs comparable to those from CLI and beta-RLI in a single 10 s acquisition.
Collapse
Affiliation(s)
- Martin T King
- Department of Radiation Oncology, Stanford University, Stanford, California 94305
| | - Cesare H Jenkins
- Department of Radiation Oncology, Stanford University, Stanford, California 94305
| | - Conroy Sun
- College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
| | | | - Xiaowei Ma
- Department of Radiology, Stanford University, Stanford, California 94305 and Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Kai Cheng
- Department of Radiation Oncology, Stanford University, Stanford, California 94305
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University, Stanford, California 94305
| | - John B Sunwoo
- Department of Otolaryngology, Stanford University, Stanford, California 94305
| | - Zhen Cheng
- Department of Radiology, Stanford University, Stanford, California 94305
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, Stanford, California 94305
| | - Lei Xing
- Department of Radiation Oncology, Stanford University, Stanford, California 94305
| |
Collapse
|
40
|
Ciarrocchi E, Belcari N. Cerenkov luminescence imaging: physics principles and potential applications in biomedical sciences. EJNMMI Phys 2017; 4:14. [PMID: 28283990 PMCID: PMC5346099 DOI: 10.1186/s40658-017-0181-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/27/2017] [Indexed: 12/24/2022] Open
Abstract
Cerenkov luminescence imaging (CLI) is a novel imaging modality to study charged particles with optical methods by detecting the Cerenkov luminescence produced in tissue. This paper first describes the physical processes that govern the production and transport in tissue of Cerenkov luminescence. The detectors used for CLI and their most relevant specifications to optimize the acquisition of the Cerenkov signal are then presented, and CLI is compared with the other optical imaging modalities sharing the same data acquisition and processing methods. Finally, the scientific work related to CLI and the applications for which CLI has been proposed are reviewed. The paper ends with some considerations about further perspectives for this novel imaging modality.
Collapse
Affiliation(s)
- Esther Ciarrocchi
- Department of Physics "E. Fermi", University of Pisa, Pisa, Italy. .,INFN, section of Pisa, Pisa, Italy.
| | - Nicola Belcari
- Department of Physics "E. Fermi", University of Pisa, Pisa, Italy.,INFN, section of Pisa, Pisa, Italy
| |
Collapse
|
41
|
Darafsheh A, Taleei R, Kassaee A, Finlay JC. The visible signal responsible for proton therapy dosimetry using bare optical fibers is not Čerenkov radiation. Med Phys 2016; 43:5973. [DOI: 10.1118/1.4964453] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
42
|
Wright CL, Maly JJ, Zhang J, Knopp MV. Advancing Precision Nuclear Medicine and Molecular Imaging for Lymphoma. PET Clin 2016; 12:63-82. [PMID: 27863567 DOI: 10.1016/j.cpet.2016.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PET with fluorodeoxyglucose F 18 (18F FDG-PET) is a meaningful biomarker for the detection, targeted biopsy, and treatment of lymphoma. This article reviews the evolution of 18F FDG-PET as a putative biomarker for lymphoma and addresses the current capabilities, challenges, and opportunities to enable precision medicine practices for lymphoma. Precision nuclear medicine is driven by new imaging technologies and methodologies to more accurately detect malignant disease. Although quantitative assessment of response is limited, such technologies will enable a more precise metabolic mapping with much higher definition image detail and thus may make it a robust and valid quantitative response assessment methodology.
Collapse
Affiliation(s)
- Chadwick L Wright
- Wright Center of Innovation in Biomedical Imaging, Division of Imaging Science, Department of Radiology, The Ohio State University Wexner Medical Center, 395 West 12th Avenue, Room 430, Columbus, OH 43210, USA
| | - Joseph J Maly
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Starling Loving Hall 406C, 320 West 10th Avenue, Columbus, OH 43210, USA
| | - Jun Zhang
- Wright Center of Innovation in Biomedical Imaging, Division of Imaging Science, Department of Radiology, The Ohio State University Wexner Medical Center, 395 West 12th Avenue, Room 430, Columbus, OH 43210, USA
| | - Michael V Knopp
- Wright Center of Innovation in Biomedical Imaging, Division of Imaging Science, Department of Radiology, The Ohio State University Wexner Medical Center, 395 West 12th Avenue, Room 430, Columbus, OH 43210, USA.
