1
|
Perkins A, Healy B, Coldrey B. Determination of kilovoltage x-ray therapy depth doses with open-ended applicators. Phys Eng Sci Med 2024; 47:1191-1201. [PMID: 38807012 DOI: 10.1007/s13246-024-01439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/07/2024] [Indexed: 05/30/2024]
Abstract
The purpose of this work was to determine percentage depth dose (PDD) curves for kilovoltage x-rays from the WOmed-T105 unit, with open-ended steel applicators and beam qualities ranging from 0.5 to 4.2 mm Al. Measurements were made with parallel plate chambers in a water phantom, with extrapolation based on a fifth order polynomial used to estimate the surface dose. Measurements were also made with parallel plate chambers in a plastic water phantom, with thin plastic sheets used to obtain detailed measurements at shallow depths (less than 1 mm). Monte Carlo simulations were performed using the EGSnrc package, with two different sources as input: a SpekPy simulation of the x-ray beam and a full simulation of the x-ray tube, treatment head and applicators. Results showed that all four methods (two measurements and two simulations) agreed within the measurement uncertainty at depths greater than 2 mm. At shallow depths, significant differences were noted. At depths less than 0.1 mm, the full Monte Carlo simulation and the solid water measurements showed a sharp spike in surface dose which is attributed to electron contamination, which was not seen in the SpekPy Monte Carlo simulation or the extrapolated water measurements. At depths between 0.1 mm and 2 mm, beyond the range of contaminant electrons, the extrapolated water measurements underestimate the dose by up to 13% compared to the full Monte Carlo simulation and the solid water measurements, attributed to fluorescent photons generated in the applicators. This work demonstrates that for open-ended applicators, measurement of depth doses in water with extrapolation of surface dose has the potential to significantly underestimate the dose at shallow depths between the surface and 2 mm, even after eliminating electron contamination from the beam.
Collapse
Affiliation(s)
- Anne Perkins
- Icon Cancer Centre Freemasons, East Melbourne, VIC, Australia.
| | - Brendan Healy
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Melbourne, VIC, Australia
| | - Ben Coldrey
- Department of Health, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Bustillo JPO, Paino J, Barnes M, Cayley J, de Rover V, Cameron M, Engels EEM, Tehei M, Beirne S, Wallace GG, Rosenfeld AB, Lerch MLF. Design, construction, and dosimetry of 3D printed heterogeneous phantoms for synchrotron brain cancer radiation therapy quality assurance. Phys Med Biol 2024; 69:145003. [PMID: 38914107 DOI: 10.1088/1361-6560/ad5b48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/24/2024] [Indexed: 06/26/2024]
Abstract
Objective.This study aims to design, manufacture, and test 3D printed quality assurance (QA) dosimetry phantoms for synchrotron brain cancer radiation therapy at the Australian synchrotron.Approach.Fabricated 3D printed phantoms from simple slab phantoms, a preclinical rat phantom, and an anthropomorphic head phantom were fabricated and characterized. Attenuation measurements of various polymers, ceramics and metals were acquired using synchrotron monochromatic micro-computed tomography (CT) imaging. Polylactic acid plus, VeroClear, Durable resin, and tricalcium phosphate were used in constructing the phantoms. Furthermore, 3D printed bone equivalent materials were compared relative to ICRU bone and hemihydrate plaster. Homogeneous and heterogeneous rat phantoms were designed and fabricated using tissue-equivalent materials. Geometric accuracy, CT imaging, and consistency were considered. Moreover, synchrotron broad-beam x-rays were delivered using a 3 Tesla superconducting multipole wiggler field for four sets of synchrotron radiation beam qualities. Dose measurements were acquired using a PinPoint ionization chamber and compared relative to a water phantom and a RMI457 Solid Water phantom. Experimental depth doses were compared relative to calculated doses using a Geant4 Monte Carlo simulation.Main results.Polylactic acid (PLA+) shows to have a good match with the attenuation coefficient of ICRU water, while both tricalcium phosphate and hydroxyapatite have good attenuation similarity with ICRU bone cortical. PLA+ material can be used as substitute to RMI457 slabs for reference dosimetry with a maximum difference of 1.84%. Percent depth dose measurement also shows that PLA+ has the best match with water and RMI457 within ±2.2% and ±1.6%, respectively. Overall, PLA+ phantoms match with RMI457 phantoms within ±3%.Significance and conclusion.The fabricated phantoms are excellent tissue equivalent equipment for synchrotron radiation dosimetry QA measurement. Both the rat and the anthropomorphic head phantoms are useful in synchrotron brain cancer radiotherapy dosimetry, experiments, and future clinical translation of synchrotron radiotherapy and imaging.
Collapse
Affiliation(s)
- John Paul O Bustillo
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
- Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Ermita, Manila City 1000 Metro Manila, The Philippines
| | - Jason Paino
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| | - Micah Barnes
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
- Imaging and Medical Beamline, Australian Nuclear Science and Technology Organisation- Australian Synchrotron, Kulin Nation, Clayton, VIC 3168, Australia
| | - James Cayley
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| | - Vincent de Rover
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| | - Matthew Cameron
- Imaging and Medical Beamline, Australian Nuclear Science and Technology Organisation- Australian Synchrotron, Kulin Nation, Clayton, VIC 3168, Australia
| | - Elette E M Engels
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
- Imaging and Medical Beamline, Australian Nuclear Science and Technology Organisation- Australian Synchrotron, Kulin Nation, Clayton, VIC 3168, Australia
| | - Moeava Tehei
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| | - Stephen Beirne
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| | - Michael L F Lerch
- Centre for Medical Radiation Physics, University of Wollongong Australia, Wollongong, NSW 2522, Australia
| |
Collapse
|
3
|
Hill R, Barbagallo C, Baldock C. In Australia professional registration for qualified medical physicists should be mandated through the Australian Health Practitioner Regulation Agency (AHPRA). Phys Eng Sci Med 2024; 47:381-384. [PMID: 38165633 DOI: 10.1007/s13246-023-01376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Affiliation(s)
- Robin Hill
- Department of Radiation Oncology, Chris O'Brien Lifehouse, 2050, Camperdown, NSW, Australia
- Institute of Medical Physics, School of Physics, University of Sydney, 2006, Camperdown, NSW, Australia
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, 2050, Camperdown, NSW, Australia
| | - Cathryn Barbagallo
- Australasian College of Physical Scientists and Engineers in Medicine, 2020, Mascot, NSW, Australia
- Alfred Health Radiation Oncology, Alfred Health, 3181, Prahran, VIC, Australia
| | - Clive Baldock
- Graduate Research School, Western Sydney University, 2747, Penrith, NSW, Australia.
| |
Collapse
|
4
|
Yousif YAM, Daniel J, Healy B, Hill R. A study of polarity effect for various ionization chambers in kilovoltage x-ray beams. Med Phys 2024; 51:4513-4523. [PMID: 38669346 DOI: 10.1002/mp.17096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/01/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Ionization chambers play an essential role in dosimetry measurements for kilovoltage (kV) x-ray beams. Despite their widespread use, there is limited data on the absolute values for the polarity correction factors across a range of commonly employed ionization chambers. PURPOSE This study aimed to investigate the polarity effects for five different ionization chambers in kV x-ray beams. METHODS Two plane-parallel chambers being the Advanced Markus and Roos and three cylindrical chambers; 3D PinPoint, Semiflex and Farmer chamber (PTW, Freiburg, Germany), were employed to measure the polarity correction factors. The kV x-ray beams were produced from an Xstrahl 300 unit (Xstrahl Ltd., UK). All measurements were acquired at 2 cm depth in a PTW-MP1 water tank for beams between 60 kVp (HVL 1.29 mm Al) and 300 kVp (HVL 3.08 mm Cu), and field sizes of 2-10 cm diameter for 30 cm focus-source distance (FSD) and 4 × 4 cm2 - 20 × 20 cm2 for 50 cm FSD. The ionization chambers were connected to a PTW-UNIDOS electrometer, and the polarity effect was determined using the AAPM TG-61 code of practice methodology. RESULTS The study revealed significant polarity effects in ionization chambers, especially in those with smaller volumes. For the plane-parallel chambers, the Advanced Markus chamber exhibited a maximum polarity effect of 2.5%, whereas the Roos chamber showed 0.3% at 150 KVp with the 10 cm circular diameter open-ended applicator. Among the cylindrical chambers at the same beam energy and applicator, the Pinpoint chamber exhibited a 3% polarity effect, followed by Semiflex with 1.7%, and Farmer with 0.4%. However, as the beam energy increased to 300 kVp, the polarity effect significantly increased reaching 8.5% for the Advanced Markus chamber and 13.5% for the PinPoint chamber at a 20 × 20 cm2 field size. Notably, the magnitude of the polarity effect increased with both the field size and beam energy, and was significantly influenced by the size of the chamber's sensitive volume. CONCLUSIONS The findings demonstrate that ionization chambers can exhibit substantial polarity effects in kV x-ray beams, particularly for those chambers with smaller volumes. Therefore, it is important to account for polarity corrections when conducting relative dose measurements in kV x-ray beams to enhance the dosimetry accuracy and improve patient dose calculations.
