1
|
Kim J, Ng RH, Liang J, Johnson D, Shin YS, Chatziioannou AF, Phelps ME, Wei W, Levine RD, Heath JR. Kinetic Trajectories of Glucose Uptake in Single Cancer Cells Reveal a Drug-Induced Cell-State Change Within Hours of Drug Treatment. J Phys Chem B 2024; 128:7978-7986. [PMID: 39115241 DOI: 10.1021/acs.jpcb.4c03663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The development of drug resistance is a nearly universal phenomenon in patients with glioblastoma multiforme (GBM) brain tumors. Upon treatment, GBM cancer cells may initially undergo a drug-induced cell-state change to a drug-tolerant, slow-cycling state. The kinetics of that process are not well understood, in part due to the heterogeneity of GBM tumors and tumor models, which can confound the interpretation of kinetic data. Here, we resolve drug-adaptation kinetics in a patient-derived in vitro GBM tumor model characterized by the epithelial growth factor receptor (EGFR) variant(v)III oncogene treated with an EGFR inhibitor. We use radiolabeled 18F-fluorodeoxyglucose (FDG) to monitor the glucose uptake trajectories of single GBM cancer cells over a 12 h period of drug treatment. Autocorrelation analysis of the single-cell glucose uptake trajectories reveals evidence of a drug-induced cell-state change from a high- to low-glycolytic phenotype after 5-7 h of drug treatment. Information theoretic analysis of a bulk transcriptome kinetic series of the GBM tumor model delineated the underlying molecular mechanisms driving the cellular state change, including a shift from a stem-like mesenchymal state to a more differentiated, slow-cycling astrocyte-like state. Our results demonstrate that complex drug-induced cancer cell-state changes of cancer cells can be captured via measurements of single cell metabolic trajectories and reveal the extremely facile nature of drug adaptation.
Collapse
Affiliation(s)
- Jungwoo Kim
- Innovation Center for R&D Regulation and Management, Korea Institute of Science & Technology Evaluation and Planning, Eumseong-gun, Chungcheongbuk-do 27740, Korea
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Rachel H Ng
- Institute for Systems Biology, Seattle, Washington 98109, United States
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - JingXin Liang
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Dazy Johnson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
| | - Young Shik Shin
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Research & Technology Center North America, Robert Bosch LLC, Sunnyvale, California 94085, United States
| | - Arion F Chatziioannou
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
- Crump Institute for Molecular Imaging, University of California, Los Angeles, California 90095, United States
| | - Michael E Phelps
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
- Crump Institute for Molecular Imaging, University of California, Los Angeles, California 90095, United States
| | - Wei Wei
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Institute for Systems Biology, Seattle, Washington 98109, United States
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90024, United States
| | - Raphael D Levine
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90024, United States
- The Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - James R Heath
- Department of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- Institute for Systems Biology, Seattle, Washington 98109, United States
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Nguyen MP, Ramakers RM, Kamphuis C, Koustoulidou S, Goorden MC, Beekman FJ. EXIRAD-3D: Fast automated three-dimensional autoradiography. Nucl Med Biol 2020; 86-87:59-65. [DOI: 10.1016/j.nucmedbio.2020.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/15/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
|
3
|
Liu Z, Zhang P, Ji H, Long Y, Jing B, Wan L, Xi D, An R, Lan X. A mini-panel PET scanner-based microfluidic radiobioassay system allowing high-throughput imaging of real-time cellular pharmacokinetics. LAB ON A CHIP 2020; 20:1110-1123. [PMID: 32043092 DOI: 10.1039/c9lc01066a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
