1
|
Saße K, Albers K, Klassen PD, Marianyagam NJ, Weidlich G, Schneider MB, Chang S, Adler J, Poppe B, Looe HK, Eulenstein D. Experimental and Monte Carlo based dosimetric investigation of a novel 3 mm radiosurgery 3 MV beam using the microSilicon detector. J Appl Clin Med Phys 2024; 25:e14388. [PMID: 38762906 PMCID: PMC11163500 DOI: 10.1002/acm2.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/15/2024] [Accepted: 04/15/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND The ZAP-X system is a novel gyroscopic radiosurgical system based on a 3 MV linear accelerator and collimator cones with a diameter between 4 and 25 mm. Advances in imaging modalities to detect small and early-stage pathologies allow for an early and less invasive treatment, where a smaller collimator matching the anatomical target could provide better sparing of surrounding healthy tissue. PURPOSE A novel 3 mm collimator cone for the ZAP-X was developed. This study aims to investigate the usability of a commercial diode detector (microSilicon) for the dosimetric characterization of this small collimator cone; and to investigate the underlying small field perturbation effects. METHODS Profile measurements in five depths as well as PDD and output ratio measurements were performed with a microSilicon detector and radiochromic EBT3 films. In addition, comprehensive Monte Carlo simulations were performed to validate the measurement observations and to quantify the perturbation effects of the microSilicon detector in these extremely small field conditions. RESULTS It is shown that the microSilicon detector enables an accurate dosimetric characterization of the 3 mm beam. The profile parameters, such as the FWHM and 20%-80% penumbra width, agree within 0.1 to 0.2 mm between film and detector measurements. The output ratios agree within the measurement uncertainty between microSilicon detector and films, whereas the comparisons of the PDD results show good agreement with the Monte Carlo simulations. The analysis of the perturbation factors of the microSilicon detector reveals a small field correction factor of approximately 3% for the 3 mm circular beam and a correction factor smaller than 1.5% for field diameters above 3 mm. CONCLUSIONS It could be shown that the microSilicon detector is well-suitable for the characterization of the new 3 mm circular beam of the ZAP-X system.
Collapse
Affiliation(s)
- Katrin Saße
- University Clinic for Medical Radiation Physics, Medical Campus Pius HospitalCarl von Ossietzky UniversityOldenburgGermany
| | - Karina Albers
- University Clinic for Medical Radiation Physics, Medical Campus Pius HospitalCarl von Ossietzky UniversityOldenburgGermany
| | | | - Neelan J. Marianyagam
- Department of NeurosurgeryStanford University School of MedicinePalo AltoCaliforniaUSA
| | | | | | - Steven Chang
- Department of NeurosurgeryStanford University School of MedicinePalo AltoCaliforniaUSA
| | - John Adler
- ZAP Surgical SystemsSan CarlosCaliforniaUSA
| | - Björn Poppe
- University Clinic for Medical Radiation Physics, Medical Campus Pius HospitalCarl von Ossietzky UniversityOldenburgGermany
| | - Hui Khee Looe
- University Clinic for Medical Radiation Physics, Medical Campus Pius HospitalCarl von Ossietzky UniversityOldenburgGermany
| | | |
Collapse
|
2
|
Wegener S, Sauer OA. Simulation of consequences of using nonideal detectors during beam data commissioning measurements. Med Phys 2023; 50:8044-8056. [PMID: 37646469 DOI: 10.1002/mp.16675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Beam data commissioning is a core task of radiotherapy physicists. Despite multiple detectors available, a feasible measurement program compromises between detector properties and time constraints. Therefore, it is important to understand how nonideal measurement data propagates into patient dose calculation. PURPOSE We simulated the effects of realistic errors, due to beam commissioning with presumably nonoptimal detectors, on the resulting patient dose distributions. Additionally, the detectability of such beam commissioning errors during patient plan quality assurance (QA) was evaluated. METHODS A clinically used beam model was re-commissioned introducing changes to depth dose curves, output factors, profiles or combinations of those. Seventeen altered beam models with incremental changes of the modelling parameters were created to analyze dose changes on simplified anatomical phantoms. Additionally, fourteen altered models incorporate changes in the order of signal differences reported for typically used detectors. Eighteen treatment plans of different types were recalculated on patient CT data sets using the altered beam models. RESULTS For the majority of clinical plans, dose distributions in the target volume recalculated on the patient computed tomography data were similar between the original and the modified beam models, yielding global 2%/2 mm gamma pass rates above 98.9%. Larger changes were observed for certain combinations of beam modelling errors and anatomical sites, most extreme for output factor changes in a small target volume plan with a pass rate of 80.6%. Modelling an enlarged penumbra as if measured with a 0.125 cm3 ion chamber had the largest effect on the dose distribution (average pass rate of 96.5%, lowest 85.4%). On different QA phantom geometries, dose distributions between calculations with modified and unmodified models typically changed too little to be detected in actual measurements. CONCLUSION While the simulated errors during beam modelling had little effect on most plans, in some cases changes were considerable. High-quality penumbra and small field output factor should be a main focus of commissioning measurements. Detecting modelling issues using standard patient QA phantoms is unlikely. Verification of a beam model should be performed especially for plans with high modulation and in different depths or geometries representing the variety of situations expected clinically.
