1
|
Benzazon N, Carré A, de Kermenguy F, Niyoteka S, Maury P, Colnot J, M'hamdi M, Aichi ME, Veres C, Allodji R, de Vathaire F, Sarrut D, Journy N, Alapetite C, Grégoire V, Deutsch E, Diallo I, Robert C. Deep-Learning for Rapid Estimation of the Out-of-Field Dose in External Beam Photon Radiation Therapy - A Proof of Concept. Int J Radiat Oncol Biol Phys 2024; 120:253-264. [PMID: 38554830 DOI: 10.1016/j.ijrobp.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
PURPOSE The dose deposited outside of the treatment field during external photon beam radiation therapy treatment, also known as out-of-field dose, is the subject of extensive study as it may be associated with a higher risk of developing a second cancer and could have deleterious effects on the immune system that compromise the efficiency of combined radio-immunotherapy treatments. Out-of-field dose estimation tools developed today in research, including Monte Carlo simulations and analytical methods, are not suited to the requirements of clinical implementation because of their lack of versatility and their cumbersome application. We propose a proof of concept based on deep learning for out-of-field dose map estimation that addresses these limitations. METHODS AND MATERIALS For this purpose, a 3D U-Net, considering as inputs the in-field dose, as computed by the treatment planning system, and the patient's anatomy, was trained to predict out-of-field dose maps. The cohort used for learning and performance evaluation included 3151 pediatric patients from the FCCSS database, treated in 5 clinical centers, whose whole-body dose maps were previously estimated with an empirical analytical method. The test set, composed of 433 patients, was split into 5 subdata sets, each containing patients treated with devices unseen during the training phase. Root mean square deviation evaluated only on nonzero voxels located in the out-of-field areas was computed as performance metric. RESULTS Root mean square deviations of 0.28 and 0.41 cGy/Gy were obtained for the training and validation data sets, respectively. Values of 0.27, 0.26, 0.28, 0.30, and 0.45 cGy/Gy were achieved for the 6 MV linear accelerator, 16 MV linear accelerator, Alcyon cobalt irradiator, Mobiletron cobalt irradiator, and betatron device test sets, respectively. CONCLUSIONS This proof-of-concept approach using a convolutional neural network has demonstrated unprecedented generalizability for this task, although it remains limited, and brings us closer to an implementation compatible with clinical routine.
Collapse
Affiliation(s)
- Nathan Benzazon
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France.
| | - Alexandre Carré
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - François de Kermenguy
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Stéphane Niyoteka
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Pauline Maury
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Julie Colnot
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France; THERYQ, PMB-Alcen, Peynier, France
| | - Meissane M'hamdi
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Mohammed El Aichi
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Cristina Veres
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Rodrigue Allodji
- Unité Mixte de Recherche (UMR) 1018 Centre de Recherche en épidémiologie et Santé des Populations (CESP), Radiation Epidemiology Team, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
| | - Florent de Vathaire
- Unité Mixte de Recherche (UMR) 1018 Centre de Recherche en épidémiologie et Santé des Populations (CESP), Radiation Epidemiology Team, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
| | - David Sarrut
- Université de Lyon; CREATIS; CNRS UMR5220; Inserm U1294; INSA-Lyon; Léon Bérard cancer center, Lyon, France
| | - Neige Journy
- Unité Mixte de Recherche (UMR) 1018 Centre de Recherche en épidémiologie et Santé des Populations (CESP), Radiation Epidemiology Team, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France
| | | | - Vincent Grégoire
- Department of Radiation Oncology, centre Léon-Bérard, Lyon, France
| | - Eric Deutsch
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Ibrahima Diallo
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | - Charlotte Robert
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Inserm, Université Paris-Saclay, Institut Gustave Roussy, Villejuif, France; Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
2
|
Benzazon N, Colnot J, de Kermenguy F, Achkar S, de Vathaire F, Deutsch E, Robert C, Diallo I. Analytical models for external photon beam radiotherapy out-of-field dose calculation: a scoping review. Front Oncol 2023; 13:1197079. [PMID: 37228501 PMCID: PMC10203488 DOI: 10.3389/fonc.2023.1197079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
A growing body of scientific evidence indicates that exposure to low dose ionizing radiation (< 2 Gy) is associated with a higher risk of developing radio-induced cancer. Additionally, it has been shown to have significant impacts on both innate and adaptive immune responses. As a result, the evaluation of the low doses inevitably delivered outside the treatment fields (out-of-field dose) in photon radiotherapy is a topic that is regaining interest at a pivotal moment in radiotherapy. In this work, we proposed a scoping review in order to identify evidence of strengths and limitations of available analytical models for out-of-field dose calculation in external photon beam radiotherapy for the purpose of implementation in clinical routine. Papers published between 1988 and 2022 proposing a novel analytical model that estimated at least one component of the out-of-field dose for photon external radiotherapy were included. Models focusing on electrons, protons and Monte-Carlo methods were excluded. The methodological quality and potential limitations of each model were analyzed to assess their generalizability. Twenty-one published papers were selected for analysis, of which 14 proposed multi-compartment models, demonstrating that research efforts are directed towards an increasingly detailed description of the underlying physical phenomena. Our synthesis revealed great inhomogeneities in practices, in particular in the acquisition of experimental data and the standardization of measurements, in the choice of metrics used for the evaluation of model performance and even in the definition of regions considered out-of-the-field, which makes quantitative comparisons impossible. We therefore propose to clarify some key concepts. The analytical methods do not seem to be easily suitable for massive use in clinical routine, due to the inevitable cumbersome nature of their implementation. Currently, there is no consensus on a mathematical formalism that comprehensively describes the out-of-field dose in external photon radiotherapy, partly due to the complex interactions between a large number of influencing factors. Out-of-field dose calculation models based on neural networks could be promising tools to overcome these limitations and thus favor a transfer to the clinic, but the lack of sufficiently large and heterogeneous data sets is the main obstacle.
Collapse
Affiliation(s)
- Nathan Benzazon
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Julie Colnot
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- THERYQ, PMB-Alcen, Peynier, France
| | - François de Kermenguy
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Samir Achkar
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Florent de Vathaire
- Unité Mixte de Recherche (UMR) 1018 Centre de Recherche en épidémiologie et Santé des Populations (CESP), Radiation Epidemiology Team, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Eric Deutsch
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Charlotte Robert
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Ibrahima Diallo
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| |
Collapse
|
3
|
Sánchez-Nieto B, López-Martínez IN, Rodríguez-Mongua JL, Espinoza I. A simple analytical model for a fast 3D assessment of peripheral photon dose during coplanar isocentric photon radiotherapy. Front Oncol 2022; 12:872752. [PMID: 36276161 PMCID: PMC9583866 DOI: 10.3389/fonc.2022.872752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Considering that cancer survival rates have been growing and that nearly two-thirds of those survivors were exposed to clinical radiation during its treatment, the study of long-term radiation effects, especially secondary cancer induction, has become increasingly important. To correctly assess this risk, knowing the dose to out-of-field organs is essential. As it has been reported, commercial treatment planning systems do not accurately calculate the dose far away from the border of the field; analytical dose estimation models may help this purpose. In this work, the development and validation of a new three-dimensional (3D) analytical model to assess the photon peripheral dose during radiotherapy is presented. It needs only two treatment-specific input parameter values, plus information about the linac-specific leakage, when available. It is easy to use and generates 3D whole-body dose distributions and, particularly, the dose to out-of-field organs (as dose–volume histograms) outside the 5% isodose for any isocentric treatment using coplanar beams [including intensity modulated radiotherapy and volumetric modulated arc therapy (VMAT)]. The model was configured with the corresponding Monte Carlo simulation of the peripheral absorbed dose for a 6 MV abdomen treatment on the International Comission on Radiological Protection (ICRP) 110 computational phantom. It was then validated with experimental measurements using thermoluminescent dosimeters in the male ATOM anthropomorphic phantom irradiated with a VMAT treatment for prostate cancer. Additionally, its performance was challenged by applying it to a lung radiotherapy treatment very different from the one used for training. The model agreed well with measurements and simulated dose values. A graphical user interface was developed as a first step to making this work more approachable to a daily clinical application.