On-chip radiometric detection of biological samples using radiotracers has become an emerging research field known as microfluidic radiobioassays. Performing parallel radiobioassays is highly desirable for saving time/effort, reducing experimental variation between assays, and minimizing the cost of the radioisotope. Continuously infused microfluidic radioassay (CIMR) is one of the useful tools for investigating cellular pharmacokinetics and assessing the binding and uptakes of radiopharmaceuticals. However, existing CIMR systems can only measure the dynamics of one sample at a time due to the limited field of view (FOV) of the positron detector. To increase the throughput, we propose a new CIMR system with a custom-built miniaturized panel-based positron-emission tomography (PET) scanner and a parallel infusion setup/method, capable of imaging the cellular pharmacokinetics of three samples in one measurement. With this system, the pharmacokinetics of parallel or comparison samples can be imaged simultaneously. The increased throughput is attributed to two innovations: 1) the large 3D FOV of the mini-panel PET scanner, enabling more samples to be imaged in the microfluidic chip; and 2) a parallel infusion method, in which only one reference chamber is needed for indicating the dynamic input of the infused radiotracer medium, thus saving the total reference chambers needed compared to the current sequential infusion method. Combining the CIMR technique and the mini-panel PET scanner, this study also firstly demonstrated the feasibility of using PET, as an imaging modality, for microfluidic radiobioassays. Besides the increased throughput, the 3D imaging of PET also provides possibilities for further applications such as organoid/3D culturing systems, non-planar microfluidics, and organs-on-chips. The system is more practical for a broader range of applications in nuclear medicine, molecular imaging, and lab-on-a-chip studies.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Pengfei Zhang
- Biomedical Engineering Department, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Ji
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yu Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Boping Jing
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Lu Wan
- RAYDATA Technology Co., Ltd. (Wuhan), Wuhan 430074, China
| | - Daoming Xi
- Raycan Technology Co., Ltd. (Suzhou), Suzhou 215163, China
| | - Rui An
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China. and Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
4
|
Jones J, Ha NS, Barajas AG, Chatziioannou AF, van Dam RM. Integration of High-Resolution Radiation Detector for Hybrid Microchip Electrophoresis. Anal Chem 2020; 92:3483-3491. [PMID: 31986878 PMCID: PMC7410349 DOI: 10.1021/acs.analchem.9b04827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
For decades, there has been immense progress in miniaturizing analytical methods based on electrophoresis to improve sensitivity and to reduce sample volumes, separation times, and/or equipment cost and space requirements, in applications ranging from analysis of biological samples to environmental analysis to forensics. In the field of radiochemistry, where radiation-shielded laboratory space is limited, there has been great interest in harnessing the compactness, high efficiency, and speed of microfluidics to synthesize short-lived radiolabeled compounds. We recently proposed that analysis of these compounds could also benefit from miniaturization and have been investigating capillary electrophoresis (CE) and hybrid microchip electrophoresis (hybrid-MCE) as alternatives to the typically used high-performance liquid chromatography (HPLC). We previously showed separation of the positron-emission tomography (PET) imaging tracer 3'-deoxy-3'-fluorothymidine (FLT) from its impurities in a hybrid-MCE device with UV detection, with similar separation performance to HPLC, but with improved speed and lower sample volumes. In this paper, we have developed an integrated radiation detector to enable measurement of the emitted radiation from radiolabeled compounds. Though conventional radiation detectors have been incorporated into CE systems in the past, these approaches cannot be readily integrated into a compact hybrid-MCE device. We instead employed a solid-state avalanche photodiode (APD)-based detector for real-time, high-sensitivity β particle detection. The integrated system can reliably separate [18F]FLT from its impurities and perform chemical identification via coinjection with nonradioactive reference standard. This system can quantitate samples with radioactivity concentrations as low as 114 MBq/mL (3.1 mCi/mL), which is sufficient for analysis of radiochemical purity of radiopharmaceuticals.