Collapse
Affiliation(s)
- Sonja Wegener
- Department of Radiation Oncology, University Hospital Wurzburg, Wuerzburg, Germany
| | - Otto A Sauer
- Department of Radiation Oncology, University Hospital Wurzburg, Wuerzburg, Germany
| |
Collapse
|
3
|
Kretschmer J, Brodbek L, Looe HK, van der Graaf E, Jan van Goethem M, Kiewiet H, Olivari F, Meyer C, Poppe B, Brandenburg S. Investigating the lateral dose response functions of point detectors in proton beams. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac783c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/13/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. Point detector measurements in proton fields are perturbed by the volume effect originating from geometrical volume-averaging within the extended detector’s sensitive volume and density perturbations by non-water equivalent detector components. Detector specific lateral dose response functions K(x) can be used to characterize the volume effect within the framework of a mathematical convolution model, where K(x) is the convolution kernel transforming the true dose profile D(x) into the measured signal profile of a detector M(x). The aim of this work is to investigate K(x) for detectors in proton beams. Approach. The K(x) for five detectors were determined by iterative deconvolution of measurements of D(x) and M(x) profiles at 2 cm water equivalent depth of a narrow 150 MeV proton beam. Monte Carlo simulations were carried out for two selected detectors to investigate a potential energy dependence, and to study the contribution of volume-averaging and density perturbation to the volume effect. Main results. The Monte Carlo simulated and experimentally determined K(x) agree within 2.1% of the maximum value. Further simulations demonstrate that the main contribution to the volume effect is volume-averaging. The results indicate that an energy or depth dependence of K(x) is almost negligible in proton beams. While the signal reduction from a Semiflex 3D ionization chamber in the center of a gaussian shaped field with 2 mm sigma is 32% for photons, it is 15% for protons. When measuring the field with a microDiamond the trend is less pronounced and reversed with a signal reduction for protons of 3.9% and photons of 1.9%. Significance. The determined K(x) can be applied to characterize the influence of the volume effect on detectors measured signal profiles at all clinical proton energies and measurement depths. The functions can be used to derive the actual dose distribution from point detector measurements.
Collapse
|
4
|
Looe HK, Blum I, Schönfeld AB, Tekin T, Delfs B, Poppe B. Model-based machine learning for the recovery of lateral dose profiles of small photon fields in magnetic field. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac5bfa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/09/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. To investigate the feasibility to train artificial neural networks (NN) to recover lateral dose profiles from detector measurements in a magnetic field. Approach. A novel framework based on a mathematical convolution model has been proposed to generate measurement-less training dataset. 2D dose deposition kernels and detector lateral fluence response functions of two air-filled ionization chambers and two diode-type detectors have been simulated without magnetic field and for magnetic field B = 0.35 and 1.5 T. Using these convolution kernels, training dataset consisting pairs of dose profiles
D
x
,
y
and signal profiles
M
x
,
y
were computed for a total of 108 2D photon fluence profiles
ψ
(
x
,
y
)
(80% training/20% validation). The NN were tested using three independent datasets, where the second test dataset has been obtained from simulations using realistic phase space files of clinical linear accelerator and the third test dataset was measured at a conventional linac equipped with electromagnets. Main results. The convolution kernels show magnetic field dependence due to the influence of the Lorentz force on the electron transport in the water phantom and detectors. The NN show good performance during training and validation with mean square error reaching a value of 1e-6 or smaller. The corresponding correlation coefficients R reached the value of 1 for all models indicating an excellent agreement between expected
D
x
,
y
and predicted
D
pred
x
,
y
.