Collapse
Affiliation(s)
- Yousif A M Yousif
- Crown Princess Mary Cancer Centre, Westmead Hospital, Wentworthville, New South Wales, Australia
- North West Cancer Centre, Tamworth Hospital, Tamworth, New South Wales, Australia
| | - John Daniel
- North West Cancer Centre, Tamworth Hospital, Tamworth, New South Wales, Australia
- Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, New South Wales, Australia
| | - Brendan Healy
- Australian Clinical Dosimetry Service (ACDS), Yallambie, Victoria, Australia
| | - Robin Hill
- Department of Radiation Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
- Institute of Medical Physics, School of Physics, University of Sydney, Camperdown, New South Wales, Australia
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| |
Collapse
|
5
|
Das IJ, Khan AU, Dogan SK, Longo M. Grid/lattice therapy: consideration of small field dosimetry. Br J Radiol 2024; 97:1088-1098. [PMID: 38552328 PMCID: PMC11135801 DOI: 10.1093/bjr/tqae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 05/31/2024] Open
Abstract
Small-field dosimetry used in special procedures such as gamma knife, Cyberknife, Tomotherapy, IMRT, and VMAT has been in evolution after several radiation incidences with very significant (70%) errors due to poor understanding of the dosimetry. IAEA-TRS-483 and AAPM-TG-155 have provided comprehensive information on small-fields dosimetry in terms of code of practice and relative dosimetry. Data for various detectors and conditions have been elaborated. It turns out that with a suitable detectors dose measurement accuracy can be reasonably (±3%) achieved for 6 MV beams for fields >1×1 cm2. For grid therapy, even though the treatment is performed with small fields created by either customized blocks, multileaf collimator (MLC), or specialized devices, it is multiple small fields that creates combined treatment. Hence understanding the dosimetry in collection of holes of small field is a separate challenge that needs to be addressed. It is more critical to understand the scattering conditions from multiple holes that form the treatment grid fields. Scattering changes the beam energy (softer) and hence dosimetry protocol needs to be properly examined for having suitable dosimetric parameters. In lieu of beam parameter unavailability in physical grid devices, MLC-based forward and inverse planning is an alternative path for bulky tumours. Selection of detectors in small field measurement is critical and it is more critical in mixed beams created by scattering condition. Ramification of small field concept used in grid therapy along with major consideration of scattering condition is explored. Even though this review article is focussed mainly for dosimetry for low-energy megavoltage photon beam (6 MV) but similar procedures could be adopted for high energy beams. To eliminate small field issues, lattice therapy with the help of MLC is a preferrable choice.
Collapse
Affiliation(s)
- Indra J Das
- Department of Radiation Oncology, Northwest Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Ahtesham Ullah Khan
- San Bortolo Hospital, Medical Physics Department, Viale F. Rodolfi 37, 36100 Vicenza, Italy
| | - Serpil K Dogan
- Department of Radiation Oncology, Northwest Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Mariaconcetta Longo
- San Bortolo Hospital, Medical Physics Department, Viale F. Rodolfi 37, 36100 Vicenza, Italy
| |
Collapse
|
6
|
Aspradakis MM, Buchillier T, Kohler G, Kottler C, Krayenbühl J. SSRMP Recommendations No 9: Reference dosimetry in low and medium energy x-ray beams. Z Med Phys 2023; 33:601-617. [PMID: 37202239 PMCID: PMC10751714 DOI: 10.1016/j.zemedi.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 05/20/2023]
Abstract
The SSRMP recommendations on reference dosimetry in kilovolt beams as used in radiation therapy were revised to establish current practice in Switzerland. The recommendations specify the dosimetry formalism, reference class dosimeter systems and conditions used for the calibration of low and medium energy x-ray beams. Practical guidance is provided on the determination of the beam quality specifier and all corrections required for converting instrument readings to absorbed dose to water. Guidance is also provided on the determination of relative dose under non-reference conditions and on the cross calibration of instruments. The effect of lack of electron equilibrium and influence of contaminant electrons when using thin window plane parallel chambers at x-ray tube potentials higher than 50kV is elaborated in an appendix. In Switzerland the calibration of the reference system used for dosimetry is regulated by law. METAS and IRA are the authorities providing this calibration service to the radiotherapy departments. The last appendix of these recommendations summarise this calibration chain.
Collapse
Affiliation(s)
| | - Thierry Buchillier
- Institut de radiophysique (IRA), Rue du Grand-Pré 1, 1007 Lausanne, Switzerland
| | - Götz Kohler
- Klinik für Strahlentherapie und Radioonkologie, Universitätsspital Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Christian Kottler
- Eidgenössisches Institut für Metrologie (METAS), Lindenweg 50, 3003 Bern-Wabern, Switzerland
| | - Jérôme Krayenbühl
- Klinik für Radio-Onkologie, Universitätsspital Zürich, Rämistrasse 100, 8091 Zurich, Switzerland
| |
Collapse
|
7
|
Maeyama T, Hayashi K, Watanabe Y, Ohara M, Nakagawa S. Development of a silicone-based radio-fluorogenic dosimeter using dihydrorhodamine 6G. Phys Med 2023; 114:102684. [PMID: 37778206 DOI: 10.1016/j.ejmp.2023.102684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/24/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023] Open
Abstract
A silicon-based three-dimensional dosimeter can be formed in a free shape without a container and deformed because of its flexibility. Several studies have focused on enhancing its radiological characteristics and assessing its applicability as a quality assurance tool for image-guided and adaptive radiation therapy, considering motion and deformation. Here, we applied a fluorescence probe (dihydrorhodamine 6G, DHR6G) to a silicon elastomer as a new radiosensitive compound that converts nonfluorescent into fluorescent dyes using irradiation, and its fluorescence intensity increases linearly with the absorbed dose. In this study, we demonstrated a cost-effective synthesis method and optimized the composition conditions. The results showed that the DHR6G-SE prepared from 2.2 × 10-3 wt% DHR6G, 0.024 wt% pyridine, and a silicone elastomer (SE) (SILPOT TM 184, base/curing agent = 10/1) exhibited a linear increase in fluorescence with radiation exposure within a dose range of 0-8 Gy and a highly stable sensitivity for as long as 64 h. To demonstrate its container-less characteristics, the possibility of dosimetry for low-energy X-rays using DHR6G-SE was investigated.
Collapse
Affiliation(s)
- Takuya Maeyama
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan; RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Kiichiro Hayashi
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Yusuke Watanabe
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Maki Ohara
- National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-City, Chiba 263-8555, Japan
| | - Seiko Nakagawa
- Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto-ku, Tokyo 135-0064, Japan
| |
Collapse
|
8
|
Zhang C, Lewin W, Cullen A, Thommen D, Hill R. Evaluation of 3D-printed bolus for radiotherapy using megavoltage X-ray beams. Radiol Phys Technol 2023; 16:414-421. [PMID: 37294521 PMCID: PMC10435601 DOI: 10.1007/s12194-023-00727-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
A radiotherapy bolus is a tissue-equivalent material placed on the skin to adjust the surface dose of megavoltage X-ray beams used for treatment. In this study, the dosimetric properties of two 3D-printed filament materials, polylactic acid (PLA) and thermoplastic polyether urethane (TPU), used as radiotherapy boluses, were investigated. The dosimetric properties of PLA and TPU were compared with those of several conventional bolus materials and RMI457 Solid Water. Percentage depth-dose (PDD) measurements in the build-up region were performed for all materials using 6 and 10 MV photon treatment beams on Varian linear accelerators. The results showed that the differences in the PDDs of the 3D-printed materials from the RMI457 Solid Water were within 3%, whereas those of the dental wax and SuperFlab gel materials were within 5%. This indicates that PLA and TPU 3D-printed materials are suitable radiotherapy bolus materials.
Collapse
Affiliation(s)
- Chunsu Zhang
- Institute of Medical Physics, School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia
| | - Will Lewin
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia
| | - Ashley Cullen
- Institute of Medical Physics, School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia
- Department of Radiation Oncology, Chris O'Brien Lifehouse, Missenden Rd, Camperdown,Sydney, NSW, 2050, Australia
| | - Daniel Thommen
- Institute of Medical Physics, School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia
- Department of Radiation Oncology, Chris O'Brien Lifehouse, Missenden Rd, Camperdown,Sydney, NSW, 2050, Australia
| | - Robin Hill
- Institute of Medical Physics, School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia.
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia.
- Department of Radiation Oncology, Chris O'Brien Lifehouse, Missenden Rd, Camperdown,Sydney, NSW, 2050, Australia.
| |
Collapse
|
9
|
Secchi V, Cova F, Villa I, Babin V, Nikl M, Campione M, Monguzzi A. Energy Partitioning in Multicomponent Nanoscintillators for Enhanced Localized Radiotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24693-24700. [PMID: 37172016 DOI: 10.1021/acsami.3c00853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Multicomponent nanomaterials consisting of dense scintillating particles functionalized by or embedding optically active conjugated photosensitizers (PSs) for cytotoxic reactive oxygen species (ROS) have been proposed in the last decade as coadjuvant agents for radiotherapy of cancer. They have been designed to make scintillation-activated sensitizers for ROS production in an aqueous environment under exposure to ionizing radiations. However, a detailed understanding of the global energy partitioning process occurring during the scintillation is still missing, in particular regarding the role of the non-radiative energy transfer between the nanoscintillator and the conjugated moieties which is usually considered crucial for the activation of PSs and therefore pivotal to enhance the therapeutic effect. We investigate this mechanism in a series of PS-functionalized scintillating nanotubes where the non-radiative energy transfer yield has been tuned by control of the intermolecular distance between the nanotube and the conjugated system. The obtained results indicate that non-radiative energy transfer has a negligible effect on the ROS sensitization efficiency, thus opening the way to the development of different architectures for breakthrough radiotherapy coadjutants to be tested in clinics.