| |
Collapse
|
43
|
Removing Noises Induced by Gamma Radiation in Cerenkov Luminescence Imaging Using a Temporal Median Filter. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7948432. [PMID: 27648450 PMCID: PMC5015013 DOI: 10.1155/2016/7948432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/19/2016] [Accepted: 08/03/2016] [Indexed: 11/18/2022]
Abstract
Cerenkov luminescence imaging (CLI) can provide information of medical radionuclides used in nuclear imaging based on Cerenkov radiation, which makes it possible for optical means to image clinical radionuclide labeled probes. However, the exceptionally weak Cerenkov luminescence (CL) from Cerenkov radiation is susceptible to lots of impulse noises introduced by high energy gamma rays generating from the decays of radionuclides. In this work, a temporal median filter is proposed to remove this kind of impulse noises. Unlike traditional CLI collecting a single CL image with long exposure time and smoothing it using median filter, the proposed method captures a temporal sequence of CL images with shorter exposure time and employs a temporal median filter to smooth a temporal sequence of pixels. Results of in vivo experiments demonstrated that the proposed temporal median method can effectively remove random pulse noises induced by gamma radiation and achieve a robust CLI image.
Collapse
|
44
|
D'Souza JW, Hensley H, Doss M, Beigarten C, Torgov M, Olafsen T, Yu JQ, Robinson MK. Cerenkov Luminescence Imaging as a Modality to Evaluate Antibody-Based PET Radiotracers. J Nucl Med 2016; 58:175-180. [PMID: 27539844 DOI: 10.2967/jnumed.116.178780] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/11/2016] [Indexed: 12/25/2022] Open
Abstract
Antibodies, and engineered antibody fragments, labeled with radioisotopes are being developed as radiotracers for the detection and phenotyping of diseases such as cancer. The development of antibody-based radiotracers requires extensive characterization of their in vitro and in vivo properties, including their ability to target tumors in an antigen-selective manner. In this study, we investigated the use of Cerenkov luminescence imaging (CLI) as compared with PET as a modality for evaluating the in vivo behavior of antibody-based radiotracers. METHODS The anti-prostate-specific membrane antigen (PSMA) huJ591 antibody (IgG; 150 kDa) and its minibody (Mb; 80 kDa) format were functionalized with the chelator 1,4,7-triazacyclononane-1-glutaric acid-4,7-diacetic acid (NODAGA) and radiolabeled with the positron-emitting radionuclide 64Cu (half-life, 12.7 h). Immunoreactive preparations of the radiolabeled antibodies were injected into NCr nu/nu mice harboring PSMA-positive CWR22Rv1 and PSMA-negative PC-3 tumor xenografts. Tumor targeting was evaluated by both PET and CLI. RESULTS 64Cu-NODAGA-PSMA-IgG and 64Cu-NODAGA-PSMA-Mb retained the ability to bind cell surface PSMA, and both radiotracers exhibited selective uptake into PSMA-positive tumors. Under the experimental conditions used, PSMA-selective uptake of 64Cu-NODAGA-PSMA-IgG and 64Cu-NODAGA-PSMA-Mb was observed by CLI as early as 3 h after injection, with tumor-to-background ratios peaking at 24 (IgG) and 16 (Mb) h after injection. Targeting data generated by CLI correlated with that generated by PET and necropsy. CONCLUSION CLI provided a rapid and simple assessment of the targeting specificity and pharmacokinetics of the antibody-based PET radiotracers that correlated well with the behavior observed by standard PET imaging. Moreover, CLI provided clear discrimination between uptake kinetics of an intact IgG and its small-molecular-weight derivative Mb. These data support the use of CLI for the evaluation of radiotracer performance.
Collapse
Affiliation(s)
- Jimson W D'Souza
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Harvey Hensley
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mohan Doss
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Nuclear Medicine, Department of Diagnostic Imaging, Fox Chase Cancer Center, Philadelphia, Pennsylvania; and
| | | | | | | | - Jian Q Yu
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.,Nuclear Medicine, Department of Diagnostic Imaging, Fox Chase Cancer Center, Philadelphia, Pennsylvania; and
| | - Matthew K Robinson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
45
|
Wright CL, Pan Q, Knopp MV, Tweedle MF. Advancing theranostics with tumor-targeting peptides for precision otolaryngology. World J Otorhinolaryngol Head Neck Surg 2016; 2:98-108. [PMID: 29204554 PMCID: PMC5698525 DOI: 10.1016/j.wjorl.2016.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/05/2016] [Indexed: 02/07/2023] Open
Abstract
Worldwide, about 600,000 head and neck squamous cell carcinoma (HNSCC) are detected annually, many of which involve high risk human papilloma virus (HPV). Surgery is the primary and desired first treatment option. Following surgery, the existence of cancer cells at the surgical margin is strongly associated with eventual recurrence of cancer and a poor outcome. Despite improved surgical methods (robotics, microsurgery, endoscopic/laparoscopic, and external imaging), surgeons rely only on their vision and touch to locate tumors during surgery. Diagnostic imaging systems like computed tomography (CT), magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT) and positron-emission tomography (PET) are too large, slow and costly to use efficiently during most surgeries and, ultrasound imaging, while fast and portable, is not cancer specific. This purpose of this article is to review the fundamental technologies that will radically advance Precision Otolaryngology practices to the benefit of patients with HNSCC. In particular, this article will address the potential for tumor-targeting peptides to enable more precise diagnostic imaging while simultaneously advancing new therapeutic paradigms for next generation image-guided surgery, tumor-specific chemotherapeutic delivery and tumor-selective targeted radiotherapy (i.e., theranostic).