The comparisons between
D
x
,
y
and
D
pred
x
,
y
using the three test datasets resulted in gamma indices (1 mm/1% global) <1 for all evaluated data points. Significance. Two verification approaches have been proposed to warrant the mathematical consistencies of the NN outputs. Besides offering a correction strategy not existed so far for relative dosimetry in a magnetic field, this work could help to raise awareness and to improve understanding on the distortion of detector’s signal profiles by a magnetic field.
Collapse
|
5
|
Li Y, Liu H, Huang N, Wang Z, Zhang C. The Measurement of the Surface Dose in Regular and Small Radiation Therapy Fields Using Cherenkov Imaging. Technol Cancer Res Treat 2022; 21:15330338211073432. [PMID: 35119327 PMCID: PMC8819764 DOI: 10.1177/15330338211073432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Purpose: The aim of this study is to measure the output factor (OF)
and profile of surface dose in regular and small radiation therapy fields using
Cherenkov imaging (CI). Methods: A medical linear accelerator
(linac) was employed to generate radiation fields, including regular open photon
field (ROPF), regular wedge photon field (RWPF), regular electron field (REF)
and small photon field (SPF). The photon beams consisted of two filter modes
including flattening filter (FF) and flattening filter free (FFF). All fields
were delivered to a solid water phantom. Cherenkov light was captured using a
charge-coupled device system during phantom irradiation. The OF and profile of
surface dose measured by CI were compared with those determined by film
measurement, ionization chamber measurement and treatment planning system
calculation in order to examine the feasibility of measuring surface dose OF and
profile using CI. Results: The discrepancy between surface dose OF
measured by CI and that determined by other methods is less than 6% in ROPFs
with size less than 10 × 10 cm2, REFs with size less than 10 × 10
cm2, and SPFs except for 1 × 1 cm2 field. In the flat
profile region, the discrepancy between surface dose profile measured by CI and
that determined by other methods is less than 4% in REFs and less than 3% in
ROPFs, RWPFs, and SPFs except for 1 × 1 cm2 field. The discrepancy of the
surface dose profile is in compliance with the recommendation by IAEA TRS 430
reports. The discrepancy between field width measured by CI and that determined
by film measurement is equal to or less than 2 mm, which is within the tolerance
recommend by the guidelines of linac quality assurance in regular open FF photon
fields, SPFs, and REFs with cone size of 10 × 10 cm2 in area.
Conclusion: CI can be used to quantitatively measure the OF and
profile of surface dose. It is feasible to use CI to measure the surface dose
profile and field width in regular open FF photon fields and SPFs except for
1 × 1 cm2 field.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Transient Optics and Photonics, Xi’an
Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an
710119, China
- School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
- University of Chinese Academy of Sciences, Beijing 100049,
China
| | - HongJun Liu
- State Key Laboratory of Transient Optics and Photonics, Xi’an
Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an
710119, China
- Collaborative Innovation Center of Extreme Optics, Shanxi
University, Taiyuan 030006, China
- Hongjun Liu, PhD, State Key Laboratory of
Transient Optics and Photonics, Xi’an Institute of Optics and Precision
Mechanics, Chinese Academy of Sciences, Xi’an 710119, China.
Chunmin Zhang, PhD, School of Physics,
Xi’an Jiaotong University, Xi’an 710049, China.
| | - Nan Huang
- State Key Laboratory of Transient Optics and Photonics, Xi’an
Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an
710119, China
| | - Zhaolu Wang
- State Key Laboratory of Transient Optics and Photonics, Xi’an
Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an
710119, China
| | - Chunmin Zhang
- School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
- Hongjun Liu, PhD, State Key Laboratory of
Transient Optics and Photonics, Xi’an Institute of Optics and Precision
Mechanics, Chinese Academy of Sciences, Xi’an 710119, China.
