1
|
Szczykutowicz TP, Bujila R, Yin Z, Slavic S, Maltz J. Photon count rates estimated from 1980 clinical CT scans. Med Phys 2022; 49:7458-7468. [PMID: 36195999 PMCID: PMC10092147 DOI: 10.1002/mp.15997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND All photon counting detectors have a characteristic count rate over which their performance degrades. Degradation in the clinical setting takes the form of increased noise, reduced material quantification accuracy, and image artifacts. Count rate is a function of patient attenuation, beam filtration, scanner geometry, and X-ray technique. PURPOSE To guide protocol and technology development in the photon counting space, knowledge of clinical count rates spanning the complete range of clinical indications and patient sizes is needed. In this paper, we use clinical data to characterize the range of computed tomography (CT) count rates. METHODS We retrospectively gathered 1980 patient exams spanning the entire body (head/neck/chest/abdomen/extremity) and sampled 36 951 axial image slices. We assigned the tissue labels air/lung/fat/soft tissue/bone to each voxel for each slice using CT number thresholds. We then modeled four different bowtie filters, 70/80/100/120/140 kV spectra, and a range of mA values. We forward-projected each slice to obtain detector-incident count rates, using the geometry of a GE Revolution Apex scanner. Our analysis divided the detector into thirds: the central one-third, one-third of the detector split into two equal regions adjacent to the central third, and the final one-third divided equally between the outer detector edges. We report the 99th percentile of counts to mimic the upper limits of count rates making passing through a patient as a function of patient water equivalent diameter. We also report the percentage of patient scans, by body region, over different count rate thresholds for all combinations of bowtie and beam energy. RESULTS For routine exam types, we recorded count rates of approximately 3.5 × 108 counts/mm2 /s in the torso, extremities, and brain. For neck scans, we observed count rates near 6 × 108 counts/mm2 /s. Our simulations of 1000 mA, appropriately mimicking the mA needs for fast pediatric, fast thoracic, and cardiac scanning, resulted in count rates of over 10 × 108 counts/mm2 /s for the torso, extremities, and brain. At 1000 mA, for the neck region, we observed count rates close to 2 × 109 counts/mm2 /s. Importantly, we saw only a small change in maximum count rate needs over patient size, which we attribute to patient mis-positioning with respect to the bowtie filters. As expected, combinations of kV and bowtie filter with higher beam energies and wider/less attenuating bowtie fluence profiles lead to higher count rates relative to lower energies. The 99th-50th percentile count rate changed the most for the torso region, with a maximum variation of 3.9 × 108 to 1.2 × 107 counts/mm2 /s. The head/neck/extremity regions had less than a 50% change in count rate from the 99th to 50th percentiles. CONCLUSIONS Our results are the first to use a large patient cohort spanning all body regions to characterize count rates in CT. Our results should be useful in helping researchers understand count rates as a function of body region and mA for various combinations of bowtie filter designs and beam energies. Our results indicate clinical rates >1 × 109 counts/mm2 /s, but they do not predict the image quality impact of using a detector with lower characteristic count rates.
Collapse
Affiliation(s)
- Timothy P Szczykutowicz
- Departments of Radiology, Medical Physics, and Biomedical Engineering, University of Wisconsin Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | - Zhye Yin
- GE Healthcare, Waukesha, Wisconsin, USA
| | | | | |
Collapse
|
2
|
Montoya JC, Zhang C, Li Y, Li K, Chen GH. Reconstruction of three-dimensional tomographic patient models for radiation dose modulation in CT from two scout views using deep learning. Med Phys 2022; 49:901-916. [PMID: 34908175 PMCID: PMC9080958 DOI: 10.1002/mp.15414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND A tomographic patient model is essential for radiation dose modulation in x-ray computed tomography (CT). Currently, two-view scout images (also known as topograms) are used to estimate patient models with relatively uniform attenuation coefficients. These patient models do not account for the detailed anatomical variations of human subjects, and thus, may limit the accuracy of intraview or organ-specific dose modulations in emerging CT technologies. PURPOSE The purpose of this work was to show that 3D tomographic patient models can be generated from two-view scout images using deep learning strategies, and the reconstructed 3D patient models indeed enable accurate prescriptions of fluence-field modulated or organ-specific dose delivery in the subsequent CT scans. METHODS CT images and the corresponding two-view scout images were retrospectively collected from 4214 individual CT exams. The collected data were curated for