Collapse
Affiliation(s)
- Chadwick L Wright
- Wright Center of Innovation in Biomedical Imaging, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Quintin Pan
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University Wexner Medical Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Michael V Knopp
- Wright Center of Innovation in Biomedical Imaging, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Michael F Tweedle
- Wright Center of Innovation in Biomedical Imaging, Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
46
|
Seim NB, Wright CL, Agrawal A. Contemporary use of sentinel lymph node biopsy in the head and neck. World J Otorhinolaryngol Head Neck Surg 2016; 2:117-125. [PMID: 29204556 PMCID: PMC5698522 DOI: 10.1016/j.wjorl.2016.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/11/2016] [Indexed: 02/04/2023] Open
Abstract
Sentinel lymph node biopsy has become a well-established and commonplace practice in many oncologic disease sites as a means to stage the regional lymphatics, avoid unnecessary surgery and decrease patient morbidity. In the head and neck, its role is well established for cutaneous melanoma with proven fidelity and survival benefit. Its role in use for other sites such as oral cavity carcinoma continues to develop with promising results from several recent trials. Although not widely adopted, the potential benefits of sentinel lymph node biopsy in the management of oral cavity carcinoma are apparent. Refinements in technology and protocols including development of novel radiopharmaceutical tracers, routine incorporation of detailed anatomic imaging, increasing surgeon experience and development of new intraoperative identification aids will likely lead to improvements in the use and accuracy of this technique.
Collapse
Affiliation(s)
- Nolan B Seim
- Department of Otolaryngology-Head and Neck Surgery, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Wexner Medical Center, 4000 Eye and Ear Institute, 915 Olentangy River Road, Columbus, OH, 43210, USA
| | - Chadwick L Wright
- Wright Center of Innovation in Biomedical Imaging, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, The Ohio State University Wexner Medical Center, 395 W, 12th Avenue, Rm. 430, Columbus, OH, 43210, USA
| | - Amit Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Wexner Medical Center, 4000 Eye and Ear Institute, 915 Olentangy River Road, Columbus, OH, 43210, USA
| |
Collapse
|
47
|
Lin H, Zhang R, Gunn JR, Esipova TV, Vinogradov S, Gladstone DJ, Jarvis LA, Pogue BW. Comparison of Cherenkov excited fluorescence and phosphorescence molecular sensing from tissue with external beam irradiation. Phys Med Biol 2016; 61:3955-68. [PMID: 27120085 DOI: 10.1088/0031-9155/61/10/3955] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ionizing radiation delivered by a medical linear accelerator (LINAC) generates Cherenkov emission within the treated tissue. A fraction of this light, in the 600-900 nm wavelength region, propagates through centimeters of tissue and can be used to excite optical probes in vivo, enabling molecular sensing of tissue analytes. The success of isolating the emission signal from this Cherenkov excitation background is dependent on key factors such as: (i) the Stokes shift of the probe spectra; (ii) the excited state lifetime; (iii) the probe concentration; (iv) the depth below the tissue surface; and (v) the radiation dose used. Previous studies have exclusively focused on imaging phosphorescent dyes, rather than fluorescent dyes. However there are only a few biologically important phosphorescent dyes and yet in comparison there are thousands of biologically relevant fluorescent dyes. So in this study the focus was a study of efficacy of Cherenkov-excited luminescence using fluorescent commercial near-infrared probes, IRDye 680RD, IRDye 700DX, and IRDye 800CW, and comparing them to the well characterized phosphorescent probe Oxyphor PtG4, an oxygen sensitive dye. Each probe was excited by Cherenkov light from a 6 MV external radiation beam, and measured in continuous wave or time-gated modes. The detection was performed by spectrally resolving the luminescence signals, and measuring them with spectrometer-based separation on an ICCD detector. The results demonstrate that IRDye 700DX and PtG4 allowed for the maximal signal to noise ratio. In the case of the phosphorescent probe, PtG4, with emission decays on the microsecond (μs) time scale, time-gated acquisition was possible, and it allowed for higher efficacy in terms of the probe concentration and detection depth. Phantoms containing the probe at 5 mm depth could be detected at concentrations down to the nanoMolar range, and at depths into the tissue simulating phantom near 3 cm. In vivo studies showed that 5 nmol of dye was readily detected with radiation doses less than 5 cGy. Since concentration, radiation dose and depth each contribute to the level of the detected signal, it may be possible to improve any of these parameters at expense of the others. This paradigm of nanoMolar sensitivity for optical reporters in vivo introduces the concept of molecular sensing of tumors during therapy or diagnostically with biologically relevant concentrations of fluorescent reporters.