Collapse
Affiliation(s)
- Valeria Secchi
- Dipartimento di Scienza Dei Materiali, Università Degli Studi Milano-Bicocca, 20125 Milano, Italy
- NANOMIB, Center for Biomedical Nanomedicine, University of Milano-Bicocca, P.zza Ateneo Nuovo 1, 20126 Milan, Italy
| | - Francesca Cova
- Dipartimento di Scienza Dei Materiali, Università Degli Studi Milano-Bicocca, 20125 Milano, Italy
| | - Irene Villa
- Dipartimento di Scienza Dei Materiali, Università Degli Studi Milano-Bicocca, 20125 Milano, Italy
- FZU─Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 16 200 Prague, Czech Republic
| | - Vladimir Babin
- FZU─Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 16 200 Prague, Czech Republic
| | - Martin Nikl
- FZU─Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 16 200 Prague, Czech Republic
| | - Marcello Campione
- NANOMIB, Center for Biomedical Nanomedicine, University of Milano-Bicocca, P.zza Ateneo Nuovo 1, 20126 Milan, Italy
- Department of Earth and Environmental Sciences, Università Degli Studi Milano-Bicocca, Piazza Della Scienza 4, 20126 Milano, Italy
| | - Angelo Monguzzi
- Dipartimento di Scienza Dei Materiali, Università Degli Studi Milano-Bicocca, 20125 Milano, Italy
- NANOMIB, Center for Biomedical Nanomedicine, University of Milano-Bicocca, P.zza Ateneo Nuovo 1, 20126 Milan, Italy
| |
Collapse
|
10
|
Amini SM, Rezayat SM, Dinarvand R, Kharrazi S, Jaafari MR. Gold cluster encapsulated liposomes: theranostic agent with stimulus triggered release capability. Med Oncol 2023; 40:126. [PMID: 36961614 DOI: 10.1007/s12032-023-01991-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/07/2023] [Indexed: 03/25/2023]
Abstract
Cancer is a major cause of death worldwide. Cancer-resistant to chemo or radiotherapy treatment is a challenge that could be overcome by a nanotechnology approach. Providing a theranostic nano-platform for different cancer treatment strategies could be revolutionary. Here we introduce a multifunctional theranostic nanostructure which has the capacity for improving cancer diagnosis and treatment through better chemo and radiotherapy and current x-ray imaging systems through co-encapsulation of a small gold cluster and anticancer drug doxorubicin. 2 nm gold clusters represent good heating under radio frequency electric field (RF-EF) exposure and have been used for in vitro hyperthermia treatment of cancerous cells. Liposomal doxorubicin (169 ± 19.8 nm) with gold clusters encapsulation efficiency of 13.2 ± 3.0% and doxorubicin encapsulation efficiency of 64.7 ± 0.7% were prepared and studied as a theranostic agent with a high potential in different cancer treatment modalities. Exposure to a radiofrequency electric field on prepared formulation caused 20.2 ± 2.1% drug release and twice decreasing of IC50 on colorectal carcinoma cells. X-ray attenuation efficiency of the liposomal gold cluster was better than commercial iohexol and free gold clusters in different concentrations. Finally, treatment of gold clusters on cancerous cells results in a significant decrease in the viability of irradiated cells to cobalt-60 beam. Based on these experiments, we concluded that the conventional liposomal formulation of doxorubicin that has been co-encapsulated with small gold clusters could be a suitable theranostic nanostructure for cancer treatment and merits further investigation.
Collapse
Affiliation(s)
- Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Centre, Novel Drug Delivery Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sharmin Kharrazi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mahmoud Reza Jaafari
- Pharmaceutical Technology Institute, School of Pharmacy, Nanotechnology Research Center, Mashhad University of Medical Sciences, 91775-1365, Mashhad, Iran.
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, 91775-1365, Mashhad, Iran.
| |
Collapse
|
11
|
Iseri T, Tanabe Y, Onizuka R, Torigoe Y, Horikirizono H, Itamoto K, Sunahara H, Itoh H, Tani K, Nakaichi M. A Monte Carlo study on dose distribution of an orthovoltage radiation therapy system. Phys Eng Sci Med 2023; 46:623-632. [PMID: 36940063 DOI: 10.1007/s13246-023-01237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/23/2023] [Indexed: 03/21/2023]
Abstract
It is important to plan radiotherapy treatment and establish optimal dose distribution to reduce the chances of side effects and injury. Because there are no commercially available tools for calculating dose distribution in orthovoltage radiotherapy in companion animals, we developed an algorithm to accomplish this and verified its characteristics using tumor disease cases. First, we used the Monte Carlo method to develop an algorithm to calculate the dose distribution of orthovoltage radiotherapy (280 kVp; MBR-320, Hitachi Medical Corporation, Tokyo, Japan) using BEAMnrc at our clinic. Using development of Monte Carlo method, dose distribution for tumor and normal organs were evaluated in brain tumors, squamous cell carcinomas of the head, and feline nasal lymphomas. In all cases of brain tumors, the mean dose delivered to the GTV ranged from 36.2 to 76.1% of the prescribed dose due to the decrease through the skull. In the nasal lymphoma in cats, the eyes with covered a 2 mm-thick lead plate, the respective average dose to the eyes was 71.8% and 89.9% less than that to the uncovered eyes. The findings may be useful for informed decision making in orthovoltage radiotherapy with more effective and targeted irradiation and data collection allowing detailed informed consent.
Collapse
Affiliation(s)
- Toshie Iseri
- Department of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi, Yamagishi, Japan.
| | - Yoshinori Tanabe
- Graduate School of Health Sciences, Okayama University, Okayama, Japan
| | - Ryouta Onizuka
- Department of Therapeutic Radiology, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Yuri Torigoe
- Department of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi, Yamagishi, Japan
| | - Hiro Horikirizono
- Department of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi, Yamagishi, Japan
| | - Kazuhito Itamoto
- Animal medical center, Joint faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hiroshi Sunahara
- Department of Veterinary Surgery, Joint faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Harumichi Itoh
- Animal medical center, Joint faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Kenji Tani
- Department of Veterinary Surgery, Joint faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Munekazu Nakaichi
- Department of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi, Yamagishi, Japan
| |
Collapse
|
12
|
Nikandrovs M, McClean B, Shields L, McCavana P, Vintró LL. Clinical treatment planning for kilovoltage radiotherapy using EGSnrc and Python. J Appl Clin Med Phys 2023; 24:e13832. [PMID: 36444164 PMCID: PMC9924114 DOI: 10.1002/acm2.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/22/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2022] Open
Abstract
Kilovoltage radiotherapy dose calculations are generally performed with manual point dose calculations based on water dosimetry. Tissue heterogeneities, irregular surfaces, and introduction of lead cutouts for treatment are either not taken into account or crudely approximated in manual calculations. Full Monte Carlo (MC) simulations can account for these limitations but require a validated treatment unit model, accurately segmented patient tissues and a treatment planning interface (TPI) to facilitate the simulation setup and result analysis. EGSnrc was used in this work to create a model of Xstrahl kilovoltage unit extending the range of energies, applicators, and validation parameters previously published. The novel functionality of the Python-based framework developed in this work allowed beam modification using custom lead cutouts and shields, commonly present in kilovoltage treatments, as well as absolute dose normalization using the output of the unit. 3D user-friendly planning interface of the developed framework facilitated non-co-planar beam setups for CT phantom MC simulations in DOSXYZnrc. The MC models of 49 clinical beams showed good agreement with measured and reference data, to within 2% for percentage depth dose curves, 4% for beam profiles at various depths, 2% for backscatter factors, 0.5 mm of absorber material for half-value layers, and 3% for output factors. End-to-end testing of the framework using custom lead cutouts resulted in good agreement to within 3% of absolute dose distribution between simulations and EBT3 GafChromic film measurements. Gamma analysis demonstrated poor agreement at the field edges which was attributed to the limitations of simulating smooth cutout shapes. Dose simulated in a heterogeneous phantom agreed to within 7% with measured values converted using the ratio of mass energy absorption coefficients of appropriate tissues and air.
Collapse
Affiliation(s)
- Mihails Nikandrovs
- School of PhysicsUniversity College DublinBelfieldIreland
- St. Lukes Radiation Oncology NetworkDublinIreland
| | - Brendan McClean
- Centre for Physics in Health and MedicineUniversity College DublinBelfieldDublinIreland
- St. Lukes Radiation Oncology NetworkDublinIreland
| | - Laura Shields
- Centre for Physics in Health and MedicineUniversity College DublinBelfieldDublinIreland
- St. Lukes Radiation Oncology NetworkDublinIreland
| | - Patrick McCavana
- Centre for Physics in Health and MedicineUniversity College DublinBelfieldDublinIreland
- St. Lukes Radiation Oncology NetworkDublinIreland
| | - Luis León Vintró
- School of PhysicsUniversity College DublinBelfieldIreland
- Centre for Physics in Health and MedicineUniversity College DublinBelfieldDublinIreland
| |
Collapse
|
13
|
Sun W, Chu C, Li S, Ma X, Liu P, Chen S, Chen H. Nanosensitizer-mediated unique dynamic therapy tactics for effective inhibition of deep tumors. Adv Drug Deliv Rev 2023; 192:114643. [PMID: 36493905 DOI: 10.1016/j.addr.2022.114643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/08/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
X-ray and ultrasound waves are widely employed for diagnostic and therapeutic purposes in clinic. Recently, they have been demonstrated to be ideal excitation sources that activate sensitizers for the dynamic therapy of deep-seated tumors due to their excellent tissue penetration. Here, we focused on the recent progress in five years in the unique dynamic therapy strategies for the effective inhibition of deep tumors that activated by X-ray and ultrasound waves. The concepts, mechanisms, and typical nanosensitizers used as energy transducers are described as well as their applications in oncology. The future developments and potential challenges are also discussed. These unique therapeutic methods are expected to be developed as depth-independent, minimally invasive, and multifunctional strategies for the clinic treatment of various deep malignancies.