Chunmin Zhang, PhD, School of Physics,
Xi’an Jiaotong University, Xi’an 710049, China.
| |
Collapse
|
6
|
Schönfeld AB, Mund K, Yan G, Schönfeld AA, Looe HK, Poppe B. Corrections of photon beam profiles of small fields measured with ionization chambers using a three-layer neural network. J Appl Clin Med Phys 2021; 22:64-71. [PMID: 34633745 PMCID: PMC8664151 DOI: 10.1002/acm2.13447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022] Open
Abstract
The purpose of this work is to study the feasibility of photon beam profile deconvolution using a feedforward neural network (NN) in very small fields (down to 0.56 × 0.56 cm2). The method's independence of the delivery and scanning system is also investigated. Lateral beam profiles of photon fields between 0.56 × 0.56 cm2 and 4.03 × 4.03 cm2 were collected on a Siemens Artiste linear accelerator. Three scanning ionization chambers (SNC 125c, PTW 31021, and PTW 31022) of sensitive volumes ranging from 0.016 cm3 to 0.108 cm3 were used with a PTW MP3 water phantom. A reference dataset was also collected with a PTW 60019 microDiamond detector to train and test individual NNs for each ionization chamber. Further testing of the trained NNs was performed with additional test data collected on an Elekta Synergy linear accelerator using a Sun Nuclear 3D Scanner. The results were evaluated with a 1D gamma analysis (0.5 mm/0.5%). After the deconvolution, the gamma passing rates increased from 54.79% to 99.58% for the SNC 125c, from 57.09% to 99.83% for the PTW 31021, and from 91.03% to 96.36% for the PTW 31022. The delivery system, the scanning system, the scanning mode (continuous vs. step‐by‐step), and the electrometer had no significant influence on the results. This study successfully demonstrated the feasibility of using NN to correct the beam profiles of very small photon fields collected with ionization chambers of various sizes. Its independence of the delivery and scanning system was also shown.
Collapse
Affiliation(s)
- Ann-Britt Schönfeld
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Karl Mund
- Department of Radiation Oncology, University of Florida, Gainesville, Florida, USA
| | - Guanghua Yan
- Department of Radiation Oncology, University of Florida, Gainesville, Florida, USA
| | | | - Hui Khee Looe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Björn Poppe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
7
|
Blum I, Tekin T, Delfs B, Schönfeld AB, Kapsch RP, Poppe B, Looe HK. The dose response of PTW microDiamond and microSilicon in transverse magnetic field under small field conditions. Phys Med Biol 2021; 66. [PMID: 34181591 DOI: 10.1088/1361-6560/ac0f2e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/28/2021] [Indexed: 11/11/2022]
Abstract
The aim of the present work is to investigate the behavior of two diode-type detectors (PTW microDiamond 60019 and PTW microSilicon 60023) in transverse magnetic field under small field conditions. A formalism based on TRS 483 has been proposed serving as the framework for the application of these high-resolution detectors under these conditions. Measurements were performed at the National Metrology Institute of Germany (PTB, Braunschweig) using a research clinical linear accelerator facility. Quadratic fields corresponding to equivalent square field sizesSbetween 0.63 and 4.27 cm at the depth of measurement were used. The magnetic field strength was varied up to 1.4 T. Experimental results have been complemented with Monte Carlo simulations up to 1.5 T. Detailed simulations were performed to quantify the small field perturbation effects and the influence of detector components on the dose response. The does response of both detectors decreases by up to 10% at 1.5 T in the largest field size investigated. InS = 0.63 cm, this reduction at 1.5 T is only about half of that observed in field sizesS > 2 cm for both detectors. The results of the Monte Carlo simulations show agreement better than 1% for all investigated conditions. Due to normalization at the machine specific reference field, the resulting small field output correction factors for both detectors in magnetic fieldkQclin,QmsrBare smaller than those in the magnetic field-free case, where correction up to 6.2% at 1.5 T is required for the microSilicon in the smallest field size investigated. The volume-averaging effect of both detectors was shown to be nearly independent of the magnetic field. The influence of the enhanced-density components within the detectors has been identified as the major contributors to their behaviors in magnetic field. Nevertheless, the effect becomes weaker with decreasing field size that may be partially attributed to the deficiency of low energy secondary electrons originated from distant locations in small fields.