Collapse
Affiliation(s)
- Huiyun Lin
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA. MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fujian 350007, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Spinelli AE, Schiariti MP, Grana CM, Ferrari M, Cremonesi M, Boschi F. Cerenkov and radioluminescence imaging of brain tumor specimens during neurosurgery. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:50502. [PMID: 27156713 DOI: 10.1117/1.jbo.21.5.050502] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/18/2016] [Indexed: 06/05/2023]
Abstract
We presented the first example of Cerenkov luminescence imaging (CLI) and radioluminescence imaging (RLI) of human tumor specimens. A patient with a brain meningioma localized in the left parietal region was injected with 166 MBq of 90Y-DOTATOC the day before neurosurgery. The specimens of the tumor removed during surgery were imaged using both CLI and RLI using an optical imager prototype developed in our laboratory. The system is based on a cooled electron multiplied charge coupled device coupled with an f ∕0.95 17-mm C-mount lens. We showed for the first time the possibility of obtaining CLI and RLI images of fresh human brain tumor specimens removed during neurosurgery.
Collapse
Affiliation(s)
- Antonello Enrico Spinelli
- San Raffaele Scientific Institute, Experimental Imaging Centre, Via Olgettina N. 60, Milan 20182 Italy
| | - Marco P Schiariti
- Neurological Institute C. Besta, Neurosurgery unit 2, Via Celoria 11, Milano 20133, Italy
| | - Chiara M Grana
- European Institute of Oncology, Nuclear Medicine Department, Via Ripamonti 435, Milan 20141, Italy
| | - Mahila Ferrari
- European Institute of Oncology, Medical Physics Unit, Via Ripamonti 435, Milan 20141, Italy
| | - Marta Cremonesi
- European Institute of Oncology, Medical Physics Unit, Via Ripamonti 435, Milan 20141, Italy
| | - Federico Boschi
- University of Verona, Department of Computer Science, Strada Le Grazie 15, Verona 37134, Italy
| |
Collapse
|
49
|
Bremsstrahlung radiation detection for small animal imaging using a CCD detector. Phys Med 2016; 32:706-8. [DOI: 10.1016/j.ejmp.2016.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/03/2016] [Accepted: 04/05/2016] [Indexed: 01/15/2023] Open
|
50
|
Opoku-Damoah Y, Wang R, Zhou J, Ding Y. Versatile Nanosystem-Based Cancer Theranostics: Design Inspiration and Predetermined Routing. Theranostics 2016; 6:986-1003. [PMID: 27217832 PMCID: PMC4876623 DOI: 10.7150/thno.14860] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/24/2016] [Indexed: 01/10/2023] Open
Abstract
The relevance of personalized medicine, aimed at a more individualized drug therapy, has inspired research into nano-based concerted diagnosis and therapeutics (theranostics). As the intention is to "kill two birds with one stone", scientists have already described the emerging concept as a treasured tailor for the future of cancer therapy, wherein the main idea is to design "smart" nanosystems to concurrently discharge both therapeutic and diagnostic roles. These nanosystems are expected to offer a relatively clearer view of the ingenious cellular trafficking pathway, in-situ diagnosis, and therapeutic efficacy. We herein present a detailed review of versatile nanosystems, with prominent examples of recently developed intelligent delivery strategies which have gained attention in the field of theranostics. These nanotheranostics include various mechanisms programmed in novel platforms to enable predetermined delivery of cargo to specific sites, as well as techniques to overcome the notable challenges involved in the efficacy of theranostics.
Collapse
Affiliation(s)
| | | | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| |
Collapse
|