Collapse
Affiliation(s)
- Jason Jones
- Crump Institute for Molecular Imaging and Department of
Molecular and Medical Pharmacology, David Geffen School of Medicine, University of
California Los Angeles, Los Angeles, CA 90095, USA
- Physics & Biology in Medicine Interdepartmental
Graduate Program, David Geffen School of Medicine, University of California Los
Angeles, Los Angeles, CA 90095, USA
| | - Noel S. Ha
- Crump Institute for Molecular Imaging and Department of
Molecular and Medical Pharmacology, David Geffen School of Medicine, University of
California Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, Henry Samueli School of
Engineering and Applied Science, University of California Los Angeles, Los Angeles,
CA 90095, USA
| | - Alec G. Barajas
- Crump Institute for Molecular Imaging and Department of
Molecular and Medical Pharmacology, David Geffen School of Medicine, University of
California Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemistry & Biochemistry, University of
California Los Angeles, Los Angeles, CA 90095, USA
| | - Arion F. Chatziioannou
- Crump Institute for Molecular Imaging and Department of
Molecular and Medical Pharmacology, David Geffen School of Medicine, University of
California Los Angeles, Los Angeles, CA 90095, USA
- Physics & Biology in Medicine Interdepartmental
Graduate Program, David Geffen School of Medicine, University of California Los
Angeles, Los Angeles, CA 90095, USA
- Department of Molecular & Medical Pharmacology,
University of California Los Angeles, Los Angeles, CA 90095, USA
| | - R. Michael van Dam
- Crump Institute for Molecular Imaging and Department of
Molecular and Medical Pharmacology, David Geffen School of Medicine, University of
California Los Angeles, Los Angeles, CA 90095, USA
- Physics & Biology in Medicine Interdepartmental
Graduate Program, David Geffen School of Medicine, University of California Los
Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, Henry Samueli School of
Engineering and Applied Science, University of California Los Angeles, Los Angeles,
CA 90095, USA
- Department of Molecular & Medical Pharmacology,
University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Fukuchi T, Yamamoto S, Kataoka J, Kamada K, Yoshikawa A, Watanabe Y, Enomoto S. Beta-ray imaging system with γ-ray coincidence for multiple-tracer imaging. Med Phys 2019; 47:587-596. [PMID: 31800969 DOI: 10.1002/mp.13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Beta-ray imaging systems are widely used for various biological objects to obtain a two-dimensional (2D) distribution of β-ray emitting radioisotopes. However, a conventional β-ray imaging system is unsuitable for multiple-tracer imaging, because the continuous energy distribution of β-rays complicates distinguishing among different tracers by energy information. Therefore, we developed a new type of β-ray imaging system, which is useful for multiple tracers by detecting coincidence γ-rays with β-rays, and evaluated its imaging performance. METHODS Our system is composed of position-sensitive β-ray and γ-ray detectors. The former is a 35 × 35 × 1-mm3 Ce-Doped((La, Gd)2 Si2 O7 ) (La-GPS) scintillation detector, which has a 300-µm pitch of pixels. The latter is a 43 × 43 × 16-mm3 bismuth germanium oxide (BGO) scintillation detector. Both detectors are mounted on a flexible frame and placed in a user-selectable position. We experimentally evaluated the performance of the β-ray detector and the γ-ray efficiencies of the γ-ray detector with different energies, positions, and distances. We also conducted point sources and phantom measurements with dual isotopes to evaluate the system performance of multiple-tracer imaging. RESULTS For the β-ray detector, the β-ray detection efficiencies for 45 Ca (245-keV maximum energy) and 90 Sr/90 Y (545 and 2280-keV maximum energy) were 14.3% and 21.9%, respectively. The total γ-ray detection efficiency of the γ-ray detector for all γ-rays from 22 Na (511-keV annihilation γ-rays and a 1275-keV γ-ray) in the center position with a detector distance of 20 mm was 17.5%. From a point-source measurement using 22 Na and 90 Sr/90 Y, we successfully extracted the position of a positron-γ emitter 22 Na. Furthermore, for a phantom experiment using 45 Ca and 18 F or 18 F and 22 Na, we successfully extracted the distribution of the second tracer using the annihilation γ-ray or de-excitation γ-ray coincidence. In all the imaging experiments, the event counts of the extracted images were consistent with the counts estimated by the measured γ-ray efficiencies. CONCLUSIONS We successfully demonstrated the feasibility of our β-ray autoradiography system for imaging multiple isotopes. Since our system can identify not only a β-γ emitter but also a positron emitter using the coincidence detection of annihilation γ-rays, it is useful for PET tracers and various new applications that are otherwise impractical.