the training of a deep neural network architecture termed ScoutCT-NET to generate 3D tomographic attenuation models from two-view scout images. The trained network was validated using a cohort of 55 136 images from 212 individual patients. To evaluate the accuracy of the reconstructed 3D patient models, radiation delivery plans were generated using ScoutCT-NET 3D patient models and compared with plans prescribed based on true CT images (gold standard) for both fluence-field-modulated CT and organ-specific CT. Radiation dose distributions were estimated using Monte Carlo simulations and were quantitatively evaluated using the Gamma analysis method. Modulated dose profiles were compared against state-of-the-art tube current modulation schemes. Impacts of ScoutCT-NET patient model-based dose modulation schemes on universal-purpose CT acquisitions and organ-specific acquisitions were also compared in terms of overall image appearance, noise magnitude, and noise uniformity. RESULTS The results demonstrate that (1) The end-to-end trained ScoutCT-NET can be used to generate 3D patient attenuation models and demonstrate empirical generalizability. (2) The 3D patient models can be used to accurately estimate the spatial distribution of radiation dose delivered by standard helical CTs prior to the actual CT acquisition; compared to the gold-standard dose distribution, 95.0% of the voxels in the ScoutCT-NET based dose maps have acceptable gamma values for 5 mm distance-to-agreement and 10% dose difference. (3) The 3D patient models also enabled accurate prescription of fluence-field modulated CT to generate a more uniform noise distribution across the patient body compared to tube current-modulated CT. (4) ScoutCT-NET 3D patient models enabled accurate prescription of organ-specific CT to boost image quality for a given body region-of-interest under a given radiation dose constraint. CONCLUSION 3D tomographic attenuation models generated by ScoutCT-NET from two-view scout images can be used to prescribe fluence-field-modulated or organ-specific CT scans with high accuracy for the overall objective of radiation dose reduction or image quality improvement for a given imaging task.
Collapse
Affiliation(s)
- Juan C Montoya
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Chengzhu Zhang
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Yinsheng Li
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ke Li
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Guang-Hong Chen
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Huck SM, Fung GSK, Parodi K, Stierstorfer K. On the potential of ROI imaging in x-ray CT - A comparison of novel dynamic beam attenuators with current technology. Med Phys 2021; 48:3479-3499. [PMID: 33838055 DOI: 10.1002/mp.14879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/30/2022] Open
Abstract
PURPOSE In this work, we explore the potential of region-of-interest (ROI) imaging in x-ray computed tomography (CT). Using two dynamic beam attenuator (DBA) concepts for fluence field modulation (FFM) previously developed, we investigate and evaluate the potential dose savings in comparison with current FFM technology. METHODS ROI imaging is a special application of FFM where the bulk of x-ray radiation is propagated toward a certain anatomical target (ROI), specified by the imaging task, while the surrounding tissue is spared from radiation. We introduce a criterion suitable to quantitatively describe the balance between image quality inside an ROI and total radiation dose with respect to a given ROI imaging task. It accounts for the mean image variance at the ROI and the effective patient dose calculated from Monte Carlo simulations. The criterion is further used to compile task-specific DBA trajectories determining the primary x-ray fluence, and eventually used for comparing different FFM techniques, namely the sheet-based dynamic beam attenuator (sbDBA), the z-aligned sbDBA (z-sbDBA), and an adjustable static operation mode of the z-sbDBA. Furthermore, two static bowtie filters and the influence of tube current modulation (TCM) are included in the comparison. RESULTS Our findings demonstrate by simulations that the presented trajectory optimization method determines reasonable DBA trajectories. The influence of TCM is strongly depending on the imaging task. The narrow bowtie filter allows for dose reductions of about 10% compared to the regular bowtie filter in the considered ROI imaging tasks. The DBAs are shown to realize substantially larger dose reductions. In our cardiac imaging scenario, the DBAs can reduce the effective dose by about 30% (z-sbDBA) or 60% (sbDBA). We can further verify that the noise characteristics are not adversely affected by the DBAs. CONCLUSION Our research demonstrates that ROI imaging using the presented DBA concepts is a promising technique toward a more patient- and task-specific CT imaging requiring lower radiation dose. Both the sbDBA and the z-sbDBA are potential technical solutions for realizing ROI imaging in x-ray CT.