Collapse
Affiliation(s)
- Beatriz Sánchez-Nieto
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Beatriz Sánchez-Nieto,
| | | | | | - Ignacio Espinoza
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
4
|
Majer M, Ambrožová I, Davídková M, De Saint-Hubert M, Kasabašić M, Knežević Ž, Kopeć R, Krzempek D, Krzempek K, Miljanić S, Mojżeszek N, Veršić I, Stolarczyk L, Harrison RM, Olko P. Out-of-field doses in pediatric craniospinal irradiations with 3D-CRT, VMAT and scanning proton radiotherapy - a phantom study. Med Phys 2022; 49:2672-2683. [PMID: 35090187 DOI: 10.1002/mp.15493] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 12/01/2021] [Accepted: 01/12/2022] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Craniospinal irradiation (CSI) has greatly increased survival rates for patients with a diagnosis of medulloblastoma and other primitive neuroectodermal tumors. However, as it includes exposure of a large volume of healthy tissue to unwanted doses, there is a strong concern about the complications of the treatment, especially for the children. To estimate the risk of second cancers and other unwanted effects, out-of-field dose assessment is necessary. The purpose of this study is to evaluate and compare out-of-field doses in pediatric CSI treatment using conventional and advanced photon radiotherapy (RT) and advanced proton therapy. To our knowledge, it is the first such comparison based on in-phantom measurements. Additionally, for out-of-field doses during photon RT in this and other studies, comparisons were made using analytical modeling. METHODS In order to describe the out-of-field doses absorbed in a pediatric patient during actual clinical treatment, an anthropomorphic phantom which mimics the 10-year-old child was used. Photon 3D-conformal radiotherapy (3D-CRT) and two advanced, highly conformal techniques: photon volumetric modulated arc therapy (VMAT) and active pencil beam scanning (PBS) proton radiotherapy were used for CSI treatment. Radiophotoluminescent (RPL) and poly-allyl-diglycol-carbonate (PADC) nuclear track detectors were used for photon and neutron dosimetry in the phantom, respectively. Out-of-field doses from neutrons were expressed in terms of dose equivalent. A two-Gaussian model was implemented for out-of-field doses during photon RT. RESULTS The mean VMAT photon doses per target dose to all organs in this study were under 50% of the target dose (i.e., <500 mGy/Gy), while the mean 3D-CRT photon dose to oesophagus, gall bladder and thyroid, exceeded that value. However, for 3D-CRT, better sparing was achieved for eyes and lungs. The mean PBS photon doses for all organs were up to 3 orders of magnitude lower compared to VMAT and 3D-CRT and exceeded 10 mGy/Gy only for the oesophagus, intestine and lungs. The mean neutron dose equivalent during PBS for 8 organs of interest (thyroid, breasts, lungs, liver, stomach, gall bladder, bladder, prostate) ranged from 1.2 mSv/Gy for bladder to 23.1 mSv/Gy for breasts. Comparison of out-of-field doses in this and other phantom studies found in the literature showed that a simple and fast two-Gaussian model for out-of-field doses as a function of distance from the field edge can be applied in a CSI using photon RT techniques. CONCLUSIONS PBS is the most promising technique for out-of-field dose reduction in comparison to photon techniques. Among photon techniques, VMAT is a preferred choice for most of out-of-field organs and especially for the thyroid, while doses for eyes, breasts and lungs, are lower for 3D-CRT. For organs outside the field edge, a simple analytical model can be helpful for clinicians involved in treatment planning using photon RT but also for retrospective data analysis for cancer risk estimates and epidemiology in general. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marija Majer
- Ruđer Bošković Institute, Zagreb, 10000, Croatia
| | - Iva Ambrožová
- Nuclear Physics Institute of the CAS, Řež, CZ-250 68, Czech Republic
| | - Marie Davídková
- Nuclear Physics Institute of the CAS, Řež, CZ-250 68, Czech Republic
| | | | - Mladen Kasabašić
- Osijek University Hospital, Osijek, 31000, Croatia.,Faculty of Medicine Osijek, J.J. Strossmayer University of Osijek, Osijek, 31000, Croatia
| | | | - Renata Kopeć
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, 31-342, Poland
| | - Dawid Krzempek
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, 31-342, Poland
| | - Katarzyna Krzempek
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, 31-342, Poland
| | | | - Natalia Mojżeszek
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, 31-342, Poland
| | - Ivan Veršić
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, 10000, Croatia
| | - Liliana Stolarczyk
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, 31-342, Poland.,Danish Center for Particle Therapy, Aarhus, Denmark
| | - Roger M Harrison
- University of Newcastle, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Paweł Olko
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, 31-342, Poland
| |
Collapse
|
5
|
Tillery H, Moore M, Gallagher KJ, Taddei PJ, Leuro E, Argento DC, Moffitt GB, Kranz M, Carey M, Heymsfield S, Newhauser WD. Personalized 3D-printed anthropomorphic whole-body phantom irradiated by protons, photons, and neutrons. Biomed Phys Eng Express 2022; 8. [PMID: 35045408 DOI: 10.1088/2057-1976/ac4d04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/19/2022] [Indexed: 11/12/2022]
Abstract
The objective of this study was to confirm the feasibility of three-dimensionally-printed (3D-printed), personalized whole-body anthropomorphic phantoms for radiation dose measurements in a variety of charged and uncharged particle radiation fields. We 3D-printed a personalized whole-body phantom of an adult female with a height of 154.8 cm, mass of 90.7 kg, and body mass index of 37.8 kg/m2. The phantom comprised of a hollow plastic shell filled with water and included a watertight access conduit for positioning dosimeters. It is compatible with a wide variety of radiation dosimeters, including ionization chambers that are suitable for uncharged and charged particles. Its mass was 6.8 kg empty and 98 kg when filled with water. Watertightness and mechanical robustness were confirmed after multiple experiments and transportations between institutions. The phantom was irradiated to the cranium with therapeutic beams of 170-MeV protons, 6-MV photons, and fast neutrons. Radiation absorbed dose was measured from the cranium to the pelvis along the longitudinal central axis of the phantom. The dose measurements were made using established dosimetry protocols and well-characterized instruments. For the therapeutic environments considered in this study, stray radiation from intracranial treatment beams was the lowest for proton therapy, intermediate for photon therapy, and highest for neutron therapy. An illustrative example set of measurements at the location of the thyroid for a square field of 5.3 cm per side resulted in 0.09, 0.59, and 1.93 cGy/Gy from proton, photon, and neutron beams, respectively. In this study, we found that 3D-printed personalized phantoms are feasible, inherently reproducible, and well-suited for therapeutic radiation measurements. The measurement methodologies we developed enabled the direct comparison of radiation exposures from neutron, proton, and photon beam irradiations.
Collapse
Affiliation(s)
- Hunter Tillery
- Radiation Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, KPV4, Portland, Oregon, 97239-3098, UNITED STATES
| | - Meagan Moore
- Louisiana State University, 439-B Nicholson Hall, Tower Dr., Baton Rouge, Louisiana, 70803-4001, UNITED STATES
| | - Kyle Joseph Gallagher
- Radiation Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, KPV4, Portland, Oregon, 97239-3098, UNITED STATES
| | - Phillip J Taddei
- Department of Radiation Oncology, Mayo Clinic, 200 First St. SW, Rochester, Minnesota, 55905, UNITED STATES
| | - Eric Leuro
- Seattle Cancer Care Alliance, 1570 N 115th St, Seattle, Washington, 98133, UNITED STATES
| | - David C Argento
- Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific St, Seattle, Washington, 98195, UNITED STATES
| | - Gregory B Moffitt
- Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific St, Seattle, Washington, 98195, UNITED STATES
| | - Marissa Kranz
- University of Washington School of Medicine, 1959 NE Pacific St, Seattle, Washington, 98195, UNITED STATES
| | - Margaret Carey
- Louisiana State University, 439-B Nicholson Hall, Tower Dr., Baton Rouge, Louisiana, 70803-4001, UNITED STATES
| | - Steven Heymsfield
- Louisiana State University, 439-B Nicholson Hall, Tower Dr., Baton Rouge, Louisiana, 70803-4001, UNITED STATES
| | - Wayne David Newhauser
- Louisiana State University, 439-B Nicholson Hall, Tower Dr., Baton Rouge, Louisiana, 70803-4001, UNITED STATES
| |
Collapse
|
6
|
Kollitz E, Han H, Kim CH, Pinto M, Schwarz M, Riboldi M, Kamp F, Belka C, Newhauser WD, Dedes G, Parodi K. A patient-specific hybrid phantom for calculating radiation dose and equivalent dose to the whole body. Phys Med Biol 2021; 67. [PMID: 34969024 DOI: 10.1088/1361-6560/ac4738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/30/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE As cancer survivorship increases, there is growing interest in minimizing the late effects of radiation therapy such as radiogenic second cancer, which may occur anywhere in the body. Assessing the risk of late effects requires knowledge of the dose distribution throughout the whole body, including regions far from the treatment field, beyond the typical anatomical extent of clinical CT scans. APPROACH A hybrid phantom was developed which consists of in-field patient CT images extracted from ground truth whole-body CT (WBCT) scans, out-of-field mesh phantoms scaled to basic patient measurements, and a blended transition region. Four of these hybrid phantoms were created, representing male and female patients receiving proton therapy treatment in pelvic and cranial sites. To assess the performance of the hybrid approach, we simulated treatments using the hybrid phantoms, the scaled and unscaled mesh phantoms, and the ground truth whole-body CTs. We calculated absorbed dose and equivalent dose in and outside of the treatment field, with a focus on neutrons induced in the patient by proton therapy. Proton and neutron dose was calculated using a general purpose Monte Carlo code. MAIN RESULTS The hybrid phantom provided equal or superior accuracy in calculated organ dose and equivalent dose values relative to those obtained using the mesh phantoms in 78% in all selected organs and calculated dose quantities. Comparatively the default mesh and scaled mesh were equal or superior to the other phantoms in 21% and 28% of cases respectively. SIGNIFICANCE The proposed methodology for hybrid synthesis provides a tool for whole-body organ dose estimation for individual patients without requiring CT scans of their entire body. Such a capability would be useful for personalized assessment of late effects and risk-optimization of treatment plans.