Collapse
Affiliation(s)
- Tomonori Fukuchi
- RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Seiichi Yamamoto
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, 461-0047, Japan
| | - Jun Kataoka
- Research Institute for Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Kei Kamada
- New Industry Creation Hatchery Center, Tohoku University, Sendai, 980-8579, Japan
| | - Akira Yoshikawa
- New Industry Creation Hatchery Center, Tohoku University, Sendai, 980-8579, Japan
| | | | - Shuichi Enomoto
- RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| |
Collapse
|
6
|
Almasi S, Pratx G. High-Resolution Radioluminescence Microscopy Image Reconstruction via Ionization Track Analysis. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019. [DOI: 10.1109/trpms.2019.2908219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Liu Z, Lan X. Microfluidic radiobioassays: a radiometric detection tool for understanding cellular physiology and pharmacokinetics. LAB ON A CHIP 2019; 19:2315-2339. [PMID: 31222194 DOI: 10.1039/c9lc00159j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The investigation of molecular uptake and its kinetics in cells is valuable for understanding the cellular physiological status, the observation of drug interventions, and the development of imaging agents and pharmaceuticals. Microfluidic radiobioassays, or microfluidic radiometric bioassays, constitute a radiometric imaging-on-a-chip technology for the assay of biological samples using radiotracers. From 2006 to date, microfluidic radiobioassays have shown advantages in many applications, including radiotracer characterization, enzyme activity radiobioassays, fast drug evaluation, single-cell imaging, facilitation of dynamic positron emission tomography (PET) imaging, and cellular pharmacokinetics (PK)/pharmacodynamics (PD) studies. These advantages lie in the minimized and integrated detection scheme, allowing real-time tracking of dynamic uptake, high sensitivity radiotracer imaging, and quantitative interpretation of imaging results. In this review, the basics of radiotracers, various radiometric detection methods, and applications of microfluidic radiobioassays will be introduced and summarized, and the potential applications and future directions of microfluidic radiobioassays will be forecasted.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Nuclear Medicine, Wuhan Union Hospital, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, Hubei Province 430022, China.
| | | |
Collapse
|
8
|
Hussein EM. Imaging with naturally occurring radiation. Appl Radiat Isot 2019; 145:223-239. [DOI: 10.1016/j.apradiso.2018.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/30/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
|
9
|
Ha NS, Sadeghi S, van Dam RM. Recent Progress toward Microfluidic Quality Control Testing of Radiopharmaceuticals. MICROMACHINES 2017; 8:E337. [PMID: 30400527 PMCID: PMC6190332 DOI: 10.3390/mi8110337] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/08/2017] [Accepted: 11/18/2017] [Indexed: 01/18/2023]
Abstract
Radiopharmaceuticals labeled with short-lived positron-emitting or gamma-emitting isotopes are injected into patients just prior to performing positron emission tomography (PET) or single photon emission tomography (SPECT) scans, respectively. These imaging modalities are widely used in clinical care, as well as in the development and evaluation of new therapies in clinical research. Prior to injection, these radiopharmaceuticals (tracers) must undergo quality control (QC) testing to ensure product purity, identity, and safety for human use. Quality tests can be broadly categorized as (i) pharmaceutical tests, needed to ensure molecular identity, physiological compatibility and that no microbiological, pyrogenic, chemical, or particulate contamination is present in the final preparation; and (ii) radioactive tests, needed to ensure proper dosing and that there are no radiochemical and radionuclidic impurities that could interfere with the biodistribution or imaging. Performing the required QC tests is cumbersome and time-consuming, and requires an array of expensive analytical chemistry equipment and significant dedicated lab space. Calibrations, day of use tests, and documentation create an additional burden. Furthermore, in contrast to ordinary pharmaceuticals, each batch of short-lived radiopharmaceuticals must be manufactured and tested within a short period of time to avoid significant losses due to radioactive decay. To meet these challenges, several efforts are underway to develop integrated QC testing instruments that automatically perform and document all of the required tests. More recently, microfluidic quality control systems have been gaining increasing attention due to vastly reduced sample and reagent consumption, shorter analysis times, higher detection sensitivity, increased multiplexing, and reduced instrumentation size. In this review, we describe each of the required QC tests and conventional testing methods, followed by a discussion of efforts to directly miniaturize the test or examples in the literature that could be implemented for miniaturized QC testing.
Collapse
Affiliation(s)
- Noel S Ha
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA 90095, USA.
- Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Saman Sadeghi
- Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - R Michael van Dam
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA 90095, USA.
- Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
10
|
Wang Q, Sengupta D, Kim TJ, Pratx G. Performance evaluation of 18 F radioluminescence microscopy using computational simulation. Med Phys 2017; 44:1782-1795. [PMID: 28273348 DOI: 10.1002/mp.12198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/09/2017] [Accepted: 02/21/2017] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Radioluminescence microscopy can visualize the distribution of beta-emitting radiotracers in live single cells with high resolution. Here, we perform a computational simulation of 18 F positron imaging using this modality to better understand how radioluminescence signals are formed and to assist in optimizing the experimental setup and image processing. METHODS First, the transport of charged particles through the cell and scintillator and the resulting scintillation is modeled using the GEANT4 Monte-Carlo simulation. Then, the propagation of the scintillation light through the microscope is modeled by a convolution with a depth-dependent point-spread function, which models the microscope response. Finally, the physical measurement of the scintillation light using an electron-multiplying charge-coupled device (EMCCD) camera is modeled using a stochastic numerical photosensor model, which accounts for various sources of noise. The simulated output of the EMCCD camera is further processed using our ORBIT image reconstruction methodology to evaluate the endpoint images. RESULTS The EMCCD camera model was validated against experimentally acquired images and the simulated noise, as measured by the standard deviation of a blank image, was found to be accurate within 2% of the actual detection. Furthermore, point source simulations found that a reconstructed spatial resolution of 18.5 μm can be achieved near the scintillator. As the source is moved away from the scintillator, spatial resolution degrades at a rate of 3.5 μm per μm distance. These results agree well with the experimentally measured spatial resolution of 30-40 μm (live cells). The simulation also shows that the system sensitivity is 26.5%, which is also consistent with our previous experiments. Finally, an image of a simulated sparse set of single cells is visually similar to the measured cell image. CONCLUSIONS Our simulation methodology agrees with experimental measurements taken with radioluminescence microscopy. This in silico approach can be used to guide further instrumentation developments and to provide a framework for improving image reconstruction.
Collapse
Affiliation(s)
- Qian Wang
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94304, USA
| | - Debanti Sengupta
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94304, USA
| | - Tae Jin Kim
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94304, USA
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94304, USA
| |
Collapse
|
11
|
Convert L, Lebel R, Gascon S, Fontaine R, Pratte JF, Charette P, Aimez V, Lecomte R. Real-Time Microfluidic Blood-Counting System for PET and SPECT Preclinical Pharmacokinetic Studies. J Nucl Med 2016; 57:1460-6. [DOI: 10.2967/jnumed.115.162768] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 03/29/2016] [Indexed: 02/03/2023] Open
|
12
|
Taggart MP, Tarn MD, Esfahani MMN, Schofield DM, Brown NJ, Archibald SJ, Deakin T, Pamme N, Thompson LF. Development of radiodetection systems towards miniaturised quality control of PET and SPECT radiopharmaceuticals. LAB ON A CHIP 2016; 16:1605-1616. [PMID: 27044712 DOI: 10.1039/c6lc00099a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The ability to detect radiation in microfluidic devices is important for the on-chip analysis of radiopharmaceuticals, but previously reported systems have largely suffered from various limitations including cost, complexity of fabrication, and insufficient sensitivity and/or speed. Here, we present the use of sensitive, low cost, small-sized, commercially available silicon photomultipliers (SiPMs) for the detection of radioactivity inside microfluidic channels fabricated from a range of conventional microfluidic chip substrates. We demonstrate the effects of chip material and thickness on the detection of the positron-emitting isotope, [(18)F]fluoride, and find that, while the SiPMs are light sensors, they are able to detect radiation even through opaque chip materials via direct positron and gamma (γ) ray interaction. Finally, we employed the SiPM platform for analysis of the PET (positron emission tomography) radiotracers 2-[(18)F]fluoro-2-deoxy-d-glucose ([(18)F]FDG) and [(68)Ga]gallium-citrate, and highlight the ability to detect the γ ray emitting SPECT (single photon emission computed tomography) radiotracer, [(99m)Tc]pertechnetate.
Collapse
Affiliation(s)
- Matthew P Taggart
- Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK.
| | - Mark D Tarn
- Positron Emission Tomography Research Centre, University of Hull, Cottingham Road, Hull, HU6 7RX, UK and Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | | | - Daniel M Schofield
- LabLogic Systems Ltd., Paradigm House, 3 Melbourne Avenue, Broomhill, Sheffield, S10 2QJ, UK
| | - Nathaniel J Brown
- School of Engineering, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Stephen J Archibald
- Positron Emission Tomography Research Centre, University of Hull, Cottingham Road, Hull, HU6 7RX, UK and Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | - Tom Deakin
- Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK. and LabLogic Systems Ltd., Paradigm House, 3 Melbourne Avenue, Broomhill, Sheffield, S10 2QJ, UK
| | - Nicole Pamme
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | - Lee F Thompson
- Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK.