Collapse
Affiliation(s)
- Sascha Manuel Huck
- Siemens Healthcare GmbH, Forchheim, Germany.,Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
| | | | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
| | | |
Collapse
|
4
|
Ji X, Treb K, Li K. Anomalous edge response of cadmium telluride-based photon counting detectors jointly caused by high-flux radiation and inter-pixel communication. Phys Med Biol 2021; 66:10.1088/1361-6560/abf1fe. [PMID: 33765661 PMCID: PMC8086811 DOI: 10.1088/1361-6560/abf1fe] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/25/2021] [Indexed: 12/20/2022]
Abstract
This work reports an edge enhancing effect experimentally observed in cadmium telluride (CdTe)-based photon counting detector (PCD) systems operated under the charge summing (CS) mode and irradiated by high-flux x-rays. Experimental measurements of the edge spread functions (ESFs) of a PCD system (100μm pixel size, 88 ns deadtime) were performed at different input flux levels from 4.5 × 105count per second (cps) mm-2to 1.5 × 109cps mm-2for the single pixel mode (SP) and the CS mode. A theoretical model that incorporates the impacts of inter-pixel communications and the arbitration process involved in the CS mode was developed to help explain the physical origin of the observed edge enhancing effect. Compared with the monotonically increasing ESF of the SP mode, the ESF of the CS mode measured at high-flux levels shows a peak at an intermediate location (50μm from the edge). The peak became more pronounced with increasing flux levels. The theoretically calculated ESFs agreed well with experimental results with relative errors less than 5% at all flux levels and tested. These results indicate that the anomalous edge enhancing effect is jointly caused by the pileup effect and the CS circuit that introduces negative correlations between adjacent pixels. When the input flux is high enough to deliver photons to multiple adjacent pixels within the same deadtime period, the CS mode may treat the coincident x-rays as shared charges and thus introduce count losses in addition to the well-known pileup count loss. When a high contrast object partially blocks certain pixels from x-rays, the adjacent unblocked pixels have an increased probability of registering counts as a result of the negative correlation. This leads to a peak on the ESF at a pixel-to-edge distance half of the pixel pitch.
Collapse
Affiliation(s)
- Xu Ji
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, United States of America
| | - Kevin Treb
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, United States of America
| | - Ke Li
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, United States of America
- Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, United States of America
| |
Collapse
|
5
|
Hernandez AM, Seibert JA, Nosratieh A, Boone JM. Generation and analysis of clinically relevant breast imaging x-ray spectra. Med Phys 2017; 44:2148-2160. [PMID: 28303582 DOI: 10.1002/mp.12222] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 12/27/2016] [Accepted: 02/03/2017] [Indexed: 11/05/2022] Open
Abstract
PURPOSE The purpose of this work was to develop and make available x-ray spectra for some of the most widely used digital mammography (DM), breast tomosynthesis (BT), and breast CT (bCT) systems in North America. METHODS The Monte Carlo code MCNP6 was used to simulate minimally filtered (only beryllium) x-ray spectra at 8 tube potentials from 20 to 49 kV for DM/BT, and 9 tube potentials from 35 to 70 kV for bCT. Vendor-specific anode compositions, effective anode angles, focal spot sizes, source-to-detector distances, and beryllium filtration were simulated. For each 0.5 keV energy bin in all simulated spectra, the fluence was interpolated using cubic splines across the range of simulated tube potentials to produce spectra in 1 kV increments from 20 to 49 kV for DM/BT and from 35 to 70 kV for bCT. The HVL of simulated spectra with conventional filtration (at 35 kV for DM/BT and 49 kV for bCT) was used to assess spectral differences resulting from variations in: (a) focal spot size (0.1 and 0.3 mm IEC), (b) solid angle at the detector (i.e., small and large FOV size), and (c) geometrical specifications for vendors that employ the same anode composition. RESULTS Averaged across all DM/BT vendors, variations in focal spot and FOV size resulted in HVL differences of 2.2% and 0.9%, respectively. Comparing anode compositions separately, the HVL differences for Mo (GE, Siemens) and W (Hologic, Philips, and Siemens) spectra were 0.3% and 0.6%, respectively. Both the commercial Koning and prototype "Doheny" (UC Davis) bCT systems utilize W anodes with a 0.3 mm focal spot. Averaged across both bCT systems, variations in FOV size resulted in a 2.2% difference in HVL. In addition, the Koning spectrum was slightly harder than Doheny with a 4.2% difference in HVL. Therefore to reduce redundancy, a generic DM/BT system and a generic bCT system were used to generate the new spectra reported herein. The spectral models for application to DM/BT were dubbed the Molybdenum, Rhodium, and Tungsten Anode Spectral Models using Interpolating Cubic Splines (MASMICSM-T , RASMICSM-T , and TASMICSM-T ; subscript "M-T" indicating mammography and tomosynthesis). When compared against reference models (MASMIPM , RASMIPM , and TASMIPM ; subscript "M" indicating mammography), the new spectral models were in close agreement with mean differences of 1.3%, -1.3%, and -3.3%, respectively, across tube potential comparisons of 20, 30, and 40 kV with conventional filtration. TASMICSbCT -generated bCT spectra were also in close agreement with the reference TASMIP model with a mean difference of -0.8%, across tube potential comparisons of 35, 49, and 70 kV with 1.5 mm Al filtration. CONCLUSIONS The Mo, Rh, and W anode spectra for application in DM and BT (MASMICSM-T , RASMICSM-T , and TASMICSM-T ) and the W anode spectra for bCT (TASMICSbCT ) as described in this study should be useful for individuals interested in modeling the performance of modern breast x-ray imaging systems including dual-energy mammography which extends to 49 kV. These new spectra are tabulated in spreadsheet form and are made available to any interested party.