Collapse
Affiliation(s)
- Wenjing Sun
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chengchao Chu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Engineering Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Shi Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaoqian Ma
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Peifei Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shileng Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hongmin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
14
|
Xiong Z, Zhong Y, Banks TI, Reynolds R, Chiu T, Tan J, Zhang Y, Parsons D, Yan Y, Godley A, Stojadinovic S. Machine characterization and central axis depth dose data of a superficial x-ray radiotherapy unit. Biomed Phys Eng Express 2022; 9. [PMID: 36541531 DOI: 10.1088/2057-1976/aca611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Objectives. The purpose of this study is to present data from the clinical commissioning of an Xstrahl 150 x-ray unit used for superficial radiotherapy,Methods. Commissioning tasks included vendor acceptance tests, timer reproducibility, linearity and end-effect measurements, half-value layer (HVL) measurements, inverse square law verification, head-leakage measurements, and beam output calibration. In addition, percent depth dose (PDD) curves were determined for different combinations of filter/kV settings and applicators. Automated PDD water phantom scans were performed utilizing four contemporary detectors: a microDiamond detector, a microSilicon detector, an EDGE detector, and a PinPoint ionization chamber. The measured PDD data were compared to the published values in BJR Supplement 25,Results. The x-ray unit's mechanical, safety, and radiation characteristics were within vendor-stated specifications. Across sixty commissioned x-ray beams, the PDDs determined in water using solid state detectors were in excellent agreement with the BJR 25 data. For the lower (<100 kVp) and medium-energy (≥100 kVp) superficial beams the average agreement was within [-3.6,+0.4]% and [-3.7,+1.4]% range, respectively. For the high-energy superficial (low-energy orthovoltage) x-rays at 150 kVp, the average difference for the largest 20 × 20 cm2collimator was (-0.7 ± 1.0)%,Conclusions. This study presents machine characterization data collected for clinical use of a superficial x-ray unit. Special focus was placed on utilizing contemporary detectors and techniques for the relative PDD measurements using a motorized water phantom. The results in this study confirm that the aggregate values published in the BJR 25 report still serve as a valid benchmark when comparing data from site-specific measurements, or the reference data for clinical utilization without such measurements,Advances in knowledge. This paper presents comprehensive data from the acceptance and commissioning of a modern kilovoltage superficial x-ray radiotherapy machine. Comparisons between the PDD data measured in this study using different detectors and BJR 25 data are highlighted.
Collapse
Affiliation(s)
- Zhenyu Xiong
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America.,Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States of America
| | - Yuncheng Zhong
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Thomas I Banks
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Robert Reynolds
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Tsuicheng Chiu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Jun Tan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - You Zhang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - David Parsons
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Yulong Yan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Andrew Godley
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Strahinja Stojadinovic
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| |
Collapse
|
15
|
Russ E, Davis CM, Slaven JE, Bradfield DT, Selwyn RG, Day RM. Comparison of the Medical Uses and Cellular Effects of High and Low Linear Energy Transfer Radiation. TOXICS 2022; 10:toxics10100628. [PMID: 36287908 PMCID: PMC9609561 DOI: 10.3390/toxics10100628] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 05/14/2023]
Abstract
Exposure to ionizing radiation can occur during medical treatments, from naturally occurring sources in the environment, or as the result of a nuclear accident or thermonuclear war. The severity of cellular damage from ionizing radiation exposure is dependent upon a number of factors including the absorbed radiation dose of the exposure (energy absorbed per unit mass of the exposure), dose rate, area and volume of tissue exposed, type of radiation (e.g., X-rays, high-energy gamma rays, protons, or neutrons) and linear energy transfer. While the dose, the dose rate, and dose distribution in tissue are aspects of a radiation exposure that can be varied experimentally or in medical treatments, the LET and eV are inherent characteristics of the type of radiation. High-LET radiation deposits a higher concentration of energy in a shorter distance when traversing tissue compared with low-LET radiation. The different biological effects of high and low LET with similar energies have been documented in vivo in animal models and in cultured cells. High-LET results in intense macromolecular damage and more cell death. Findings indicate that while both low- and high-LET radiation activate non-homologous end-joining DNA repair activity, efficient repair of high-LET radiation requires the homologous recombination repair pathway. Low- and high-LET radiation activate p53 transcription factor activity in most cells, but high LET activates NF-kB transcription factor at lower radiation doses than low-LET radiation. Here we review the development, uses, and current understanding of the cellular effects of low- and high-LET radiation exposure.
Collapse
Affiliation(s)
- Eric Russ
- Graduate Program of Cellular and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Catherine M. Davis
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - John E. Slaven
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Dmitry T. Bradfield
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Reed G. Selwyn
- Department of Radiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Regina M. Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Correspondence:
| |
Collapse
|
16
|
Secchi V, Monguzzi A, Villa I. Design Principles of Hybrid Nanomaterials for Radiotherapy Enhanced by Photodynamic Therapy. Int J Mol Sci 2022; 23:8736. [PMID: 35955867 PMCID: PMC9369190 DOI: 10.3390/ijms23158736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022] Open
Abstract
Radiation (RT) remains the most frequently used treatment against cancer. The main limitation of RT is its lack of specificity for cancer tissues and the limited maximum radiation dose that can be safely delivered without damaging the surrounding healthy tissues. A step forward in the development of better RT is achieved by coupling it with other treatments, such as photodynamic therapy (PDT). PDT is an anti-cancer therapy that relies on the light activation of non-toxic molecules-called photosensitizers-to generate ROS such as singlet oxygen. By conjugating photosensitizers to dense nanoscintillators in hybrid architectures, the PDT could be activated during RT, leading to cell death through an additional pathway with respect to the one activated by RT alone. Therefore, combining RT and PDT can lead to a synergistic enhancement of the overall efficacy of RT. However, the involvement of hybrids in combination with ionizing radiation is not trivial: the comprehension of the relationship among RT, scintillation emission of the nanoscintillator, and therapeutic effects of the locally excited photosensitizers is desirable to optimize the design of the hybrid nanoparticles for improved effects in radio-oncology. Here, we discuss the working principles of the PDT-activated RT methods, pointing out the guidelines for the development of effective coadjutants to be tested in clinics.
Collapse
Affiliation(s)
- Valeria Secchi
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
- NANOMIB, Center for Biomedical Nanomedicine, University of Milano-Bicocca, P.zza Ateneo Nuovo 1, 20126 Milan, Italy
| | - Angelo Monguzzi
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
- NANOMIB, Center for Biomedical Nanomedicine, University of Milano-Bicocca, P.zza Ateneo Nuovo 1, 20126 Milan, Italy
| | - Irene Villa
- Institute of Physics of the Czech Academy of Sciences, FZU, Cukrovarnická 10/112, 16200 Prague, Czech Republic
| |
Collapse
|
17
|
Dorababu A. Pyrazolopyrimidines as attractive pharmacophores in efficient drug design: A recent update. Arch Pharm (Weinheim) 2022; 355:e2200154. [PMID: 35698212 DOI: 10.1002/ardp.202200154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 12/03/2022]
Abstract
Among the menacing diseases, cancer needs the most attention as millions of people are affected by it worldwide. Genetic and environmental factors play a pivotal role in causing cancer. Although a wide range of underlying mechanisms of cancer has been discovered, efficient treatments have not been discovered to date. Additionally, diseases caused by microbes such as viruses, bacteria, protozoa, and so forth, persistently result in several deaths. Also, inflammation is a major factor that leads to several health issues. For decades, drug design has become a major part of drug discovery and development for curing various diseases. Among the large number of pharmacological agents that have been synthesized, only very few have emerged as efficient drug molecules. Most of them are heterocyclic compounds, which are promising candidates for the design of efficient drug molecules. Furthermore, fused heterocycles showed comparatively stronger pharmacological activities than monocyclic heterocycles. The literature reveals that pyrazolopyrimidines have outstanding biological activity. Hence, here, the diverse pharmacological activities shown by pyrazolopyrimidine derivatives reported in the last 5 years are collated and reviewed systematically. This review is classified into various sections focusing on anticancer, antimicrobial, anti-inflammatory, and enzyme inhibitors. Structure-activity relationships are discussed in brief, which will help researchers design potent pharmacological agents.
Collapse
Affiliation(s)
- Atukuri Dorababu
- SRMPP Government First Grade College, Huvinahadagali, Karnataka, India
| |
Collapse
|
18
|
Use of calculations to validate beam quality and relative dose measurements for a kilovoltage X-ray therapy unit. Phys Eng Sci Med 2022; 45:537-546. [PMID: 35381970 DOI: 10.1007/s13246-022-01120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
Relative dosimetry measurements are required to fully commission kilovoltage X-ray units for superficial and orthovoltage X-ray therapy. Validation of these relative dosimetry measurements with Monte Carlo methods is advantageous being independent of the measurement process. In this study use is made of the X-ray spectrum generating program SpekPy along with the EGSnrc Monte Carlo code to calculate depth doses and explore the dosimetry effect of changes in backscatter. These calculations are compared with previously reported measurements for the Pantak SXT 150 X-ray therapy unit. SpekPy can also be used to generate half value layer (HVL) values and these are also compared to previously reported HVL measurements for the same X-ray therapy unit. It was found that agreements of the order of 5% in HVL, 3% in depth dose and 1% in backscatter doses were found between Monte Carlo calculations and the previously published measured data. Exit doses in conditions of lack of full backscatter were explored with Monte Carlo calculations demonstrating reduced exit dose up to 20% in these conditions. It is concluded that SpekPy with Monte Carlo codes such as EGSnrc provides a straightforward approach to validating various relative dosimetry measurements in kilovoltage X-ray dosimetry.