| |
Collapse
|
13
|
Wei W, Shin YS, Xue M, Matsutani T, Masui K, Yang H, Ikegami S, Gu Y, Herrmann K, Johnson D, Ding X, Hwang K, Kim J, Zhou J, Su Y, Li X, Bonetti B, Chopra R, James CD, Cavenee WK, Cloughesy TF, Mischel PS, Heath JR, Gini B. Single-Cell Phosphoproteomics Resolves Adaptive Signaling Dynamics and Informs Targeted Combination Therapy in Glioblastoma. Cancer Cell 2016; 29:563-573. [PMID: 27070703 PMCID: PMC4831071 DOI: 10.1016/j.ccell.2016.03.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 11/25/2015] [Accepted: 03/15/2016] [Indexed: 12/12/2022]
Abstract
Intratumoral heterogeneity of signaling networks may contribute to targeted cancer therapy resistance, including in the highly lethal brain cancer glioblastoma (GBM). We performed single-cell phosphoproteomics on a patient-derived in vivo GBM model of mTOR kinase inhibitor resistance and coupled it to an analytical approach for detecting changes in signaling coordination. Alterations in the protein signaling coordination were resolved as early as 2.5 days after treatment, anticipating drug resistance long before it was clinically manifest. Combination therapies were identified that resulted in complete and sustained tumor suppression in vivo. This approach may identify actionable alterations in signal coordination that underlie adaptive resistance, which can be suppressed through combination drug therapy, including non-obvious drug combinations.
Collapse
Affiliation(s)
- Wei Wei
- Division of Chemistry and Chemical Engineering, NanoSystems Biology Cancer Center, California Institute of Technology, Pasadena, CA 91125, USA; Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, CA 91125, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Young Shik Shin
- Division of Chemistry and Chemical Engineering, NanoSystems Biology Cancer Center, California Institute of Technology, Pasadena, CA 91125, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Min Xue
- Division of Chemistry and Chemical Engineering, NanoSystems Biology Cancer Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Tomoo Matsutani
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kenta Masui
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Huijun Yang
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shiro Ikegami
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yuchao Gu
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ken Herrmann
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dazy Johnson
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiangming Ding
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kiwook Hwang
- Division of Chemistry and Chemical Engineering, NanoSystems Biology Cancer Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jungwoo Kim
- Division of Chemistry and Chemical Engineering, NanoSystems Biology Cancer Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jian Zhou
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yapeng Su
- Division of Chemistry and Chemical Engineering, NanoSystems Biology Cancer Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xinmin Li
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bruno Bonetti
- Department of Neurological and Movement Sciences, University of Verona, Verona, 37134, Italy
| | | | - C David James
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Timothy F Cloughesy
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Paul S Mischel
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA.
| | - James R Heath
- Division of Chemistry and Chemical Engineering, NanoSystems Biology Cancer Center, California Institute of Technology, Pasadena, CA 91125, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Beatrice Gini
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Shin YS, Kim J, Johnson D, Dooraghi AA, Mai WX, Ta L, Chatziioannou AF, Phelps ME, Nathanson DA, Heath JR. Quantitative assessments of glycolysis from single cells. TECHNOLOGY 2015; 3:172-178. [PMID: 26835505 PMCID: PMC4728151 DOI: 10.1142/s2339547815200058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The most common positron emission tomography (PET) radio-labeled probe for molecular diagnostics in patient care and research is the glucose analog, 2-deoxy-2-[F-18]fluoro-D-glucose (18F-FDG). We report on an integrated microfluidics-chip/beta particle imaging system for in vitro18F-FDG radioassays of glycolysis with single cell resolution. We investigated the kinetic responses of single glioblastoma cancer cells to targeted inhibitors of receptor tyrosine kinase signaling. Further, we find a weak positive correlation between cell size and rate of glycolysis.