Collapse
Affiliation(s)
- Erika Kollitz
- Department of Medical Physics, Ludwig-Maximilians-Universitat Munchen, Ludwig-Maximilians-Universität München, Department for Medical Physics (LS Parodi), Am Coulombwall 1, Garching, Bayern, 85748, GERMANY
| | - Haegin Han
- Department of Nuclear Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seongdong-gu, Seoul, 04763, Korea (the Republic of)
| | - Chan Hyeong Kim
- Department of Nuclear Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seongdong-gu, Seoul, 04763, Korea (the Republic of)
| | - Marco Pinto
- Ludwig-Maximilians-Universitat Munchen, Ludwig-Maximilians-Universität München, Department for Medical Physics (LS Parodi), Am Coulombwall 1, Garching, Bayern, 85748, GERMANY
| | - Marco Schwarz
- Provincia autonoma di Trento Azienda Provinciale per i Servizi Sanitari, Via Alcide Degasperi 79, Trento, Trentino-Alto Adige, 38123, ITALY
| | - Marco Riboldi
- Department of Medical Physics, Ludwig-Maximilians-Universitat Munchen, Ludwig-Maximilians-Universität München, Department for Medical Physics (LS Parodi), Am Coulombwall 1, Munchen, Bayern, 85748, GERMANY
| | - Florian Kamp
- Radiotherapy, Klinikum der Universitat Munchen, Marchioninistraße 15, Munich, 81377, GERMANY
| | - Claus Belka
- Department of Radiation Oncology, Klinikum der Universitat Munchen, Marchioninistraße 15, Munchen, Bayern, 81377, GERMANY
| | - Wayne David Newhauser
- Department of Physics & Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, Louisiana, 70803, UNITED STATES
| | - Georgios Dedes
- Department of Medical Physics, Ludwig-Maximilians-Universitat Munchen, Ludwig-Maximilians-Universität München, Department for Medical Physics (LS Parodi), Am Coulombwall 1, Munchen, Bayern, 85748, GERMANY
| | - Katia Parodi
- Experimental Physics Medical Physics, Ludwig-Maximilians-Universitat Munchen, Ludwig-Maximilians-Universität München, Department for Medical Physics (LS Parodi), Am Coulombwall 1, Munchen, Bayern, 85748, GERMANY
| |
Collapse
|
7
|
Ben Kacem M, Benadjaoud MA, Dos Santos M, Buard V, Tarlet G, Le Guen B, François A, Guipaud O, Milliat F, Paget V. Variation of 4 MV X-ray dose rate in fractionated irradiation strongly impacts biological endothelial cell response in vitro. Int J Radiat Biol 2021; 98:50-59. [PMID: 34705615 DOI: 10.1080/09553002.2022.1998703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Even though X-ray beams are widely used in medical diagnosis or radiotherapy, the comparisons of their dose rates are scarce. We have recently demonstrated in vitro (clonogenic assay, cell viability, cell cycle, senescence) and in vivo (weight follow-up of animals and bordering epithelium staining of lesion), that for a single dose of irradiation, the relative biological effectiveness (RBE) deviates from 1 (up to twofold greater severe damage at the highest dose rate depending on the assay) when increasing the dose rate of high energy X-ray beams. MATERIAL AND METHODS To further investigate the impact of the dose rate on RBE, in this study, we performed in vitro fractionated irradiations by using the same two dose rates (0.63 and 2.5 Gy.min-1) of high-energy X-rays (both at 4 MV) on normal endothelial cells (HUVECs). We investigated the viability/mortality, characterized radiation-induced senescence by using flow cytometry and measured gene analysis deregulations on custom arrays. RESULTS The overall results enlighten that, in fractionated irradiations when varying the dose rate of high-energy X-rays, the RBE of photons deviates from 1 (up to 2.86 for viability/mortality experiments performed 21 days postirradiation). CONCLUSION These results strengthen the interest of multiparametric analysis approaches in providing an accurate evaluation of the outcomes of irradiated cells in support of clonogenic assays, especially when such assays are not feasible.
Collapse
Affiliation(s)
- Mariam Ben Kacem
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (LRMed), Fontenay-aux-Roses, France
| | - Mohamed A Benadjaoud
- Department of RAdiobiology and regenerative MEDicine (SERAMED), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Morgane Dos Santos
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of Radiobiology of Accidental exposures (LRAcc), Fontenay-aux-Roses, France
| | - Valérie Buard
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (LRMed), Fontenay-aux-Roses, France
| | - Georges Tarlet
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (LRMed), Fontenay-aux-Roses, France
| | | | - A François
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (LRMed), Fontenay-aux-Roses, France
| | - O Guipaud
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (LRMed), Fontenay-aux-Roses, France
| | - F Milliat
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (LRMed), Fontenay-aux-Roses, France
| | - Vincent Paget
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (LRMed), Fontenay-aux-Roses, France
| |
Collapse
|
8
|
Out-of-field organ doses and associated risk of cancer development following radiation therapy with photons. Phys Med 2021; 90:73-82. [PMID: 34563834 DOI: 10.1016/j.ejmp.2021.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
Innovations in cancer treatment have contributed to the improved survival rate of these patients. Radiotherapy is one of the main options for cancer management nowadays. High doses of ionizing radiation are usually delivered to the tumor site with high energy photon beams. However, the therapeutic radiation exposure may lead to second cancer induction. Moreover, the introduction of intensity-modulated radiation therapy over the last decades has increased the radiation dose to out-of-field organs compared to that from conventional irradiation. The increased organ doses might result in elevated probabilities for developing secondary malignancies to critical organs outside the treatment volume. The organ-specific dosimetry is considered necessary for the theoretical second cancer risk assessment and the proper analysis of data derived from epidemiological reports. This study reviews the methods employed for the measurement and calculation of out-of-field organ doses from exposure to photons and/or neutrons. The strengths and weaknesses of these dosimetric approaches are described in detail. This is followed by a review of the epidemiological data associated with out-of-field cancer risks. Previously published theoretical cancer risk estimates for adult and pediatric patients undergoing radiotherapy with conventional and advanced techniques are presented. The methodology for the theoretical prediction of the probability of carcinogenesis to out-of-field sites and the limitations of this approach are discussed. The article also focuses on the factors affecting the magnitude of the probability for developing radiotherapy-induced malignancies. The restriction of out-of-field doses and risks through the use of different types of shielding equipment is presented.
Collapse
|
9
|
Kang DJ, Shin YJ, Jeong S, Jung JY, Lee H, Lee B. Development of clinical application program for radiotherapy induced cancer risk calculation using Monte Carlo engine in volumetric-modulated arc therapy. Radiat Oncol 2021; 16:108. [PMID: 34118968 PMCID: PMC8199704 DOI: 10.1186/s13014-020-01722-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 12/06/2020] [Indexed: 11/10/2022] Open
Abstract
Background The purpose of this study is to develop a clinical application program that automatically calculates the effect for secondary cancer risk (SCR) of individual patient. The program was designed based on accurate dose calculations using patient computed tomography (CT) data and Monte Carlo engine. Automated patient-specific evaluation program was configured to calculate SCR. Methods The application program is designed to re-calculate the beam sequence of treatment plan using the Monte Carlo engine and patient CT data, so it is possible to accurately calculate and evaluate scatter and leakage radiation, difficult to calculate in TPS. The Monte Carlo dose calculation system was performed through stoichiometric calibration using patient CT data. The automatic SCR evaluation program in application program created with a MATLAB was set to analyze the results to calculate SCR. The SCR for organ of patient was calculated based on Biological Effects of Ionizing Radiation (BEIR) VII models. The program is designed to sequentially calculate organ equivalent dose (OED), excess absolute risk (EAR), excess relative risk (ERR), and the lifetime attributable risk (LAR) in consideration of 3D dose distribution analysis. In order to confirm the usefulness of the developed clinical application program, the result values from clinical application program were compared with the manual calculation method used in the previous study. Results The OED values calculated in program were calculated to be at most approximately 13.3% higher than results in TPS. The SCR result calculated by the developed clinical application program showed a maximum difference of 1.24% compared to the result of the conventional manual calculation method. And it was confirmed that EAR, ERR and LAR values can be easily calculated by changing the biological parameters. Conclusions We have developed a patient-specific SCR evaluation program that can be used conveniently in the clinic. The program consists of a Monte Carlo dose calculation system for accurate calculation of scatter and leakage radiation and a patient-specific automatic SCR evaluation program using 3D dose distribution. The clinical application program that improved the disadvantages of the existing process can be used as an index for evaluating a patient treatment plan.