Collapse
Affiliation(s)
- Andrew M Hernandez
- Department of Radiology, Biomedical Engineering Graduate Group, University of California Davis, Sacramento, CA, 95817, USA
| | - J Anthony Seibert
- Department of Radiology and Biomedical Engineering, Biomedical Engineering Graduate Group, University of California Davis, Sacramento, CA, 95817, USA
| | - Anita Nosratieh
- Department of Radiology, Biomedical Engineering Graduate Group, University of California Davis, Sacramento, CA, 95817, USA
| | - John M Boone
- Department of Radiology and Biomedical Engineering, Biomedical Engineering Graduate Group, University of California Davis, Sacramento, CA, 95817, USA
| |
Collapse
|
6
|
Gomes J, Gang GJ, Mathews A, Stayman JW. An Investigation of Low-Dose 3D Scout Scans for Computed Tomography. ACTA ACUST UNITED AC 2017; 10132. [PMID: 28596635 DOI: 10.1117/12.2255514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
PURPOSE Commonly 2D scouts or topograms are used prior to CT scan acquisition. However, low-dose 3D scouts could potentially provide additional information for more effective patient positioning and selection of acquisition protocols. We propose using model-based iterative reconstruction to reconstruct low exposure tomographic data to maintain image quality in both low-dose 3D scouts and reprojected topograms based on those 3D scouts. METHODS We performed tomographic acquisitions on a CBCT test-bench using a range of exposure settings from 16.6 to 231.9 total mAs. Both an anthropomorphic phantom and a 32 cm CTDI phantom were scanned. The penalized-likelihood reconstructions were made using Matlab and CUDA libraries and reconstruction parameters were tuned to determine the best regularization strength and delta parameter. RMS error between reconstructions and the highest exposure reconstruction were computed, and CTDIW values were reported for each exposure setting. RMS error for reprojected topograms were also computed. RESULTS We find that we are able to produce low-dose (0.417 mGy) 3D scouts that show high-contrast and large anatomical features while maintaining the ability to produce traditional topograms. CONCLUSIONS We demonstrated that iterative reconstruction can mitigate noise in very low exposure CT acquisitions to enable 3D CT scout. Such additional 3D information may lead to improved protocols for patient positioning and acquisition refinements as well as a number of advanced dose reduction strategies that require localization of anatomical features and quantities that are not provided by simple 2D topograms.
Collapse
Affiliation(s)
- Juliana Gomes
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, USA 21205
| | - Grace J Gang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, USA 21205
| | - Aswin Mathews
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, USA 21205
| | - J Webster Stayman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, USA 21205
| |
Collapse
|
7
|
Punnoose J, Xu J, Sisniega A, Zbijewski W, Siewerdsen JH. Technical Note: spektr 3.0-A computational tool for x-ray spectrum modeling and analysis. Med Phys 2016; 43:4711. [PMID: 27487888 PMCID: PMC4958109 DOI: 10.1118/1.4955438] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 06/13/2016] [Accepted: 06/24/2016] [Indexed: 12/24/2022] Open
Abstract
PURPOSE A computational toolkit (spektr 3.0) has been developed to calculate x-ray spectra based on the tungsten anode spectral model using interpolating cubic splines (TASMICS) algorithm, updating previous work based on the tungsten anode spectral model using interpolating polynomials (TASMIP) spectral model. The toolkit includes a matlab (The Mathworks, Natick, MA) function library and improved user interface (UI) along with an optimization algorithm to match calculated beam quality with measurements. METHODS The spektr code generates x-ray spectra (photons/mm(2)/mAs at 100 cm from the source) using TASMICS as default (with TASMIP as an option) in 1 keV energy bins over beam energies 20-150 kV, extensible to 640 kV using the TASMICS spectra. An optimization tool was implemented to compute the added filtration (Al and W) that provides a best match between calculated and measured x-ray tube output (mGy/mAs or mR/mAs) for individual x-ray tubes that may differ from that assumed in TASMICS or TASMIP and to account for factors such as anode angle. RESULTS The median percent difference in photon counts for a TASMICS and TASMIP spectrum was 4.15% for tube potentials in the range 30-140 kV with the largest percentage difference arising in the low and high energy bins due to measurement errors in the empirically based TASMIP model and inaccurate polynomial fitting. The optimization tool reported a close agreement between measured and calculated spectra with a Pearson coefficient of 0.98. CONCLUSIONS The computational toolkit, spektr, has been updated to version 3.0, validated against measurements and existing models, and made available as open source code. Video tutorials for the spektr function library, UI, and optimization tool are available.