Collapse
|
19
|
Daniel J, Yousif Y, Zifodya J, Hill R. An evaluation of solid state detectors for the relative dosimetry of Kilovoltage x-ray beams. Med Phys 2022; 49:4082-4091. [PMID: 35179232 DOI: 10.1002/mp.15543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Kilovoltage (kV) x-ray beams are an essential modality in radiotherapy. Solid state detectors are widely available in radiotherapy departments but their use for kV dosimetry has been limited to date. This study aimed to evaluate the dosimetric performance of a range of solid state detectors for kV dosimetry. METHOD Percentage depth doses (PDDs) and Relative Output Factors (ROFs) were measured on an XStrahl 300 unit (XStrahl-Ltd., UK) using 60, 100, 150 and 300 kVp x-ray beams. The fields were defined by circular applicators with field sizes of 2, 5, 8 and 10 cm diameter and square applicators of field sizes 10×10 and 20×20 cm2 . The following PTW dosimeters were used for measurements: Advanced Markus, PinPoint 3D and Semiflex ionization chambers; Photon, Electron and SRS diodes plus the microDiamond detector. All PDDs were normalized at 5 mm depth and ROFs were measured at 3 mm depth to avoid collisions with the end of the applicators. ROFs measured using chambers were corrected for polarity and ion-recombination effects. RESULTS AND DISCUSSION PDD measurements for 60,100 and 150 kVp beam exhibited good agreement between all diodes and the ionization chambers over the entire range of depths except in the first few millimeters near the surface. However, for the 300 kVp, all diode detectors exhibited an over-responding behaviour compared to reference depth dose data measured with the Advanced Markus chamber. Relative output factors with the diodes were higher than the Advanced Markus chamber at low energy, and the magnitude of these differences is inversely proportional to the field sizes. The PTW P diode showed the highest variation of up to 15% in the output factor compared to the Advanced Markus chamber. CONCLUSION This study evaluated the dosimetric performance of a range of solid state detectors in kV relative dosimetry. This study showed that diode detectors are a suitable replacement for ionization chambers for the PDD measurement of low energy kV beams (60-150 kVp) except for the PDD of 60 kVp with the smaller field sizes. However, an over-responding behaviour of diode detectors at 300 kVp beams shows that diode detectors are not suitable for the PDD measurement of high energy kV beams. Generally, all solid state detectors over responded to ROF measurements, indicating that it is not suitable for ROF measurements. In general, both shielded and unshielded diodes produced a similar dosimetric response, which demonstrates that the energy dependence of solid state detectors should be considered before they are used for any kV relative dosimetric measurements. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- John Daniel
- North West Cancer Centre, Tamworth, NSW, Australia
| | | | | | - Robin Hill
- Department of Radiation Oncology, Chris O'Brien Lifehouse, Sydney, Australia.,Institute of Medical Physics, School of Physics, University of Sydney, Australia.,Biomedical Innovation, Chris O'Brien Lifehouse, Missenden Rd, Camperdown, Sydney, Australia
| |
Collapse
|
20
|
Alyani Nezhad Z, Geraily G. A review study on application of gel dosimeters in low energy radiation dosimetry. Appl Radiat Isot 2021; 179:110015. [PMID: 34753087 DOI: 10.1016/j.apradiso.2021.110015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/16/2021] [Accepted: 11/01/2021] [Indexed: 11/02/2022]
Abstract
INTRODUCTION The accuracy of dose delivered to tumors and surrounding normal tissues is vital in either radiotherapy using low energy photons and radiological techniques as well as radiotherapy with mega voltage energies. This systematic review focuses on applications of gel dosimetry in low energy radiation contexts applied either through radiotherapy or interventional radiology. METHODS Literature was reviewed based on electronic databases: Google Scholar, Scopus, Embase, PubMed, Science Direct, Research Gate and IOP science. The search was conducted on relevant terms in the title and keywords. 82 articles related to our criteria has been extracted and included in the study. RESULTS The findings demonstrated that almost all types of gel dosimeters had an acceptable accuracy and high resolution in low energy radiation contexts with their own limitations and advantages. CONCLUSION Gel dosimeters compete well with other conventional dosimeters in terms of tissue equivalence and energy dependence; however, choosing the best gel dosimeter for use in low energy radiation dosimetry depends on their different limitation and advantages. There are some general features about each gel group which can help to select the suitable gel related to our work. For example, methacrylic acid based gel dosimeters show higher sensitivity compared to other types of gel dosimeters but have more toxicity and are dose rate dependent in the range of dose rates applied in low energy contexts. In addition, Fricke gel dosimeters exhibit less sensitivity while they are independent of dose rate and energy applied in low energy situations.
Collapse
Affiliation(s)
- Zahra Alyani Nezhad
- Medical Physics and Medical Engineering Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Geraily
- Medical Physics and Medical Engineering Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Araki F. Determination of an ionization chamber response using quality index for kilovoltage x-ray beams. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Li WB, Stangl S, Klapproth A, Shevtsov M, Hernandez A, Kimm MA, Schuemann J, Qiu R, Michalke B, Bernal MA, Li J, Hürkamp K, Zhang Y, Multhoff G. Application of High-Z Gold Nanoparticles in Targeted Cancer Radiotherapy-Pharmacokinetic Modeling, Monte Carlo Simulation and Radiobiological Effect Modeling. Cancers (Basel) 2021; 13:5370. [PMID: 34771534 PMCID: PMC8582555 DOI: 10.3390/cancers13215370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 02/05/2023] Open
Abstract
High-Z gold nanoparticles (AuNPs) conjugated to a targeting antibody can help to improve tumor control in radiotherapy while simultaneously minimizing radiotoxicity to adjacent healthy tissue. This paper summarizes the main findings of a joint research program which applied AuNP-conjugates in preclinical modeling of radiotherapy at the Klinikum rechts der Isar, Technical University of Munich and Helmholtz Zentrum München. A pharmacokinetic model of superparamagnetic iron oxide nanoparticles was developed in preparation for a model simulating the uptake and distribution of AuNPs in mice. Multi-scale Monte Carlo simulations were performed on a single AuNP and multiple AuNPs in tumor cells at cellular and molecular levels to determine enhancements in the radiation dose and generation of chemical radicals in close proximity to AuNPs. A biologically based mathematical model was developed to predict the biological response of AuNPs in radiation enhancement. Although simulations of a single AuNP demonstrated a clear dose enhancement, simulations relating to the generation of chemical radicals and the induction of DNA strand breaks induced by multiple AuNPs showed only a minor dose enhancement. The differences in the simulated enhancements at molecular and cellular levels indicate that further investigations are necessary to better understand the impact of the physical, chemical, and biological parameters in preclinical experimental settings prior to a translation of these AuNPs models into targeted cancer radiotherapy.
Collapse
Affiliation(s)
- Wei Bo Li
- Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; (A.K.); (K.H.)
| | - Stefan Stangl
- Center for Translational Cancer Research, Technische Universität München (TranslaTUM), Klinikum Rechts der Isar, Einsteinstr. 25, 81675 Munich, Germany; (S.S.); (M.S.); (A.H.)
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaningerstr. 22, 81675 Munich, Germany
| | - Alexander Klapproth
- Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; (A.K.); (K.H.)
- Center for Translational Cancer Research, Technische Universität München (TranslaTUM), Klinikum Rechts der Isar, Einsteinstr. 25, 81675 Munich, Germany; (S.S.); (M.S.); (A.H.)
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaningerstr. 22, 81675 Munich, Germany
| | - Maxim Shevtsov
- Center for Translational Cancer Research, Technische Universität München (TranslaTUM), Klinikum Rechts der Isar, Einsteinstr. 25, 81675 Munich, Germany; (S.S.); (M.S.); (A.H.)
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaningerstr. 22, 81675 Munich, Germany
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave., 4, 194064 Saint Petersburg, Russia
| | - Alicia Hernandez
- Center for Translational Cancer Research, Technische Universität München (TranslaTUM), Klinikum Rechts der Isar, Einsteinstr. 25, 81675 Munich, Germany; (S.S.); (M.S.); (A.H.)
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaningerstr. 22, 81675 Munich, Germany
| | - Melanie A. Kimm
- Department of Diagnostic and Interventional Radiology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, 81337 Munich, Germany;
| | - Jan Schuemann
- Physics Division, Department of Radiation Oncology, Massachusetts General Hospital (MGH) & Harvard Medical School, Boston, MA 02114, USA;
| | - Rui Qiu
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholz Zentrum München-German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany;
| | - Mario A. Bernal
- Gleb Wataghin Institute of Physics, State University of Campinas, Campinas 13083-859, SP, Brazil;
| | - Junli Li
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, 81337 Munich, Germany;
| | - Kerstin Hürkamp
- Institute of Radiation Medicine, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; (A.K.); (K.H.)
| | - Yibao Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China;
| | - Gabriele Multhoff
- Center for Translational Cancer Research, Technische Universität München (TranslaTUM), Klinikum Rechts der Isar, Einsteinstr. 25, 81675 Munich, Germany; (S.S.); (M.S.); (A.H.)
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaningerstr. 22, 81675 Munich, Germany
| |
Collapse
|
23
|
Araki F, Umeno S. SURFACE DOSE ESTIMATION BY A KAP METER FOR KILOVOLTAGE X-RAY BEAMS. RADIATION PROTECTION DOSIMETRY 2021; 195:124-131. [PMID: 34423373 DOI: 10.1093/rpd/ncab122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 06/12/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
This study aims to estimate the entrance surface dose (ESD) of a water phantom for kilovoltage x-ray beams using an air kerma area product meter (KAP meter) equipped in an x-ray unit. The KAP meter was calibrated in terms of the ESD determined by a plane-parallel ionization chamber based on a 60Co absorbed dose-to-water calibration coefficient, ${N}_{D,w}^{{}^{60}\mathrm{C}\mathrm{o}}$. The ESD measured using the KAP meter was verified by comparing it with that estimated by the air kerma calibration coefficient, NK, for x-ray beam qualities. The ratio of ESDs based on ${N}_{D,w}^{{}^{60}\mathrm{C}\mathrm{o}}$ and NK was 1.003 on average and independent of the beam quality. The ESD by the KAP meter was an agreement within ±1.5% with that measured using the plane-parallel chamber for 10 × 10-30 × 30 cm2 fields with a source-surface distance of 75-150 cm. It was possible to estimate the ESD directly in a water phantom for x-ray beams without correction factors compared to the existing air kerma calibration, using a KAP meter calibrated based on ${N}_{D,w}^{{}^{60}\mathrm{C}\mathrm{o}}$.