Collapse
Affiliation(s)
- Dong-Jin Kang
- Department of Radiation Oncology, Inje University Sanggye Paik Hospital, 1342, Dongil-ro, Nowon-gu, Seoul, Korea
| | - Young-Joo Shin
- Department of Radiation Oncology, Inje University Sanggye Paik Hospital, 1342, Dongil-ro, Nowon-gu, Seoul, Korea.
| | - Seonghoon Jeong
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Jae-Yong Jung
- Department of Radiation Oncology, Inje University Sanggye Paik Hospital, 1342, Dongil-ro, Nowon-gu, Seoul, Korea
| | | | - Boram Lee
- Department of Radiation Oncology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, 81, Irwon-Ro, Gangnam-Gu, Seoul, 06351, Korea.
| |
Collapse
|
10
|
Wilson LJ, Newhauser WD. Generalized approach for radiotherapy treatment planning by optimizing projected health outcome: preliminary results for prostate radiotherapy patients. Phys Med Biol 2021; 66:065007. [PMID: 33545710 DOI: 10.1088/1361-6560/abe3cf] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Research in cancer care increasingly focuses on survivorship issues, e.g. managing disease- and treatment-related morbidity and mortality occurring during and after treatment. This necessitates innovative approaches that consider treatment side effects in addition to tumor cure. Current treatment-planning methods rely on constrained iterative optimization of dose distributions as a surrogate for health outcomes. The goal of this study was to develop a generally applicable method to directly optimize projected health outcomes. We developed an outcome-based objective function to guide selection of the number, angle, and relative fluence weight of photon and proton radiotherapy beams in a sample of ten prostate-cancer patients by optimizing the projected health outcome. We tested whether outcome-optimized radiotherapy (OORT) improved the projected longitudinal outcome compared to dose-optimized radiotherapy (DORT) first for a statistically significant majority of patients, then for each individual patient. We assessed whether the results were influenced by the selection of treatment modality, late-risk model, or host factors. The results of this study revealed that OORT was superior to DORT. Namely, OORT maintained or improved the projected health outcome of photon- and proton-therapy treatment plans for all ten patients compared to DORT. Furthermore, the results were qualitatively similar across three treatment modalities, six late-risk models, and 10 patients. The major finding of this work was that it is feasible to directly optimize the longitudinal (i.e. long- and short-term) health outcomes associated with the total (i.e. therapeutic and stray) absorbed dose in all of the tissues (i.e. healthy and diseased) in individual patients. This approach enables consideration of arbitrary treatment factors, host factors, health endpoints, and times of relevance to cancer survivorship. It also provides a simpler, more direct approach to realizing the full beneficial potential of cancer radiotherapy.
Collapse
Affiliation(s)
- Lydia J Wilson
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001, United States of America
| | - Wayne D Newhauser
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001, United States of America.,Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809, United States of America
| |
Collapse
|
11
|
Takata T, Shiraishi K, Kumagai S, Arai N, Kobayashi T, Oba H, Okamoto T, Kotoku J. Calculating and estimating second cancer risk from breast radiotherapy using Monte Carlo code with internal body scatter for each out-of-field organ. J Appl Clin Med Phys 2020; 21:62-73. [PMID: 33128332 PMCID: PMC7769416 DOI: 10.1002/acm2.13060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/03/2020] [Accepted: 09/17/2020] [Indexed: 11/20/2022] Open
Abstract
Out-of-field organs are not commonly designated as dose calculation targets during radiation therapy treatment planning, but they might entail risks of second cancer. Risk components include specific internal body scatter, which is a dominant source of out-of-field doses, and head leakage, which can be reduced by external shielding. Our simulation study quantifies out-of-field organ doses and estimates second cancer risks attributable to internal body scatter in whole-breast radiotherapy (WBRT) with or without additional regional nodal radiotherapy (RNRT), respectively, for right and left breast cancer using Monte Carlo code PHITS. Simulations were conducted using a complete whole-body female model. Second cancer risk was estimated using the calculated doses with a concept of excess absolute risk. Simulation results revealed marked differences between WBRT alone and WBRT plus RNRT in out-of-field organ doses. The ratios of mean doses between them were as large as 3.5-8.0 for the head and neck region and about 1.5-6.6 for the lower abdominal region. Potentially, most out-of-field organs had excess absolute risks of less than 1 per 10,000 persons-year. Our study surveyed the respective contributions of internal body scatter to out-of-field organ doses and second cancer risks in breast radiotherapy on this intact female model.
Collapse
Affiliation(s)
- Takeshi Takata
- Graduate School of Medical Care and TechnologyTeikyo University2‐11‐1 Kaga, Itabashi‐kuTokyo173‐8605Japan
| | - Kenshiro Shiraishi
- Department of RadiologyTeikyo University School of Medicine2‐11‐1 Kaga, Itabashi‐kuTokyo173‐8605Japan
| | - Shinobu Kumagai
- Central Radiology DivisionTeikyo University Hospital2‐11‐1 Kaga, Itabashi‐kuTokyo173‐8605Japan
| | - Norikazu Arai
- Central Radiology DivisionTeikyo University Hospital2‐11‐1 Kaga, Itabashi‐kuTokyo173‐8605Japan
| | - Takenori Kobayashi
- Graduate School of Medical Care and TechnologyTeikyo University2‐11‐1 Kaga, Itabashi‐kuTokyo173‐8605Japan
| | - Hiroshi Oba
- Department of RadiologyTeikyo University School of Medicine2‐11‐1 Kaga, Itabashi‐kuTokyo173‐8605Japan
| | - Takahide Okamoto
- Graduate School of Medical Care and TechnologyTeikyo University2‐11‐1 Kaga, Itabashi‐kuTokyo173‐8605Japan
- Central Radiology DivisionTeikyo University Hospital2‐11‐1 Kaga, Itabashi‐kuTokyo173‐8605Japan
| | - Jun’ichi Kotoku
- Graduate School of Medical Care and TechnologyTeikyo University2‐11‐1 Kaga, Itabashi‐kuTokyo173‐8605Japan
- Central Radiology DivisionTeikyo University Hospital2‐11‐1 Kaga, Itabashi‐kuTokyo173‐8605Japan
| |
Collapse
|
12
|
Sánchez-Nieto B, Medina-Ascanio KN, Rodríguez-Mongua JL, Doerner E, Espinoza I. Study of out-of-field dose in photon radiotherapy: A commercial treatment planning system versus measurements and Monte Carlo simulations. Med Phys 2020; 47:4616-4625. [PMID: 32583441 PMCID: PMC7586840 DOI: 10.1002/mp.14356] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 01/10/2023] Open
Abstract
Purpose An accurate assessment of out‐of‐field dose is necessary to estimate the risk of second cancer after radiotherapy and the damage to the organs at risk surrounding the planning target volume. Although treatment planning systems (TPSs) calculate dose distributions outside the treatment field, little is known about the accuracy of these calculations. The aim of this work is to thoroughly compare the out‐of‐field dose distributions given by two algorithms implemented in the Monaco TPS, with measurements and full Monte Carlo simulations. Methods Out‐of‐field dose distributions predicted by the collapsed cone convolution (CCC) and Monte Carlo (MCMonaco) algorithms, built into the commercially available Monaco version 5.11 TPS, are compared with measurements carried out on an Elekta Axesse linear accelerator. For the measurements, ion chambers, thermoluminescent dosimeters, and EBT3 film are used. The BEAMnrc code, built on the EGSnrc system, is used to create a model of the Elekta Axesse with the Agility collimation system, and the space phase file generated is scored by DOSXYZnrc to generate the dose distributions (MCEGSnrc). Three different irradiation scenarios are considered: (a) a 10 × 10 cm2 field, (b) an IMRT prostate plan, and (c) a three‐field lung plan. Monaco's calculations, experimental measurements, and Monte Carlo simulations are carried out in water and/or in an ICRP110 phantom. Results For the 10 × 10 cm2 field case, CCC underestimated the dose, compared to ion chamber measurements, by 13% (differences relative to the algorithm) on average between the 5% and the ≈2% isodoses. MCMonaco underestimated the dose only from approximately the 2% isodose for this case. Qualitatively similar results were observed for the studied IMRT case when compared to film dosimetry. For the three‐field lung plan, dose underestimations of up to ≈90% for MCMonaco and ≈60% for CCC, relative to MCEGSnrc simulations, were observed in mean dose to organs located beyond the 2% isodose. Conclusions This work shows that Monaco underestimates out‐of‐field doses in almost all the cases considered. Thus, it does not describe dose distribution beyond the border of the field accurately. This is in agreement with previously published works reporting similar results for other TPSs. Analytical models for out‐of‐field dose assessment, MC simulations or experimental measurements may be an adequate alternative for this purpose.
Collapse
Affiliation(s)
- B Sánchez-Nieto
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - K N Medina-Ascanio
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - E Doerner
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - I Espinoza
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
13
|
Variation of 4 MV X-ray dose rate strongly impacts biological response both in vitro and in vivo. Sci Rep 2020; 10:7021. [PMID: 32341396 PMCID: PMC7184727 DOI: 10.1038/s41598-020-64067-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/10/2020] [Indexed: 01/10/2023] Open
Abstract
Whereas an RBE > 1 is described for very low-energy X-ray beams (in the range of 25–50 kV), there is a consensus that the RBE of X-rays (from 0.1 to 3 MeV) is equal to 1, whatever the energy or dose rate of the beam. Comparisons of X-ray beam dose rates are scarce even though these beams are widely used in medical diagnosis or radiotherapy. By using two dose rates (0.63 and 2.5 Gy.min−1) of high-energy X-rays on normal endothelial cells (HUVECs), we have studied the clonogenic assay, but also viability/mortality, cell cycle analysis and measured cellular senescence by flow cytometry, and have performed gene analysis on custom arrays. In order to consolidate these data, we performed localized irradiation of exteriorized small intestine at 0.63 and 2.5 Gy.min−1. Interestingly, in vivo validation has shown a significantly higher loss of weight at the higher dose when irradiating to 19 Gy a small fragment of exteriorized small intestine of C57Bl6J mice. Nevertheless, no significant differences were observed in lesioned scores between the two dose rates, while bordering epithelium staining indicated twofold greater severe damage at 2.5 Gy.min−1 compared to 0.63 Gy.min−1 at one week post-irradiation. Taken together, these experiments systematically show that the relative biological effectiveness of photons is different from 1 when varying the dose rate of high-energy X-rays. Moreover, these results strongly suggest that, in support of clonogenic assay, multiparametric analysis should be considered to provide an accurate evaluation of the outcome of irradiated cells.