Collapse
Affiliation(s)
- Isabel Blum
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Tuba Tekin
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Björn Delfs
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Ann-Britt Schönfeld
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | | | - Björn Poppe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Hui Khee Looe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
8
|
Bouchard H. Reference dosimetry of modulated and dynamic photon beams. Phys Med Biol 2021; 65:24TR05. [PMID: 33438582 DOI: 10.1088/1361-6560/abc3fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the late 1980s, a new technique was proposed that would revolutionize radiotherapy. Now referred to as intensity-modulated radiotherapy, it is at the core of state-of-the-art photon beam delivery techniques, such as helical tomotherapy and volumetric modulated arc therapy. Despite over two decades of clinical application, there are still no established guidelines on the calibration of dynamic modulated photon beams. In 2008, the IAEA-AAPM work group on nonstandard photon beam dosimetry published a formalism to support the development of a new generation of protocols applicable to nonstandard beam reference dosimetry (Alfonso et al 2008 Med. Phys. 35 5179-86). The recent IAEA Code of Practice TRS-483 was published as a result of this initiative and addresses exclusively small static beams. But the plan-class specific reference calibration route proposed by Alfonso et al (2008 Med. Phys. 35 5179-86) is a change of paradigm that is yet to be implemented in radiotherapy clinics. The main goals of this paper are to provide a literature review on the dosimetry of nonstandard photon beams, including dynamic deliveries, and to discuss anticipated benefits and challenges in a future implementation of the IAEA-AAPM formalism on dynamic photon beams.
Collapse
Affiliation(s)
- Hugo Bouchard
- Département de physique, Université de Montréal, Complexe des sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada. Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 Rue Saint-Denis, Montréal, Québec H2X 0A9, Canada. Département de radio-oncologie, Centre hospitalier de l'Université de Montréal (CHUM), 1051 Rue Sanguinet, Montréal, Québec H2X 3E4, Canada
| |
Collapse
|
9
|
Rosenfeld AB, Biasi G, Petasecca M, Lerch MLF, Villani G, Feygelman V. Semiconductor dosimetry in modern external-beam radiation therapy. Phys Med Biol 2020; 65:16TR01. [PMID: 32604077 DOI: 10.1088/1361-6560/aba163] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Poppinga D, Kretschmer J, Brodbek L, Meyners J, Poppe B, Looe HK. Evaluation of the RUBY modular QA phantom for planar and non-coplanar VMAT and stereotactic radiations. J Appl Clin Med Phys 2020; 21:69-79. [PMID: 32797670 PMCID: PMC7592965 DOI: 10.1002/acm2.13006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/25/2020] [Accepted: 07/02/2020] [Indexed: 01/14/2023] Open
Abstract
Purpose This study evaluates the clinical use of the RUBY modular QA phantom for linac QA to validate the integrity of IGRT workflows including the congruence of machine isocenter, imaging isocenter, and room lasers. The results have been benchmarked against those obtained with widely used systems. Additionally, the RUBY phantom has been implemented to perform system QA (End‐to‐End testing) from imaging to radiation for IGRT‐based VMAT and stereotactic radiations at an Elekta Synergy linac. Material and Methods The daily check of IGRT workflow was performed using the RUBY phantom, the Penta‐Guide, and the STEEV phantom. Furthermore, Winston–Lutz tests was carried out with the RUBY phantom and a ball‐bearing phantom to determine the offsets and the diameters of the isospheres of gantry, collimator, and couch rotations, with respect to the room lasers and kV‐imaging isocenter. System QA was performed with the RUBY phantom and STEEV phantom for eight VMAT treatment plans. Additionally, the visibility of the embedded objects within these phantoms in the images and the results of CT and MR image fusions were evaluated. Results All systems used for daily QA of IGRT workflows show comparable results. Calculated shifts based on CBCT imaging agree within 1 mm to the expected values. The results of the Winston–Lutz test based on kV imaging (2D planar and CBCT) or room lasers are consistent regardless of the system tested. The point dose values in the RUBY phantom agree to the expected values calculated using algorithms in Masterplan and Monte Carlo engine in Monaco within 3% of the clinical acceptance criteria. Conclusion All the systems evaluated in this study yielded comparable results in terms of linac QA and system QA procedures. A system QA protocol has been derived using the RUBY phantom to check the IGRT‐based VMAT and stereotactic radiations workflow at an Elekta Synergy linac.