Collapse
Affiliation(s)
- J Punnoose
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205
| | - J Xu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205
| | - A Sisniega
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205
| | - W Zbijewski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205
| | - J H Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
8
|
Hsieh SS, Peng MV, May CA, Shunhavanich P, Fleischmann D, Pelc NJ. A prototype piecewise-linear dynamic attenuator. Phys Med Biol 2016; 61:4974-88. [PMID: 27284705 DOI: 10.1088/0031-9155/61/13/4974] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The piecewise-linear dynamic attenuator has been proposed as a mechanism in CT scanning for personalizing the x-ray illumination on a patient- and application-specific basis. Previous simulations have shown benefits in image quality, scatter, and dose objectives. We report on the first prototype implementation. This prototype is reduced in scale and speed and is integrated into a tabletop CT system with a smaller field of view (25 cm) and longer scan time (42 s) compared to a clinical system. Stainless steel wedges were machined and affixed to linear actuators, which were in turn held secure by a frame built using rapid prototyping technologies. The actuators were computer-controlled, with characteristic noise of about 100 microns. Simulations suggest that in a clinical setting, the impact of actuator noise could lead to artifacts of only 1 HU. Ring artifacts were minimized by careful design of the wedges. A water beam hardening correction was applied and the scan was collimated to reduce scatter. We scanned a 16 cm water cylinder phantom as well as an anthropomorphic pediatric phantom. The artifacts present in reconstructed images are comparable to artifacts normally seen with this tabletop system. Compared to a flat-field reference scan, increased detectability at reduced dose is shown and streaking is reduced. Artifacts are modest in our images and further refinement is possible. Issues of mechanical speed and stability in the challenging clinical CT environment will be addressed in a future design.
Collapse
Affiliation(s)
- Scott S Hsieh
- Departments of Radiology, Stanford University, Stanford, CA 94305, USA. Departments of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
9
|
Szczykutowicz TP, Hermus J. Creation of an atlas of filter positions for fluence field modulated CT. Med Phys 2015; 42:1779-86. [DOI: 10.1118/1.4915123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
10
|
Hsieh SS, Pelc NJ. A dynamic attenuator improves spectral imaging with energy-discriminating, photon counting detectors. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:729-739. [PMID: 25265628 DOI: 10.1109/tmi.2014.2360381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Energy-discriminating, photon counting (EDPC) detectors have high potential in spectral imaging applications but exhibit degraded performance when the incident count rate approaches or exceeds the characteristic count rate of the detector. In order to reduce the requirements on the detector, we explore the strategy of modulating the X-ray flux field using a recently proposed dynamic, piecewise-linear attenuator. A previous paper studied this modulation for photon counting detectors but did not explore the impact on spectral applications. In this work, we modeled detection with a bipolar triangular pulse shape (Taguchi et al., 2011) and estimated the Cramer-Rao lower bound (CRLB) of the variance of material selective and equivalent monoenergetic images, assuming deterministic errors at high flux could be corrected. We compared different materials for the dynamic attenuator and found that rare earth elements, such as erbium, outperformed previously proposed materials such as iron in spectral imaging. The redistribution of flux reduces the variance or dose, consistent with previous studies on benefits with conventional detectors. Numerical simulations based on DICOM datasets were used to assess the impact of the dynamic attenuator for detectors with several different characteristic count rates. The dynamic attenuator reduced the peak incident count rate by a factor of 4 in the thorax and 44 in the pelvis, and a 10 Mcps/mm (2) EDPC detector with dynamic attenuator provided generally superior image quality to a 100 Mcps/mm (2) detector with reference bowtie filter for the same dose. The improvement is more pronounced in the material images.
Collapse
|