Collapse
|
14
|
Method to quickly and accurately calculate absorbed dose from therapeutic and stray photon exposures throughout the entire body in individual patients. Med Phys 2020; 47:2254-2266. [DOI: 10.1002/mp.14018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/11/2019] [Accepted: 12/24/2019] [Indexed: 01/26/2023] Open
|
15
|
Schneider CW, Newhauser WD, Wilson LJ, Kapsch RP. A physics-based analytical model of absorbed dose from primary, leakage, and scattered photons from megavoltage radiotherapy with MLCs. ACTA ACUST UNITED AC 2019; 64:185017. [DOI: 10.1088/1361-6560/ab303a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
16
|
Wilson LJ, Newhauser WD, Schneider CW. An objective method to evaluate radiation dose distributions varying by three orders of magnitude. Med Phys 2019; 46:1888-1895. [PMID: 30714163 DOI: 10.1002/mp.13420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/26/2018] [Accepted: 01/24/2019] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Modern radiotherapy practices typically report the absorbed dose (D) within the 5% relative isodose volume (i.e., the therapeutic dose region) to an accuracy of 3%-5%. Gamma-index analysis, the most commonly used method to evaluate dosimetric accuracy, has low sensitivity to discrepancies that occur outside of this region. The objective of this study was to develop an evaluation method with high sensitivity across dose distributions spanning three orders of magnitude. METHODS We generalized the gamma index to include an additional criterion, the absolute absorbed dose difference, specifically for the low-dose region (i.e., D ≤ 5%). We also proposed a method to objectively select the appropriate magnitudes for relative-dose-difference, absolute-dose-difference, and distance-to-agreement criteria. We demonstrated the generalized gamma-index method by first finding the appropriate generalized gamma-index agreement criteria at an interval of specified passing rates. Next, we used the generalized gamma index to evaluate one-, two-, and three-dimensional absorbed dose distributions in a water-box phantom and voxelized patient geometry. RESULTS Generalized gamma-index passing rates for one-, two-, and three-dimensional dose distributions were 55.4%, 44.5%, and 8.9%, respectively. Traditional gamma-index passing rates were 100%, 97.8%, and 96.4%, respectively. These results reveal that the generalized method has adequate sensitivity in all regions (i.e., therapeutic and low dose). Additionally, the algorithmic determination of triplets of agreement criteria revealed that they are strong functions of the specified passing rate. CONCLUSIONS The major finding of this work is that the proposed method provides an objective evaluation of the agreement of dose distributions spanning three orders of magnitude. In particular, this generalized method correctly characterized dosimetric agreement in the low-dose region, which was not possible by traditional methods. The proposed algorithmic selection of agreement criteria decreased subjectivity and requirements of user judgment and skill. This method could find utility in a variety of applications including dose-algorithm development and translation.
Collapse
Affiliation(s)
- Lydia J Wilson
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, 70803-4001, USA
| | - Wayne D Newhauser
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, 70803-4001, USA.,Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA, 70809, USA
| | - Christopher W Schneider
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, 70803-4001, USA
| |
Collapse
|
17
|
Newhauser WD, Schneider C, Wilson L, Shrestha S, Donahue W. A REVIEW OF ANALYTICAL MODELS OF STRAY RADIATION EXPOSURES FROM PHOTON- AND PROTON-BEAM RADIOTHERAPIES. RADIATION PROTECTION DOSIMETRY 2018; 180:245-251. [PMID: 29177488 DOI: 10.1093/rpd/ncx245] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Indexed: 05/03/2023]
Abstract
External-beam radiation therapy is safe, effective and widely used to treat cancer. With 5-year cancer survival for adults above 70%, increasingly research is focusing on quantifying and reducing treatment-related morbidity. Reducing exposures to healthy tissues is one strategy, which can be accomplished with advanced-technology radiotherapies, such as intensity-modulated photon therapy and proton therapy. Both of these modalities provide good conformation of the therapeutic dose to the tumor volume, but they also deliver stray radiation to the whole body that increases the risk of radiogenic second cancers. To minimize these risks, one needs to create and compare candidate treatment plans that explicitly take into account these risks. Currently, clinical practice does not include routine calculation of stray radiation exposure and, consequently, the assessment of corresponding risks is difficult. In this article, we review recent progress toward stray dose algorithms that are suitable for large-scale clinical use. In particular, we emphasize the current state of physics-based dose algorithms for intensity-modulated photon radiotherapy and proton therapy.
Collapse
Affiliation(s)
- W D Newhauser
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, USA
- Physics Department, Mary Bird Perkins Cancer Center, Baton Rouge, USA
| | - C Schneider
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, USA
| | - L Wilson
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, USA
| | - S Shrestha
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, USA
| | - W Donahue
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, USA
| |
Collapse
|
18
|
Mille MM, Jung JW, Lee C, Kuzmin GA, Lee C. Comparison of normal tissue dose calculation methods for epidemiological studies of radiotherapy patients. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2018; 38:775-792. [PMID: 29637904 PMCID: PMC6007019 DOI: 10.1088/1361-6498/aabd4f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Radiation dosimetry is an essential input for epidemiological studies of radiotherapy patients aimed at quantifying the dose-response relationship of late-term morbidity and mortality. Individualised organ dose must be estimated for all tissues of interest located in-field, near-field, or out-of-field. Whereas conventional measurement approaches are limited to points in water or anthropomorphic phantoms, computational approaches using patient images or human phantoms offer greater flexibility and can provide more detailed three-dimensional dose information. In the current study, we systematically compared four different dose calculation algorithms so that dosimetrists and epidemiologists can better understand the advantages and limitations of the various approaches at their disposal. The four dose calculations algorithms considered were as follows: the (1) Analytical Anisotropic Algorithm (AAA) and (2) Acuros XB algorithm (Acuros XB), as implemented in the Eclipse treatment planning system (TPS); (3) a Monte Carlo radiation transport code, EGSnrc; and (4) an accelerated Monte Carlo code, the x-ray Voxel Monte Carlo (XVMC). The four algorithms were compared in terms of their accuracy and appropriateness in the context of dose reconstruction for epidemiological investigations. Accuracy in peripheral dose was evaluated first by benchmarking the calculated dose profiles against measurements in a homogeneous water phantom. Additional simulations in a heterogeneous cylinder phantom evaluated the performance of the algorithms in the presence of tissue heterogeneity. In general, we found that the algorithms contained within the commercial TPS (AAA and Acuros XB) were fast and accurate in-field or near-field, but not acceptable out-of-field. Therefore, the TPS is best suited for epidemiological studies involving large cohorts and where the organs of interest are located in-field or partially in-field. The EGSnrc and XVMC codes showed excellent agreement with measurements both in-field and out-of-field. The EGSnrc code was the most accurate dosimetry approach, but was too slow to be used for large-scale epidemiological cohorts. The XVMC code showed similar accuracy to EGSnrc, but was significantly faster, and thus epidemiological applications seem feasible, especially when the organs of interest reside far away from the field edge.
Collapse
Affiliation(s)
- Matthew M Mille
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, United States of America
| | | | | | | | | |
Collapse
|
19
|
Stolarczyk L, Trinkl S, Romero-Expósito M, Mojżeszek N, Ambrozova I, Domingo C, Davídková M, Farah J, Kłodowska M, Knežević Ž, Liszka M, Majer M, Miljanić S, Ploc O, Schwarz M, Harrison RM, Olko P. Dose distribution of secondary radiation in a water phantom for a proton pencil beam-EURADOS WG9 intercomparison exercise. Phys Med Biol 2018; 63:085017. [PMID: 29509148 DOI: 10.1088/1361-6560/aab469] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Systematic 3D mapping of out-of-field doses induced by a therapeutic proton pencil scanning beam in a 300 × 300 × 600 mm3 water phantom was performed using a set of thermoluminescence detectors (TLDs): MTS-7 (7LiF:Mg,Ti), MTS-6 (6LiF:Mg,Ti), MTS-N (natLiF:Mg,Ti) and TLD-700 (7LiF:Mg,Ti), radiophotoluminescent (RPL) detectors GD-352M and GD-302M, and polyallyldiglycol carbonate (PADC)-based (C12H18O7) track-etched detectors. Neutron and gamma-ray doses, as well as linear energy transfer distributions, were experimentally determined at 200 points within the phantom. In parallel, the Geant4 Monte Carlo code was applied to calculate neutron and gamma radiation spectra at the position of each detector. For the cubic proton target volume of 100 × 100 × 100 mm3 (spread out Bragg peak with a modulation of 100 mm) the scattered photon doses along the main axis of the phantom perpendicular to the primary beam were approximately 0.5 mGy Gy-1 at a distance of 100 mm and 0.02 mGy Gy-1 at 300 mm from the center of the target. For the neutrons, the corresponding values of dose equivalent were found to be ~0.7 and ~0.06 mSv Gy-1, respectively. The measured neutron doses were comparable with the out-of-field neutron doses from a similar experiment with 20 MV x-rays, whereas photon doses for the scanning proton beam were up to three orders of magnitude lower.