Collapse
Affiliation(s)
- F Araki
- Department of Health Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan
| | - S Umeno
- SAGA Heavy Ion Medical Accelerator in Tosu, 3049 Harakogamachi, Tosu, Saga, 841-0071, Japan
| |
Collapse
|
24
|
Sampayan SE, Sampayan KC, Caporaso GJ, Chen YJ, Falabella S, Hawkins SA, Hearn J, Watson JA, Zentler JM. Megavolt bremsstrahlung measurements from linear induction accelerators demonstrate possible use as a FLASH radiotherapy source to reduce acute toxicity. Sci Rep 2021; 11:17104. [PMID: 34429440 PMCID: PMC8385032 DOI: 10.1038/s41598-021-95807-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/26/2021] [Indexed: 11/11/2022] Open
Abstract
Recent studies indicate better efficacy and healthy tissue sparing with high dose-rate FLASH radiotherapy (FLASH-RT) cancer treatment. This technique delivers a prompt high radiation dose rather than fractional doses over time. While some suggest thresholds of > 40 Gy s−1 with a maximal effect at > 100 Gy s−1, accumulated evidence shows that instantaneous dose-rate and irradiation time are critical. Mechanisms are still debated, but toxicity is minimized while inducing apoptosis in malignant tissue. Delivery technologies to date show that a capability gap exists with clinic scale, broad area, deep penetrating, high dose rate systems. Based on these trends, if FLASH-RT is adopted, it may become a dominant approach except in the least technologically advanced countries. The linear induction accelerator (LIA) developed for high instantaneous and high average dose-rate, species independent charged particle acceleration, has yet to be considered for this application. We review the status of LIA technology, explore the physics of bremsstrahlung-converter-target interactions and our work on stabilizing the electron beam. While the gradient of the LIA is low, we present our preliminary work to improve the gradient by an order of magnitude, presenting a point design for a multibeam FLASH-RT system using a single accelerator for application to conformal FLASH-RT.
Collapse
Affiliation(s)
- Stephen E Sampayan
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA, 94551, USA. .,Opcondys, Inc., 600 Commerce Court, Manteca, CA, 95336, USA.
| | | | - George J Caporaso
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA, 94551, USA
| | - Yu-Jiuan Chen
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA, 94551, USA
| | - Steve Falabella
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA, 94551, USA
| | - Steven A Hawkins
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA, 94551, USA
| | - Jason Hearn
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James A Watson
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA, 94551, USA
| | - Jan-Mark Zentler
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA, 94551, USA
| |
Collapse
|
25
|
Detailed Monte Carlo analysis of the secondary photons coming out of the therapeutic X-ray beam of linear accelerator. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2021. [DOI: 10.2478/pjmpe-2021-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
External photon beam radiotherapy is often used in tumor treatment. The photons are generated from the target which had stricken by the primary electron beam (incident particles). The photon beam contains the primary photons coming directly from the target and secondary photons coming from the photon interactions with head component materials (scattered photons). Altogether is thereafter used in radiotherapy treatment. This Monte Carlo study aims to investigate and evaluate the secondary radiations (photons) in terms of fluence, energy fluence, spectral distribution, mean energy and angular spread distribution.
The secondary photons, which contributed in radiotherapy treatment, are examined and evaluated in number (fluence) and energy. At the phantom surface, the secondary photons originated in the whole linac head are mainly coming from the primary collimator. In 0.45% of secondary photons coming from the whole linac head, the primary collimator contributes by 86% and they are more energetic. However, the flattening filter and the secondary collimator contribute together by less than 14% and their photons are less energetic and then can deteriorate the beam dosimetry quality. To improve the radiotherapy treatment quality, the number of photons of low energy should be as low as possible in the clinical beam. Our work can be a basic investigation to use in the improvement of linac head configuration and specially the beam modifiers.
Collapse
|
26
|
Massillon-Jl G. Future directions on low-energy radiation dosimetry. Sci Rep 2021; 11:10569. [PMID: 34012097 PMCID: PMC8134474 DOI: 10.1038/s41598-021-90152-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/05/2021] [Indexed: 01/02/2023] Open
Abstract
For more than one century, low-energy (< 100 keV) photons (x-rays and gamma) have been widely used in different areas including biomedical research and medical applications such as mammography, fluoroscopy, general radiography, computed tomography, and brachytherapy treatment, amongst others. It has been demonstrated that most of the electrons produced by low photon energy beams have energies below 10 keV. However, the physical processes by which these low energy electrons interact with matter are not yet well understood. Besides, it is generally assumed that all the energy deposited within a dosimeter sensitive volume is transformed into a response. But such an assumption could be incorrect since part of the energy deposited might be used to create defects or damages at the molecular and atomic level. Consequently, the relationship between absorbed dose and dosimeter response can be mistaken. During the last few years, efforts have been made to identify models that allow to understand these interaction processes from a quantum mechanical point of view. Some approaches are based on electron-beam − solid-state-interaction models to calculate electron scattering cross-sections while others consider the density functional theory method to localize low energy electrons and evaluate the energy loss due to the creations of defects and damages in matter. The results obtained so far could be considered as a starting point. This paper presents some methodologies based on fundamental quantum mechanics which can be considered useful for dealing with low-energy interactions.
Collapse
Affiliation(s)
- G Massillon-Jl
- Instituto de Física, Universidad Nacional Autónoma de México, 04510, Coyoacan Mexico City, Mexico.
| |
Collapse
|
27
|
Kilovoltage therapy is well and truly alive and needed in a modern radiotherapy centre. Phys Eng Sci Med 2021; 44:341-345. [PMID: 33899157 DOI: 10.1007/s13246-021-00998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Lim TY, Mirkovic D, Wang X, Tailor R. Devices for dosimetric measurements and quality assurance of the Xstrahl 300 orthovoltage unit. J Appl Clin Med Phys 2021; 22:151-157. [PMID: 33733608 PMCID: PMC8035565 DOI: 10.1002/acm2.13220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 02/02/2023] Open
Abstract
The Xstrahl 300 orthovoltage unit is designed to deliver kilovoltage radiation therapy using the appositional technique. However, it is not equipped with some typical linear accelerator features, such as mechanical distance indicator and crosshair projection, which are useful for facilitating equipment setup during various quality assurance (QA) and research activities. Therefore, we designed and constructed slip‐in devices to facilitate QA for dosimetric measurements of our Xstrahl 300 unit. These include: (a) an ion chamber positioning system for dosimetric measurements, (b) a mechanical pointer for setting dosimeter distance to a nominal 50 cm, and (c) a crosshair projector with built‐in light to facilitate alignment of dosimeter to the center of the radiation field. These devices provide a high degree of setup reproducibility thereby minimizing setup errors. We used these devices to perform QA of the Xstrahl 300 orthovoltage unit. One of the QA tests we perform is a constancy check of beam output and energy. Our data since start of clinical use of this unit (approximately 2.5 yr) show dose outputs to be remarkably reproducible (2σ = ±0.4%) for all three clinical beams (75, 125, and 250 kVp). These devices have provided both convenience and high‐precision during the unit’s commissioning, and continue to provide the same for various QA activities on the Xstrahl 300 orthovoltage unit.
Collapse
Affiliation(s)
- Tze Yee Lim
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dragan Mirkovic
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ramesh Tailor
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
29
|
Radiobiological Studies of Microvascular Damage through In Vitro Models: A Methodological Perspective. Cancers (Basel) 2021; 13:cancers13051182. [PMID: 33803333 PMCID: PMC7967181 DOI: 10.3390/cancers13051182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Ionizing radiation (IR) is used in radiotherapy as a treatment to destroy cancer. Such treatment also affects other tissues, resulting in the so-called normal tissue complications. Endothelial cells (ECs) composing the microvasculature have essential roles in the microenvironment's homeostasis (ME). Thus, detrimental effects induced by irradiation on ECs can influence both the tumor and healthy tissue. In-vitro models can be advantageous to study these phenomena. In this systematic review, we analyzed in-vitro models of ECs subjected to IR. We highlighted the critical issues involved in the production, irradiation, and analysis of such radiobiological in-vitro models to study microvascular endothelial cells damage. For each step, we analyzed common methodologies and critical points required to obtain a reliable model. We identified the generation of a 3D environment for model production and the inclusion of heterogeneous cell populations for a reliable ME recapitulation. Additionally, we highlighted how essential information on the irradiation scheme, crucial to correlate better observed in vitro effects to the clinical scenario, are often neglected in the analyzed studies, limiting the translation of achieved results.
Collapse
|
30
|
Nakatake C, Araki F. Energy response of radiophotoluminescent glass dosimeter for diagnostic kilovoltage x-ray beams. Phys Med 2021; 82:144-149. [PMID: 33611051 DOI: 10.1016/j.ejmp.2021.01.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/12/2021] [Accepted: 01/24/2021] [Indexed: 10/22/2022] Open
Abstract
PURPOSE This study aimed to investigate the energy response of a radiophotoluminescent glass dosimeter (RGD) for diagnostic kilovoltage x-ray beams by Monte Carlo (MC) calculations and measurements. METHODS The uniformity and reproducibility of GD-352M (with Sn filter) and GD-302M (no filter) were tested with 45 RGDs in free air. Subsequently, the RGD response was obtained as a function of an Al-HVL using the parameter, quality index (QI), which is defined as the ratio of the effective energy (keV) to the maximum energy (keV) of the photons. The x-ray fluence spectra with QI of 0.4, 0.5, and 0.6 were set for tube voltages of 50 ~ 137.6 kVp. The RGD response was calculated in free air using the MC method and verified by the air kerma, Kair, measured using an ionization chamber. RESULTS The uniformity and reproducibility of the 45 RGDs were ± 2.3% and ± 2.7% for GD-352M and ± 0.7% and ± 1.6% for GD-302M at the one standard deviation level, respectively. The calculated RGD response was 0.965 to 1.062 at Al-HVL 2.73 mm or more for GD-352M and varied from 3.9 to 2.8 for GD-302M. Both RGD responses exhibited a good correlation with the Al-HVL for the given QI. Kair measured by RGDs for each beam quality with a QI of 0.5 was in the range of -5%~0.8% for GD-352M and -1.8%~3% for GD-302M, relative to the chamber measurements. CONCLUSIONS The RGD response was indicated as a function of the Al-HVL for the given QI, and it presented a good correlation with the Al-HVL.