Collapse
Affiliation(s)
| | - Jana Kretschmer
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Leonie Brodbek
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jutta Meyners
- Radiotherapy Department, Imland Hospital, Rendsburg, Germany
| | - Bjoern Poppe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Hui Khee Looe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
11
|
Weber C, Kranzer R, Weidner J, Kröninger K, Poppe B, Looe HK, Poppinga D. Small field output correction factors of the microSilicon detector and a deeper understanding of their origin by quantifying perturbation factors. Med Phys 2020; 47:3165-3173. [PMID: 32196683 PMCID: PMC7496769 DOI: 10.1002/mp.14149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/31/2020] [Accepted: 03/13/2020] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The aim of this study is the experimental and Monte Carlo-based determination of small field correction factors for the unshielded silicon detector microSilicon for a standard linear accelerator as well as the Cyberknife System. In addition, a detailed Monte Carlo analysis has been performed by modifying the detector models stepwise to study the influences of the detector's components. METHODS Small field output correction factors have been determined for the new unshielded silicon diode detector, microSilicon (type 60023, PTW Freiburg, Germany) as well as for the predecessors Diode E (type 60017, PTW Freiburg, Germany) and Diode SRS (type 60018, PTW Freiburg, Germany) for a Varian TrueBeam linear accelerator at 6 MV and a Cyberknife system. For the experimental determination, an Exradin W1 scintillation detector (Standard Imaging, Middleton, USA) has been used as reference. The Monte Carlo simulations have been performed with EGSnrc and phase space files from IAEA as well as detector models according to manufacturer blueprints. To investigate the influence of the detector's components, the detector models have been modified stepwise. RESULTS The correction factors for the smallest field size investigated at the TrueBeam linear accelerator (equivalent dosimetric square field side length Sclin = 6.3 mm) are 0.983 and 0.939 for the microSilicon and Diode E, respectively. At the Cyberknife system, the correction factors of the microSilicon are 0.967 at the smallest 5-mm collimator compared to 0.928 for the Diode SRS. Monte Carlo simulations show comparable results from the measurements and literature. CONCLUSION The microSilicon (type 60023) detector requires less correction than its predecessors, Diode E (type 60017) and Diode SRS (type 60018). The detector housing has been demonstrated to cause the largest perturbation, mainly due to the enhanced density of the epoxy encapsulation surrounding the silicon chip. This density has been rendered more water equivalent in case of the microSilicon detector to minimize the associated perturbation. The sensitive volume itself has been shown not to cause observable field size-dependent perturbation except for the volume-averaging effect, where the slightly larger diameter of the sensitive volume of the microSilicon (1.5 mm) is still small at the smallest field size investigated with corrections <2%. The new microSilicon fulfils the 5% correction limit recommended by the TRS 483 for output factor measurements at all conditions investigated in this work.
Collapse
Affiliation(s)
- Carolin Weber
- PTW FreiburgFreiburg79115Germany
- TU Dortmund UniversityDortmund44227Germany
| | | | | | | | - Björn Poppe
- University Clinic for Medical Radiation PhysicsMedical Campus Pius HospitalCarl von Ossietzky UniversityOldenburg26121Germany
| | - Hui Khee Looe
- University Clinic for Medical Radiation PhysicsMedical Campus Pius HospitalCarl von Ossietzky UniversityOldenburg26121Germany
| | | |
Collapse
|
12
|
Schönfeld AB, Poppinga D, Kranzer R, De Wilde RL, Willborn K, Poppe B, Looe HK. Technical Note: Characterization of the new microSilicon diode detector. Med Phys 2019; 46:4257-4262. [PMID: 31309594 PMCID: PMC6852691 DOI: 10.1002/mp.13710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose Dosimetric properties of the new microSilicon diode detector (60023) have been studied with focus on application in small‐field dosimetry. The influences of the dimensions of the sensitive volume and the density of the epoxy layer surrounding the silicon chip of microSilicon have been quantified and compared to its predecessor (Diode E 60017) and the microDiamond (60019, all PTW‐Freiburg, Germany). Methods Dose linearity has been studied in the range from 0.01 to 8.55 Gy and dose‐per‐pulse dependence from 0.13 to 0.86 mGy/pulse. The effective point of measurement (EPOM) was determined by comparing measured percentage depth dose curves with a reference curve (Roos chamber). Output ratios were measured for nominal field sizes from 0.5 × 0.5 cm2 to 4 × 4 cm2. The corresponding small‐field output correction factors, k, were derived with a plastic scintillation detector as reference. The lateral dose–response function, K(x), was determined using a slit beam geometry. Results MicroSilicon shows linear dose response (R2 = 1.000) in both low and high dose range up to 8.55 Gy with deviations of only up to 1% within the dose‐per‐pulse values investigated. The EPOM was found to lie (0.7 ± 0.2) mm below the front detector’s surface. The derived k for microSilicon (0.960 at seff = 0.55 cm) is similar to that of microDiamond (0.956), while Diode E requires larger corrections (0.929). This improved behavior of microSilicon in small‐fields is reflected in the slightly wider K(x) compared to Diode E. Furthermore, the amplitude of the negative values in K(x) at the borders of the sensitive volume has been reduced. Conclusions Compared to its predecessor, microSilicon shows improved dosimetric behavior with higher sensitivity and smaller dose‐per‐pulse dependence. Profile measurements demonstrated that microSilicon causes less perturbation in off‐axis measurements. It is especially suitable for the applications in small‐field output factors and profile measurements.