Collapse
Affiliation(s)
- L Stolarczyk
- Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Krakow, Poland. Skandionkliniken, von Kraemers Allé 26, 752 37 Uppsala, Sweden. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Williams JP, Newhauser W. Normal tissue damage: its importance, history and challenges for the future. Br J Radiol 2018; 92:20180048. [PMID: 29616836 DOI: 10.1259/bjr.20180048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sir Oliver Scott, a philanthropist and radiation biologist and, therefore, the epitome of a gentleman and a scholar, was an early Director of the BECC Radiobiology Research Unit at Mount Vernon. His tenure preceded that of Jack Fowler, with both contributing to basic, translational and clinical thought and application in radiation across the globe. With respect to this review, Fowler's name in particular has remained synonymous with the use of models, both animal and mathematical, that assess and quantify the biological mechanisms that underlie radiation-associated normal tissue toxicities. An understanding of these effects is critical to the optimal use of radiation therapy in the clinic; however, the role that basic sciences play in clinical practice has been undergoing considerable change in recent years, particularly in the USA, where there has been a growing emphasis on engineering and imaging to improve radiation delivery, with empirical observations of clinical outcome taking the place of models underpinned by evidence from basic science experiments. In honour of Scott and Fowler's work, we have taken this opportunity to review how our respective fields of radiation biology and radiation physics have intertwined over the years, affecting the clinical use of radiation with respect to normal tissue outcomes. We discuss the past and current achievements, with the hope of encouraging a revived interest in physics and biology as they relate to radiation oncology practice, since, like Scott and Fowler, we share the goal of improving the future outlook for cancer patients.
Collapse
Affiliation(s)
- Jacqueline P Williams
- Departments of Environmental Medicine and Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Wayne Newhauser
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
21
|
Kuzmin GA, Mille MM, Jung JW, Lee C, Pelletier C, Akabani G, Lee C. A Novel Method to Extend a Partial-Body CT for the Reconstruction of Dose to Organs beyond the Scan Range. Radiat Res 2018; 189:618-626. [PMID: 29617205 DOI: 10.1667/rr14999.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Epidemiological investigation is an important approach to assessing the risk of late effects after radiotherapy, and organ dosimetry is a crucial part of such analysis. Computed tomography (CT) images, if available, can be a valuable resource for individualizing the dosimetry, because they describe the specific anatomy of the patient. However, CT images acquired for radiation treatment planning purposes cover only a portion of the body near the target volume, whereas for epidemiology, the interest lies in the more distant normal tissues, which may be located outside the scan range. To address this challenge, we developed a novel method, called the Anatomically Predictive Extension (APE), to extend a partial-body CT image stack using images of a computational human phantom matched to the patient based on their height and weight. To test our method, we created five APE phantoms from chest and abdominal images extracted from the chest-abdomen-pelvis (CAP) CT scans of five patients. Organ doses were calculated for simple chest and prostate irradiations that were planned on the reference computational phantom (assumed patient geometry if no CT images are available), APE phantoms (patient-phantom hybrid given a partial-body patient CT) and full patient CAP CT scans (ground truth). The APE phantoms and patient CAP CT scans resulted in nearly identical dosimetry for those organs that were fully included in the partial-body CT used to construct the APE. The calculated doses to these same organs in the reference phantoms differed by up to 20% and 52% for the chest and prostate cases, respectively. For organs outside the scan coverage, the reference phantom showed, on average, dose differences of 31% (chest case) and 41% (prostate case). For the APE phantoms, these values were 26% (chest) and 17% (prostate). The APE method combines patient and phantom images to improve organ dosimetry both inside and outside the scan range. We intend to use the APE method for estimating dose for organs peripheral to the treatment fields; however, this method is quite generalizable with many potential applications.
Collapse
Affiliation(s)
- Gleb A Kuzmin
- a Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850.,d Department of Nuclear Engineering, Texas A&M University, College Station, Texas 77843
| | - Matthew M Mille
- a Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850
| | - Jae Won Jung
- b Department of Physics, East Carolina University, Greenville, North Carolina 27858
| | - Choonik Lee
- c Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109
| | | | - Gamal Akabani
- d Department of Nuclear Engineering, Texas A&M University, College Station, Texas 77843
| | - Choonsik Lee
- a Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850
| |
Collapse
|
22
|
Gallagher KJ, Tannous J, Nabha R, Feghali JA, Ayoub Z, Jalbout W, Youssef B, Taddei PJ. Supplemental computational phantoms to estimate out-of-field absorbed dose in photon radiotherapy. Phys Med Biol 2018; 63:025021. [PMID: 29099727 DOI: 10.1088/1361-6560/aa9838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The purpose of this study was to develop a straightforward method of supplementing patient anatomy and estimating out-of-field absorbed dose for a cohort of pediatric radiotherapy patients with limited recorded anatomy. A cohort of nine children, aged 2-14 years, who received 3D conformal radiotherapy for low-grade localized brain tumors (LBTs), were randomly selected for this study. The extent of these patients' computed tomography simulation image sets were cranial only. To approximate their missing anatomy, we supplemented the LBT patients' image sets with computed tomography images of patients in a previous study with larger extents of matched sex, height, and mass and for whom contours of organs at risk for radiogenic cancer had already been delineated. Rigid fusion was performed between the LBT patients' data and that of the supplemental computational phantoms using commercial software and in-house codes. In-field dose was calculated with a clinically commissioned treatment planning system, and out-of-field dose was estimated with a previously developed analytical model that was re-fit with parameters based on new measurements for intracranial radiotherapy. Mean doses greater than 1 Gy were found in the red bone marrow, remainder, thyroid, and skin of the patients in this study. Mean organ doses between 150 mGy and 1 Gy were observed in the breast tissue of the girls and lungs of all patients. Distant organs, i.e. prostate, bladder, uterus, and colon, received mean organ doses less than 150 mGy. The mean organ doses of the younger, smaller LBT patients (0-4 years old) were a factor of 2.4 greater than those of the older, larger patients (8-12 years old). Our findings demonstrated the feasibility of a straightforward method of applying supplemental computational phantoms and dose-calculation models to estimate absorbed dose for a set of children of various ages who received radiotherapy and for whom anatomies were largely missing in their original computed tomography simulations.
Collapse
Affiliation(s)
- Kyle J Gallagher
- Oregon State University, Corvallis, OR, United States of America. Oregon Health and Science University, Portland, OR, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Yoon J, Heins D, Zhao X, Sanders M, Zhang R. Measurement and modeling of out-of-field doses from various advanced post-mastectomy radiotherapy techniques. Phys Med Biol 2017; 62:9039-9053. [PMID: 29048329 DOI: 10.1088/1361-6560/aa94b5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
More and more advanced radiotherapy techniques have been adopted for post-mastectomy radiotherapies (PMRT). Patient dose reconstruction is challenging for these advanced techniques because they increase the low out-of-field dose area while the accuracy of out-of-field dose calculations by current commercial treatment planning systems (TPSs) is poor. We aim to measure and model the out-of-field radiation doses from various advanced PMRT techniques. PMRT treatment plans for an anthropomorphic phantom were generated, including volumetric modulated arc therapy with standard and flattening-filter-free photon beams, mixed beam therapy, 4-field intensity modulated radiation therapy (IMRT), and tomotherapy. We measured doses in the phantom where the TPS calculated doses were lower than 5% of the prescription dose using thermoluminescent dosimeters (TLD). The TLD measurements were corrected by two additional energy correction factors, namely out-of-beam out-of-field (OBOF) correction factor K OBOF and in-beam out-of-field (IBOF) correction factor K IBOF, which were determined by separate measurements using an ion chamber and TLD. A simple analytical model was developed to predict out-of-field dose as a function of distance from the field edge for each PMRT technique. The root mean square discrepancies between measured and calculated out-of-field doses were within 0.66 cGy Gy-1 for all techniques. The IBOF doses were highly scattered and should be evaluated case by case. One can easily combine the measured out-of-field dose here with the in-field dose calculated by the local TPS to reconstruct organ doses for a specific PMRT patient if the same treatment apparatus and technique were used.