Collapse
Affiliation(s)
- Chihiro Nakatake
- Graduate School of Health Sciences, Kumamoto University, 4-24-1, Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan
| | - Fujio Araki
- Department of Health Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1, Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan.
| |
Collapse
|
31
|
Czarnecki D, Zink K, Pimpinella M, Borbinha J, Teles P, Pinto M. Monte Carlo calculation of quality correction factors based on air kerma and absorbed dose to water in medium energy x-ray beams. Phys Med Biol 2020; 65:245042. [PMID: 33120372 DOI: 10.1088/1361-6560/abc5c9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Clinical dosimetry is typically performed using ion chambers calibrated in terms of absorbed dose to water. As primary measurement standards for this quantity for low and medium energy x-rays are available only since a few years, most dosimetry protocols for this photon energy range are still based on air kerma calibration. For that reason, data for beam quality correction factors [Formula: see text], necessary for the application of dose to water based protocols, are scarce in literature. Currently the international IAEA TRS-398 Code of Practice is under revision and new [Formula: see text] factors for a large number of ion chambers will be introduced in the update of this protocol. Several international groups provided the IAEA with experimental and Monte Carlo based data for this revision. Within the European Community the EURAMET 16NRM03 RTNORM project was initiated for that purpose. In the present study, Monte Carlo based results for the beam quality correction factors in medium energy x-ray beams for six ion chambers applying different Monte Carlo codes are presented. Additionally, the perturbation factor p Q , necessary for the calculation of dose to water from an air kerma calibration coefficient, was determined. The beam quality correction factor [Formula: see text] for the chambers varied in the investigated energy range by about 4%-5%, and for five out of six chambers the data could be fitted by a simple logarithmic function, if the half-value-layer was used as the beam quality specifier. Corresponding data using different Monte Carlo codes for the same ion chamber agreed within 0.5%. For the perturbation factor p Q , the data did not obey a comparable simple relationship with the beam quality specifier. The variation of p Q for all ion chambers was in the range of 3%-4%. Compared to recently published data, our p Q data is around 1% larger, although the same Monte Carlo code has been used. Compared to the latest experimental data, there are even deviations in the range of 2%.
Collapse
Affiliation(s)
- Damian Czarnecki
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen (THM), Giessen, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Valdes-Cortez C, Ballester F, Vijande J, Gimenez V, Gimenez-Alventosa V, Perez-Calatayud J, Niatsetski Y, Andreo P. Depth-dose measurement corrections for the surface electronic brachytherapy beams of an Esteya ® unit: a Monte Carlo study. Phys Med Biol 2020; 65. [DOI: 10.1088/1361-6560/ab9773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/28/2020] [Indexed: 11/12/2022]
Abstract
Abstract
Three different correction factors for measurements with the parallel-plate ionization chamber PTW T34013 on the Esteya electronic brachytherapy unit have been investigated. This chamber type is recommended by AAPM TG-253 for depth-dose measurements in the 69.5 kV x-ray beam generated by the Esteya unit.
Monte Carlo simulations using the PENELOPE-2018 system were performed to determine the absorbed dose deposited in water and in the chamber sensitive volume at different depths with a Type A uncertainty smaller than 0.1%. Chamber-to-chamber differences have been explored performing measurements using three different chambers. The range of conical applicators available, from 10 to 30 mm in diameter, has been explored.
Using a depth-independent global chamber perturbation correction factor without a shift of the effective point of measurement yielded differences between the absorbed dose to water and the corrected absorbed dose in the sensitive volume of the chamber of up to 1% and 0.6% for the 10 mm and 30 mm applicators, respectively. Calculations using a depth-dependent perturbation factor, including or excluding a shift of the effective point of measurement, resulted in depth-dose differences of about ± 0.5% or less for both applicators. The smallest depth-dose differences were obtained when a shift of the effective point of measurement was implemented, being displaced 0.4 mm towards the center of the sensitive volume of the chamber. The correction factors were obtained with combined uncertainties of 0.4% (k = 2). Uncertainties due to chamber-to-chamber differences are found to be lower than 2%.
The results emphasize the relevance of carrying out detailed Monte Carlo studies for each electronic brachytherapy device and ionization chamber used for its dosimetry.
Collapse
|
33
|
Romero M, Macchione MA, Mattea F, Strumia M. The role of polymers in analytical medical applications. A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Rosenfeld AB, Biasi G, Petasecca M, Lerch MLF, Villani G, Feygelman V. Semiconductor dosimetry in modern external-beam radiation therapy. Phys Med Biol 2020; 65:16TR01. [PMID: 32604077 DOI: 10.1088/1361-6560/aba163] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
35
|
Fulkerson RK, Perez‐Calatayud J, Ballester F, Buzurovic I, Kim Y, Niatsetski Y, Ouhib Z, Pai S, Rivard MJ, Rong Y, Siebert F, Thomadsen BR, Weigand F. Surface brachytherapy: Joint report of the AAPM and the GEC‐ESTRO Task Group No. 253. Med Phys 2020; 47:e951-e987. [DOI: 10.1002/mp.14436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Regina K. Fulkerson
- Department of Medical Physics University of Wisconsin–Madison Madison WI53705 USA
| | - Jose Perez‐Calatayud
- Radiotherapy Department La Fe Hospital Valencia46026 Spain
- Radiotherapy Department Clinica Benidorm Alicante03501 Spain
| | - Facundo Ballester
- Department of Atomic, Molecular and Nuclear Physics University of Valencia Burjassot46100 Spain
| | - Ivan Buzurovic
- Dana‐Farber/Brigham and Women’s Cancer Center Harvard Medical School Boston MA02115 USA
| | - Yongbok Kim
- Department of Radiation Oncology University of Arizona Tucson AZ85724 USA
| | - Yury Niatsetski
- R&D Elekta Brachytherapy Waardgelder 1 Veenendaal3903 DD Netherlands
| | - Zoubir Ouhib
- Radiation Oncology Department Lynn Regional Cancer CenterBoca Raton Community Hospital Boca Raton FL33486 USA
| | - Sujatha Pai
- Radion Inc. 20380 Town Center Lane, Suite 135 Cupertino CA95014 USA
| | - Mark J. Rivard
- Department of Radiation Oncology Alpert Medical School Brown University Providence RI02903 USA
| | - Yi Rong
- Department of Radiation Oncology University of California Davis Comprehensive Cancer Center Sacramento CA95817 USA
| | - Frank‐André Siebert
- UK S‐HCampus Kiel, Klinik fur Strahlentherapie (Radioonkologie) Arnold‐Heller‐Str. 3Haus 50 KielD‐24105 Germany
| | - Bruce R. Thomadsen
- Department of Medical Physics University of Wisconsin–Madison Madison WI53705 USA
| | - Frank Weigand
- Carl Zeiss Meditec AG Rudolf‐Eber‐Straße 11 Oberkochen73447 Germany
| |
Collapse
|
36
|
Khan AU, Culberson WS, DeWerd LA. Characterizing a PTW microDiamond detector in kilovoltage radiation beams. Med Phys 2020; 47:4553-4562. [DOI: 10.1002/mp.14330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/12/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Ahtesham Ullah Khan
- Department of Medical Physics School of Medicine and Public Health University of Wisconsin‐Madison Madison Wisconsin53705USA
| | - Wesley S. Culberson
- Department of Medical Physics School of Medicine and Public Health University of Wisconsin‐Madison Madison Wisconsin53705USA
| | - Larry A. DeWerd
- Department of Medical Physics School of Medicine and Public Health University of Wisconsin‐Madison Madison Wisconsin53705USA
| |
Collapse
|
37
|
Wang XJ, Miguel B, Seuntjens J, Fernández-Varea JM. On the relativistic impulse approximation for the calculation of Compton scattering cross sections and photon interaction coefficients used in kV dosimetry. ACTA ACUST UNITED AC 2020; 65:125010. [DOI: 10.1088/1361-6560/ab8108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Shi S, Vissapragada R, Abi Jaoude J, Huang C, Mittal A, Liu E, Zhong J, Kumar V. Evolving role of biomaterials in diagnostic and therapeutic radiation oncology. Bioact Mater 2020; 5:233-240. [PMID: 32123777 PMCID: PMC7036731 DOI: 10.1016/j.bioactmat.2020.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 01/11/2023] Open
Abstract
Radiation therapy to treat cancer has evolved significantly since the discovery of x-rays. Yet, radiation therapy still has room for improvement in reducing side effects and improving control of cancer. Safer and more effective delivery of radiation has led us to novel techniques and use of biomaterials. Biomaterials in combination with radiation and chemotherapy have started to appear in pre-clinical explorations and clinical applications, with many more on the horizon. Biomaterials have revolutionized the field of diagnostic imaging, and now are being cultivated into the field of theranostics, combination therapy, and tissue protection. This review summarizes recent development of biomaterials in radiation therapy in several application areas.
Collapse
Affiliation(s)
- Siyu Shi
- Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Ravi Vissapragada
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | | | - Caroline Huang
- Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Anmol Mittal
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07102, USA
| | - Elisa Liu
- Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Jim Zhong
- Department of Radiation Oncology, Emory University, Atlanta, GA, 30332, USA
| | - Vivek Kumar
- Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, 07102, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, 07102, USA
| |
Collapse
|
39
|
Prentou E, Lekatou A, Pantelis E, Karaiskos P, Papagiannis P. On the use of EBT3 film for relative dosimetry of kilovoltage X ray beams. Phys Med 2020; 74:56-65. [PMID: 32417711 DOI: 10.1016/j.ejmp.2020.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/14/2020] [Accepted: 04/26/2020] [Indexed: 11/25/2022] Open
Abstract
EBT3 films were evaluated for relative dosimetry in water, in the energy range of therapeutic kV X ray beams. A film batch was calibrated in air for all nine beam qualities of a clinical unit (XStrahl 200). Monte Carlo (MC) simulations using MCNP v.6 facilitated the calculation of the film absorbed dose (f), and beam quality (kbq) energy dependences in air. Results were found in agreement with corresponding data in the literature. Film samples from the same batch were irradiated in water along the central beam axis for each beam quality. Experimental percentage depth dose (PDD) results obtained using calibration data in air showed quality and depth dependent differences from corresponding MC simulations. These differences increased beyond film dosimetry uncertainty (<3.3%), reaching up to 8% at increased depth. The observed differences reduced only slightly when spectral variation as a function of measurement point was accounted for, using photon effective energy. PDD measurements and corresponding MC results facilitated the determination of f and kbq in water. Results showed that the origin of the observed differences between experimental and MC PDD results is the difference between film response in air and water, as a result of radiation field perturbation from the film oriented along the central beam axis. This implies a directional dependence of film response which necessitates that the angular distribution of photons impinging on the film is the same in the calibration and measurement geometries.