Collapse
Affiliation(s)
- Young Shik Shin
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; NanoSystems Biology Cancer Center, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jungwoo Kim
- NanoSystems Biology Cancer Center, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Dazy Johnson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Alex A Dooraghi
- Crump Institute for Molecular Imaging, University of California, Los Angeles, CA 90095, USA
| | - Wilson X Mai
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Lisa Ta
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Arion F Chatziioannou
- Crump Institute for Molecular Imaging, University of California, Los Angeles, CA 90095, USA
| | - Michael E Phelps
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, University of California, Los Angeles, CA 90095, USA; NanoSystems Biology Cancer Center, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - James R Heath
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; NanoSystems Biology Cancer Center, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
15
|
Dooraghi AA, Keng PY, Chen S, Javed MR, Kim CJCJ, Chatziioannou AF, van Dam RM. Optimization of microfluidic PET tracer synthesis with Cerenkov imaging. Analyst 2013; 138:5654-64. [PMID: 23928799 PMCID: PMC3812546 DOI: 10.1039/c3an01113e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Microfluidic technologies provide an attractive platform for the synthesis of radiolabeled compounds. Visualization of radioisotopes on chip is critical for synthesis optimization and technological development. With Cerenkov imaging, beta particle emitting isotopes can be localized with a sensitive CCD camera. In order for Cerenkov imaging to also serve as a quantitative tool, it is necessary to understand how material properties relevant to Cerenkov emission, namely, index of refraction and beta particle stopping power, affect Cerenkov light output. In this report, we investigate the fundamental physical characteristics of Cerenkov photon yield at different stages of [(18)F]FDG synthesis on the electrowetting on dielectric (EWOD) microfluidic platform. We also demonstrate how Cerenkov imaging has enabled synthesis optimization. Geant4, a Monte Carlo program applied extensively in high energy physics, is used to simulate Cerenkov photon yield from (18)F beta particles traversing materials of interest during [(18)F]FDG synthesis on chip. Our simulations show that the majority (approximately two-thirds) of the (18)F beta particle energy available to produce Cerenkov photons is deposited on the glass plates of the EWOD chip. This result suggests the possibility of using a single calibration factor to convert Cerenkov signal to radioactivity, independent of droplet composition. We validate our simulations with a controlled measurement examining varying ratios of [(18)O]H2O, dimethyl sulfoxide (DMSO), and acetonitrile (MeCN), and find a consistent calibration independent of solvent composition. However, the calibration factor may underestimate the radioactivity in actual synthesis due to discoloration of the droplet during certain steps of probe synthesis. In addition to the attractive quantitative potential of Cerenkov imaging, this imaging strategy provides indispensable qualitative data to guide synthesis optimization. We are able to use this imaging technique to optimize the mixing protocol as well as identify and correct for loss of radioactivity due to the migration of radioactive vapor outside of the EWOD heater, enabling an overall increase in the crude radiochemical yield from 50 ± 3% (n = 3) to 72 ± 13% (n = 5).
Collapse
Affiliation(s)
- Alex A Dooraghi
- Crump Institute for Molecular Imaging, University of California, Los Angeles (UCLA), Los Angeles, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Wang J, Hwang K, Braas D, Dooraghi A, Nathanson D, Campbell DO, Gu Y, Sandberg T, Mischel P, Radu C, Chatziioannou AF, Phelps ME, Christofk H, Heath JR. Fast metabolic response to drug intervention through analysis on a miniaturized, highly integrated molecular imaging system. J Nucl Med 2013; 54:1820-4. [PMID: 23978446 DOI: 10.2967/jnumed.112.118497] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
UNLABELLED We report on a radiopharmaceutical imaging platform designed to capture the kinetics of cellular responses to drugs. METHODS A portable in vitro molecular imaging system comprising a microchip and a β-particle imaging camera permitted routine cell-based radioassays of small numbers of either suspended or adherent cells. We investigated the kinetics of responses of model lymphoma and glioblastoma cancer cell lines to (18)F-FDG uptake after drug exposure. Those responses were correlated with kinetic changes in the cell cycle or with changes in receptor tyrosine kinase signaling. RESULTS The platform enabled direct radioassays of multiple cell types and yielded results comparable to those from conventional approaches; however, the platform used smaller sample sizes, permitted a higher level of quantitation, and did not require cell lysis. CONCLUSION The kinetic analysis enabled by the platform provided a rapid (≈ 1 h) drug screening assay.
Collapse
Affiliation(s)
- Jun Wang
- NSB Cancer Center, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|