Collapse
Affiliation(s)
- Jihyung Yoon
- Medical Physics Program, Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, United States of America
| | | | | | | | | |
Collapse
|
24
|
Kry SF, Bednarz B, Howell RM, Dauer L, Followill D, Klein E, Paganetti H, Wang B, Wuu CS, George Xu X. AAPM TG 158: Measurement and calculation of doses outside the treated volume from external-beam radiation therapy. Med Phys 2017; 44:e391-e429. [DOI: 10.1002/mp.12462] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 05/17/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- Stephen F. Kry
- Department of Radiation Physics; MD Anderson Cancer Center; Houston TX 77054 USA
| | - Bryan Bednarz
- Department of Medical Physics; University of Wisconsin; Madison WI 53705 USA
| | - Rebecca M. Howell
- Department of Radiation Physics; MD Anderson Cancer Center; Houston TX 77054 USA
| | - Larry Dauer
- Departments of Medical Physics/Radiology; Memorial Sloan-Kettering Cancer Center; New York NY 10065 USA
| | - David Followill
- Department of Radiation Physics; MD Anderson Cancer Center; Houston TX 77054 USA
| | - Eric Klein
- Department of Radiation Oncology; Washington University; Saint Louis MO 63110 USA
| | - Harald Paganetti
- Department of Radiation Oncology; Massachusetts General Hospital and Harvard Medical School; Boston MA 02114 USA
| | - Brian Wang
- Department of Radiation Oncology; University of Louisville; Louisville KY 40202 USA
| | - Cheng-Shie Wuu
- Department of Radiation Oncology; Columbia University; New York NY 10032 USA
| | - X. George Xu
- Department of Mechanical, Aerospace, and Nuclear Engineering; Rensselaer Polytechnic Institute; Troy NY 12180 USA
| |
Collapse
|
25
|
Hauri P, Schneider U. Whole-body dose and energy measurements in radiotherapy by a combination of LiF:Mg,Cu,P and LiF:Mg,Ti. Z Med Phys 2017; 28:96-109. [PMID: 28807441 DOI: 10.1016/j.zemedi.2017.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/07/2017] [Accepted: 07/09/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE Long-term survivors of cancer who were treated with radiotherapy are at risk of a radiation-induced tumor. Hence, it is important to model the out-of-field dose resulting from a cancer treatment. These models have to be verified with measurements, due to the small size, the high sensitivity to ionizing radiation and the tissue-equivalent composition, LiF thermoluminescence dosimeters (TLD) are well-suited for out-of-field dose measurements. However, the photon energy variation of the stray dose leads to systematic dose errors caused by the variation in response with radiation energy of the TLDs. We present a dosimeter which automatically corrects for the energy variation of the measured photons by combining LiF:Mg,Ti (TLD100) and LiF:Mg,Cu,P (TLD100H) chips. METHODS The response with radiation energy of TLD100 and TLD100H compared to 60Co was taken from the literature. For the measurement, a TLD100H was placed on top of a TLD100 chip. The dose ratio between the TLD100 and TLD100H, combined with the ratio of the response curves was used to determine the mean energy. With the energy, the individual correction factors for TLD100 and TLD100H could be found. The accuracy in determining the in- and out-of-field dose for a nominal beam energy of 6MV using the double-TLD unit was evaluated by an end-to-end measurement. Furthermore, published Monte Carlo (M.C.) simulations of the mean photon energy for brachytherapy sources, stray radiation of a treatment machine and cone beam CT (CBCT) were compared to the measured mean energies. Finally, the photon energy distribution in an Alderson phantom was measured for different treatment techniques applied with a linear accelerator. Additionally, a treatment plan was measured with a cobalt machine combined with an MRI. RESULTS For external radiotherapy, the presented double-TLD unit showed a relative type A uncertainty in doses of -1%±2% at the two standard deviation level compared to an ionization chamber. The type A uncertainty in dose was in agreement with the theoretically calculated type B uncertainty. The measured energies for brachytherapy sources, stray radiation of a treatment machine and CBCT imaging were in agreement with M.C. simulations. A shift in energy with increasing distance to the isocenter was noticed for the various treatment plans measured with the Alderson phantom. The calculated type B uncertainties in energy were in line with the experimentally evaluated type A uncertainties. CONCLUSION The double-TLD unit is able to predict the photon energy of scatter radiation in external radiotherapy, X-ray imagine and brachytherapy sources. For external radiotherapy, the individual energy correction factors enabled a more accurate dose determination compared to conventional TLD measurements.
Collapse
Affiliation(s)
- Pascal Hauri
- Department of Physics, University of Zurich, Zurich, Switzerland; Radiotherapy Hirslanden, Hirslanden Medical Center, Aarau, Switzerland.
| | - Uwe Schneider
- Department of Physics, University of Zurich, Zurich, Switzerland; Radiotherapy Hirslanden, Hirslanden Medical Center, Aarau, Switzerland
| |
Collapse
|
26
|
Schneider CW, Newhauser WD, Wilson LJ, Schneider U, Kaderka R, Miljanić S, Knežević Ž, Stolarcyzk L, Durante M, Harrison RM. A descriptive and broadly applicable model of therapeutic and stray absorbed dose from 6 to 25 MV photon beams. Med Phys 2017; 44:3805-3814. [PMID: 28429827 DOI: 10.1002/mp.12286] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 02/09/2017] [Accepted: 03/23/2017] [Indexed: 01/01/2023] Open
Abstract
PURPOSE To develop a simple model of therapeutic and stray absorbed dose for a variety of treatment machines and techniques without relying on proprietary machine-specific parameters. METHODS Dosimetry measurements conducted in this study and from the literature were used to develop an analytical model of absorbed dose from a variety of treatment machines and techniques in the 6 to 25 MV interval. A modified one-dimensional gamma-index analysis was performed to evaluate dosimetric accuracy of the model on an independent dataset consisting of measured dose profiles from seven treatment units spanning four manufacturers. RESULTS The average difference between the calculated and measured absorbed dose values was 9.9% for those datasets on which the model was trained. Additionally, these results indicate that the model can provide accurate calculations of both therapeutic and stray radiation dose from a wide variety of radiotherapy units and techniques. CONCLUSIONS We have developed a simple analytical model of absorbed dose from external beam radiotherapy treatments in the 6 to 25 MV beam energy range. The model has been tested on measured data from multiple treatment machines and techniques, and is broadly applicable to contemporary external beam radiation therapy.
Collapse
Affiliation(s)
- Christopher W Schneider
- Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA, 70803-4001, USA
| | - Wayne D Newhauser
- Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA, 70803-4001, USA.,Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA, 70809, USA
| | - Lydia J Wilson
- Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA, 70803-4001, USA
| | - Uwe Schneider
- Faculty of Science, University of Zürich, Winterthurerstrasse 260, 8057, Zürich, Switzerland.,Institute for Radiotherapy, Hirslanden Medical Center, Rain 34, 5000, Aarau, Switzerland
| | - Robert Kaderka
- GSI Helmholtzzentrum für Schwerionenforschung, Department of Biophysics, Darmstadt, 64291, Germany
| | - Saveta Miljanić
- Ruder Bošković Institute, Radiation Chemistry and Dosimetry Laboratory, Bijenićka 54, HR-10000, Zagreb, Croatia
| | - Željka Knežević
- Ruder Bošković Institute, Radiation Chemistry and Dosimetry Laboratory, Bijenićka 54, HR-10000, Zagreb, Croatia
| | - Liliana Stolarcyzk
- Bronowice Cyclotron Centre, Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342, Krakow, Poland
| | - Marco Durante
- Trento Institute for Fundamental Physics and Applications (TIFPA), National Institute of Nuclear Physics (INFN), University of Trento, Via Sommarive 14, 38123 Povo, Trento, Italy
| | - Roger M Harrison
- Faculty of Medical Sciences, University of Newcastle, Newcastle-upon-Tyne, NE2 4HH, UK
| |
Collapse
|
27
|
Hauri P, Hälg RA, Schneider U. Technical Note: Comparison of peripheral patient dose from MR-guided 60 Co therapy and 6 MV linear accelerator IGRT. Med Phys 2017; 44:3788-3793. [PMID: 28437010 DOI: 10.1002/mp.12293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 11/06/2022] Open
Abstract
PURPOSE The use of X-ray imaging in radiation therapy can give a substantial dose to the patient. A Cobalt machine combined with an magnetic resonance imaging (MRI) was recently introduced to clinical work. One positive aspect of using non-ionizing imaging devices is the reduction of the patient exposure. The purpose of this study was to quantify the difference in out-of-field dose to the patient between the image guided radiation therapy (IGRT) treatment applied with a linear accelerator with cone beam CT (CBCT) equipment and a Cobalt machine combined with an MRI. METHODS The treatment of a rhabdomyosarcoma in the prostate was planned and irradiated using different modalities and radiation therapy machines. The whole-body dose was measured for a 3D-conformal radiation therapy (3DCRT), an intensity-modulated radiation therapy (IMRT), and a volumetric-modulated arc therapy plan applied with a conventional linear accelerator operated at 6 MV beam energy. Additionally, the dose of an IMRT plan applied with a 60 Co machine combined with an MRI was measured. Furthermore, the dose of one CBCT scan using the linear accelerator's on-board imaging system was determined. The 3D dose measurements were performed in an anthropomorphic phantom containing 168 slots for thermoluminescence dosimeters (TLDs). A combination of LiF:Mg,Ti (TLD100) and LiF:Mg,Cu,P (TLD100H) was used to accurately determine the in- and out-of-field dose. The plans were rescaled to different fractionation schemes (2 Gy, 3 Gy, and 5 Gy fraction dose) and the dose of one CBCT scan was additionally added to the treatment dose per fraction applied with the linear accelerator. The resulting absorbed doses per fraction of the two machines were compared. RESULTS In the target region, all measured treatment plans presented the same magnitude of dose, while the CBCT dose was a factor of 100 smaller. Close to the planned target volume (PTV), the dose from the 60 Co machine was a factor of two higher compared with the 3DCRT + CBCT dose. Up to 45 cm from the PTV, the treatment applied with the 60 Co-sources showed an increased out-of-field dose compared to the linear accelerator + CBCT IGRT treatments. Further away from the PTV in the region where leakage from the gantry head is dominating, the out-of-field dose of the Cobalt machine was smaller compared to the linear accelerator + CBCT. CONCLUSION The peripheral dose of the 60 Co machine combined with an MRI is larger up to 45 cm from the PTV and further away, it is lower than the dose from a linear accelerator + CBCT treatment. The presented fractionation schemes had a marginal impact on the results.