Collapse
Affiliation(s)
- E Prentou
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Greece
| | - A Lekatou
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Greece
| | - E Pantelis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Greece
| | - P Karaiskos
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Greece
| | - P Papagiannis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
40
|
Feasibility study of the Fricke chemical dosimeter as an independent dosimetric system for the small animal radiation research platform (SARRP). Phys Med 2020; 71:168-175. [DOI: 10.1016/j.ejmp.2020.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
|
41
|
New application of polymer gels in medical radiation dosimetry: Plasmonic sensors. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Czub J, Braziewicz J, Wasilewski A, Wysocka-Rabin A, Wołowiec P, Wójcik A. Monte Carlo dosimetry using Fluka code and experimental dosimetry with Gafchromic EBT2 and XR-RV3 of self-built experimental setup for radiobiological studies with low-energy X-rays. Int J Radiat Biol 2020; 96:718-733. [DOI: 10.1080/09553002.2020.1721606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Joanna Czub
- Institute of Physics, Jan Kochanowski University, Kielce, Poland
| | - Janusz Braziewicz
- Institute of Physics, Jan Kochanowski University, Kielce, Poland
- Holy Cross Cancer Center, Kielce, Poland
| | | | | | | | - Andrzej Wójcik
- Department of Molecular Bioscience, Centre for Radiation Protection Research, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Institute of Biology, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
43
|
|
44
|
Muñoz Arango E, Peixoto JG, de Almeida CE. Small-field dosimetry with a high-resolution 3D scanning water phantom system for the small animal radiation research platform SARRP: a geometrical and quantitative study. ACTA ACUST UNITED AC 2020; 65:015012. [DOI: 10.1088/1361-6560/ab5c47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Czub J, Braziewicz J, Brodecki M, Gieszczyk W, Kłosowski M, Wasilewski A, Wołowiec P, Wójcik A, Wysocka-Rabin A. CALIBRATION OF LOW ENERGY X-RAY EXPERIMENTAL SETUP WITH STRONGLY FILTERED BEAM USING DATA FROM A SEMICONDUCTOR AND A THERMOLUMINESCENT DETECTORS. RADIATION PROTECTION DOSIMETRY 2019; 185:266-273. [PMID: 30624748 DOI: 10.1093/rpd/ncy291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/25/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
The calibration of low energy X-ray experimental setup with strongly filtered beam dedicated to radiobiological research was performed using the absorbed dose calculated from the data collected by two types detectors. For this purpose a semiconductor (Amptek, USA) and a thermoluminescent (Institute of Nuclear Physics, Krakow, Poland) detectors were applied. The absorbed dose in water values estimated by both detectors are in good agreement.
Collapse
Affiliation(s)
- Joanna Czub
- Jan Kochanowski University, Institute of Physics, ul. Świętokrzyska 15, Kielce, Poland
| | - Janusz Braziewicz
- Jan Kochanowski University, Institute of Physics, ul. Świętokrzyska 15, Kielce, Poland
- Holy Cross Cancer Center, ul. Arwińskiego 3, Kielce, Poland
| | - Marcin Brodecki
- Department of Radiological Protection, Nofer Institute of Occupational Medicine, ul. św. Teresy 8, Łódź, Poland
| | - Wojciech Gieszczyk
- Department of Radiation Physics and Dosimetry, The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Science, ul. Radzikowskiego 152, Kraków
| | - Mariusz Kłosowski
- Department of Radiation Physics and Dosimetry, The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Science, ul. Radzikowskiego 152, Kraków
| | - Adam Wasilewski
- National Centre for Nuclear Research, ul. Andrzeja Sołtana 7, Otwock, Świerk, Poland
| | - Paweł Wołowiec
- Holy Cross Cancer Center, ul. Arwińskiego 3, Kielce, Poland
| | - Andrzej Wójcik
- Department of Molecular Bioscience, Centre for Radiation Protection Research, The Wenner-Gren Institute, Stockholm University, Universitetsvagen 10, Stockholm, Sweden
- Jan Kochanowski University, Institute of Biology, ul. Świętokrzyska 15, Kielce, Poland
| | - Anna Wysocka-Rabin
- National Centre for Nuclear Research, ul. Andrzeja Sołtana 7, Otwock, Świerk, Poland
| |
Collapse
|
46
|
Le Deroff C, Pérès EA, Ledoux X, Toutain J, Frelin-Labalme AM. In vivo surface dosimetry with a scintillating fiber dosimeter in preclinical image-guided radiotherapy. Med Phys 2019; 47:234-241. [PMID: 31688950 DOI: 10.1002/mp.13903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 11/10/2022] Open
Abstract
PURPOSE New preclinical image-guided irradiators and treatment planning systems represent a huge progress in radiobiology. Nevertheless, quality control of preclinical treatments is not as advanced as in clinical radiotherapy and in vivo dosimetry is less developed. In this study, we evaluate the use of a scintillating fiber dosimeter called DosiRat to verify the agreement between the doses planned with SmART-Plan and the measured doses during small animal irradiations. METHODS In vivo dosimetry was first evaluated with DosiRat through dose measurements performed at the surface of a 3 × 9 × 3 cm3 phantom. Measured and planned doses were compared for different irradiation conditions (prescription point, anterior, and posterior beams, 5 mm and 10 mm irradiation fields). In a second phase, measured and planned doses were compared for rat brain irradiations performed with anterior beams, with DosiRat positioned at the beam entrance. Comparisons were performed for different tube currents (1.3 and 13 mA), collimations (5, 10 and 25 mm diameter), and planned doses (0.1, 0.5, 2, and 10 Gy). RESULTS In the case of the phantom irradiations, planned and measured doses showed discrepancies smaller than the 5% accuracy of the TPS, except in cases in which the dosimeter was not centered in the irradiation field. The differences were larger for animal irradiations (from -3.3% to 8.8%) because of variations of the beam energy spectrum and the nonequivalence between materials at medium and low energy. CONCLUSIONS This study highlighted the complexity to implement one-dimension in vivo dosimetry in orthovoltage millimetric beams. Nevertheless, DosiRat is well adapted to in vivo dosimetry because of its small volume and its direct reading and allowed in vivo control of planned doses for anterior beams down to 5 mm diameter.
Collapse
Affiliation(s)
- Coralie Le Deroff
- Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DRF, CNRS/IN2P3, Boulevard Henri Becquerel, 14076, Caen, France
| | - Elodie A Pérès
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Xavier Ledoux
- Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DRF, CNRS/IN2P3, Boulevard Henri Becquerel, 14076, Caen, France
| | - Jérôme Toutain
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Anne-Marie Frelin-Labalme
- Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DRF, CNRS/IN2P3, Boulevard Henri Becquerel, 14076, Caen, France.,Advanced Resource Centre for Hadrontherapy in Europe (ARCHADE) Program, Caen, France
| |
Collapse
|
47
|
Bazalova‐Carter M, Esplen N. On the capabilities of conventional x‐ray tubes to deliver ultra‐high (FLASH) dose rates. Med Phys 2019; 46:5690-5695. [DOI: 10.1002/mp.13858] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/13/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
| | - Nolan Esplen
- Department of Physics and Astronomy University of Victoria Victoria BC Canada
| |
Collapse
|
48
|
Chang Z, Liu F, Wang L, Deng M, Zhou C, Sun Q, Chu J. Near-infrared dyes, nanomaterials and proteins. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.08.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Harwood JR, Nelli FE. A model-based algorithm to correct for the loss of backscatter in superficial X-ray radiation therapy. Phys Med 2019; 65:157-166. [PMID: 31494369 DOI: 10.1016/j.ejmp.2019.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/29/2019] [Accepted: 08/23/2019] [Indexed: 10/26/2022] Open
Abstract
Dosimetry protocols for superficial X-rays prescribe the determination of kerma on the surface of a phantom through the use of a backscatter factor (Bw) that accounts for the effect of phantom scatter. Bw values corresponding to full-scatter phantoms are provided by these protocols. In practice, clinical situations arise wherein there is insufficient scattering material downstream, resulting in published Bw values that overestimate the amount of occurring scatter. To provide an accurate dose calculation the backscatter values need to be corrected for any reduction in scattered radiation. Estimating the change of Bw in situations with incomplete backscatter has previously been achieved by direct measurements or Monte Carlo modelling. For increasing the accuracy of clinical dosimetries, we developed a physical model to deduce an algorithm for calculating backscatter factors in situations with reduced downstream scattering medium. The predictions of the model were validated by comparison with published data, Monte Carlo simulations and film-based measurements for beams with a half-value layer of 0.8, 2 and 4 mm Al. Our algorithm accurately predicts the effect of partial scatter conditions with suitable precision. Its reliability, combined with the simplicity of calculation, makes this methodology suitable to be incorporated into routine clinical dosimetry. The algorithm's underlying physical model provides an intuitive understanding of the effects of field size and beam energy on backscatter reduction, permitting a rational management of this effect.
Collapse
Affiliation(s)
- Jeffrey R Harwood
- Andrew Love Cancer Centre, University Hospital Geelong, 70 Swanston St, Geelong, Vic 3220, Australia.
| | - Flavio E Nelli
- Andrew Love Cancer Centre, University Hospital Geelong, 70 Swanston St, Geelong, Vic 3220, Australia
| |
Collapse
|
50
|
Xia J, Kawamura Y, Suehiro T, Chen Y, Sato K. Carbon dots have antitumor action as monotherapy or combination therapy. Drug Discov Ther 2019; 13:114-117. [DOI: 10.5582/ddt.2019.01013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jufeng Xia
- Graduate School of Frontier Science, The University of Tokyo
- New Japan Medical Institute
| | | | | | - Yu Chen
- Graduate School of Frontier Science, The University of Tokyo
| | | |
Collapse
|