Collapse
Affiliation(s)
- Pascal Hauri
- Faculty of Science, University of Zurich, Zurich, Switzerland.,Radiotherapy Hirslanden, Hirslanden Medical Center, Aarau, Switzerland
| | - Roger A Hälg
- Faculty of Science, University of Zurich, Zurich, Switzerland.,Radiotherapy Hirslanden, Hirslanden Medical Center, Aarau, Switzerland
| | - Uwe Schneider
- Faculty of Science, University of Zurich, Zurich, Switzerland.,Radiotherapy Hirslanden, Hirslanden Medical Center, Aarau, Switzerland
| |
Collapse
|
28
|
Harrison R. Out-of-field doses in radiotherapy: Input to epidemiological studies and dose-risk models. Phys Med 2017; 42:239-246. [PMID: 28392312 DOI: 10.1016/j.ejmp.2017.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/19/2017] [Accepted: 02/03/2017] [Indexed: 01/18/2023] Open
Abstract
Out-of-field doses in radiotherapy have been increasingly studied in recent years because of the generally improved survival of patients who have received radiotherapy as part of their treatment for cancer and their subsequent risk of a second malignancy. This short article attempts to identify some current problems, challenges and opportunities for dosimetry developments in this field. Out-of-field doses and derived risk estimates contribute to general knowledge about radiation effects on humans as well as contributing to risk-benefit considerations for the individual patient. It is suggested that for input into epidemiological studies, the complete dose description (i.e. the synthesis of therapy and imaging doses from all the treatment and imaging modalities) is ideally required, although there is currently no common dosimetry framework which easily covers all modalities. A general strategy for out-of-field dose estimation requires development and improvement in several areas including (i) dosimetry in regions of steep dose gradient close to the field edge (ii) experimentally verified analytical and Monte Carlo models for out-of-field doses (iii) the validity of treatment planning system algorithms outside the field edge (iv) dosimetry of critical sub-structures in organs at risk (v) mixed field (including neutron) dosimetry in proton and ion radiotherapy and photoneutron production in high energy photon beams (vi) the most appropriate quantities to use in neutron dosimetry in a radiotherapy context and (vii) simplification of measurement methods in regions distant from the target volume.
Collapse
Affiliation(s)
- Roger Harrison
- Institute of Cellular Medicine, Faculty of Medical Sciences, University of Newcastle upon Tyne, UK.
| |
Collapse
|
29
|
Vũ Bezin J, Allodji RS, Mège JP, Beldjoudi G, Saunier F, Chavaudra J, Deutsch E, de Vathaire F, Bernier V, Carrie C, Lefkopoulos D, Diallo I. A review of uncertainties in radiotherapy dose reconstruction and their impacts on dose-response relationships. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2017; 37:R1-R18. [PMID: 28118156 DOI: 10.1088/1361-6498/aa575d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Proper understanding of the risk of radiation-induced late effects for patients receiving external photon beam radiotherapy requires the determination of reliable dose-response relationships. Although significant efforts have been devoted to improving dose estimates for the study of late effects, the most often questioned explanatory variable is still the dose. In this work, based on a literature review, we provide an in-depth description of the radiotherapy dose reconstruction process for the study of late effects. In particular, we focus on the identification of the main sources of dose uncertainty involved in this process and summarise their impacts on the dose-response relationship for radiotherapy late effects. We provide a number of recommendations for making progress in estimating the uncertainties in current studies of radiotherapy late effects and reducing these uncertainties in future studies.
Collapse
Affiliation(s)
- Jérémi Vũ Bezin
- Inserm, Radiation Epidemiology Team, CESP-U1018, F-94807, Villejuif, France. Gustave Roussy, Villejuif, F-94805, France. Paris-Sud University, Orsay, F-91400, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Irazola L, Terrón JA, Bedogni R, Pola A, Lorenzoli M, Jimenez-Ortega E, Barbeiro AR, Sánchez-Nieto B, Sánchez-Doblado F. Neutron measurements in radiotherapy: A method to correct neutron sensitive devices for parasitic photon response. Appl Radiat Isot 2017; 123:32-35. [PMID: 28214683 DOI: 10.1016/j.apradiso.2016.12.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 09/29/2016] [Accepted: 12/28/2016] [Indexed: 11/20/2022]
Abstract
One of the major causes of secondary malignancies after radiotherapy treatments are peripheral doses, known to increase for some newer techniques (such as IMRT or VMAT). For accelerators operating above 10MV, neutrons can represent important contribution to peripheral doses. This neutron contamination can be measured using different passive or active techniques, available in the literature. As far as active (or direct-reading) procedures are concerned, a major issue is represented by their parasitic photon sensitivity, which can significantly affect the measurement when the point of test is located near to the field-edge. This work proposes a simple method to estimate the unwanted photon contribution to these neutrons. As a relevant case study, the use of a recently neutron sensor for "in-phantom" measurements in high-energy machines was considered. The method, called "Dual Energy Photon Subtraction" (DEPS), requires pairs of measurements performed for the same treatment, in low-energy (6MV) and high energy (e.g. 15MV) fields. It assumes that the peripheral photon dose (PPD) at a fixed point in a phantom, normalized to the unit photon dose at the isocenter, does not depend on the treatment energy. Measurements with ionization chamber and Monte Carlo simulations were used to evaluate the validity of this hypothesis. DEPS method was compared to already published correction methods, such as the use of neutron absorber materials. In addition to its simplicity, an advantage of DEPs procedure is that it can be applied to any radiotherapy machine.
Collapse
Affiliation(s)
- L Irazola
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Spain; Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Sevilla, Spain.
| | - J A Terrón
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Spain; Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - R Bedogni
- Politecnico di Milano, Dipartimento di Ingegneria Nuclear, Milano, Italy
| | - A Pola
- Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare (INFN), Italy
| | - M Lorenzoli
- Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare (INFN), Italy
| | - E Jimenez-Ortega
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Spain
| | - A R Barbeiro
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Spain
| | - B Sánchez-Nieto
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F Sánchez-Doblado
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Spain; Servicio de Radiofísica, Hospital Universitario Virgen Macarena, Sevilla, Spain
| |
Collapse
|
31
|
Hauri P, Hälg RA, Besserer J, Schneider U. A general model for stray dose calculation of static and intensity-modulated photon radiation. Med Phys 2016; 43:1955. [DOI: 10.1118/1.4944421] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
32
|
Newhauser WD, de Gonzalez AB, Schulte R, Lee C. A Review of Radiotherapy-Induced Late Effects Research after Advanced Technology Treatments. Front Oncol 2016; 6:13. [PMID: 26904500 PMCID: PMC4748041 DOI: 10.3389/fonc.2016.00013] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/12/2016] [Indexed: 01/01/2023] Open
Abstract
The number of incident cancers and long-term cancer survivors is expected to increase substantially for at least a decade. Advanced technology radiotherapies, e.g., using beams of protons and photons, offer dosimetric advantages that theoretically yield better outcomes. In general, evidence from controlled clinical trials and epidemiology studies are lacking. To conduct these studies, new research methods and infrastructure will be needed. In the paper, we review several key research methods of relevance to late effects after advanced technology proton-beam and photon-beam radiotherapies. In particular, we focus on the determination of exposures to therapeutic and stray radiation and related uncertainties, with discussion of recent advances in exposure calculation methods, uncertainties, in silico studies, computing infrastructure, electronic medical records, and risk visualization. We identify six key areas of methodology and infrastructure that will be needed to conduct future outcome studies of radiation late effects.
Collapse
Affiliation(s)
- Wayne D. Newhauser
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, USA
- Department of Physics, Mary Bird Perkins Cancer Center, Baton Rouge, LA, USA
| | | | - Reinhard Schulte
- Department of Basic Sciences, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Choonsik Lee
- Radiation Epidemiology Branch, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
33
|
Sánchez-Nieto B, El-far R, Irazola L, Romero-Expósito M, Lagares JI, Mateo JC, Terrón JA, Doblado FS. Analytical model for photon peripheral dose estimation in radiotherapy treatments. Biomed Phys Eng Express 2015. [DOI: 10.1088/2057-1976/1/4/045205] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|