Collapse
Affiliation(s)
- Ann-Britt Schönfeld
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | | | | | | | - Kay Willborn
- Clinic for Radiation Therapy, Pius Hospital, Oldenburg, Germany
| | - Björn Poppe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Hui Khee Looe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
13
|
Poppinga D, Kranzer R, Ulrichs AB, Delfs B, Giesen U, Langner F, Poppe B, Looe HK. Three-dimensional characterization of the active volumes of PTW microDiamond, microSilicon, and Diode E dosimetry detectors using a proton microbeam. Med Phys 2019; 46:4241-4245. [PMID: 31292964 PMCID: PMC6851623 DOI: 10.1002/mp.13705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The purpose of this work is the three-dimensional characterization of the active volumes of commercial solid-state dosimetry detectors. Detailed knowledge of the dimensions of the detector's active volume as well as the detector housing is of particular interest for small-field photon dosimetry. As shown in previous publications from different groups, the design of the detector housing influences the detector signal for small photon fields. Therefore, detailed knowledge of the active volume dimension and the surrounding materials form the basis for accurate Monte Carlo simulations of the detector. METHODS A 10 MeV proton beam focused by the microbeam system of the Physikalisch-Technische Bundesanstalt was used to measure two-dimensional response maps of a synthetic diamond detector (microDiamond, type 60019, PTW Freiburg) and two silicon detectors (microSilicon, type 60023, PTW Freiburg and Diode E, type 60017, PTW Freiburg). In addition, the thickness of the active volume of the new microSilicon was measured using the method developed in a previous study. RESULTS The analysis of the response maps leads to active area of 1.18 mm2 for the Diode E, 1.75 mm2 for the microSilicon, and 3.91 mm2 for the microDiamond detector. The thickness of the active volume of the microSilicon detector was determined to be (17.8 ± 2) µm. CONCLUSIONS This study provides detailed geometrical data of the dosimetric active volume of three different solid-state detector types.
Collapse
Affiliation(s)
| | | | - Ann-Britt Ulrichs
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Björn Delfs
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Ulrich Giesen
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - Frank Langner
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - Björn Poppe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Hui Khee Looe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
14
|
Looe HK, Poppinga D, Kranzer R, Büsing I, Tekin T, Ulrichs A, Delfs B, Vogt D, Würfel J, Poppe B. The role of radiation-induced charge imbalance on the dose-response of a commercial synthetic diamond detector in small field dosimetry. Med Phys 2019; 46:2752-2759. [PMID: 30972756 PMCID: PMC6849526 DOI: 10.1002/mp.13542] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Discrepancy between experimental and Monte Carlo simulated dose-response of the microDiamond (mD) detector (type 60019, PTW Freiburg, Germany) at small field sizes has been reported. In this work, the radiation-induced charge imbalance in the structural components of the detector has been investigated as the possible cause of this discrepancy. MATERIALS AND METHODS Output ratio (OR) measurements have been performed using standard and modified versions of the mD detector at nominal field sizes from 6 mm × 6 mm to 40 mm × 40 mm. In the first modified mD detector (mD_reversed), the type of charge carriers collected is reversed by connecting the opposite contact to the electrometer. In the second modified mD detector (mD_shortened), the detector's contacts have been shortened. The third modified mD detector (mD_noChip) is the same as the standard version but the diamond chip with the sensitive volume has been removed. Output correction factors were calculated from the measured OR and simulated using the EGSnrc package. An adapted Monte Carlo user-code has been used to study the underlying mechanisms of the field size-dependent charge imbalance and to identify the detector's structural components contributing to this effect. RESULTS At the smallest field size investigated, the OR measured using the standard mD detector is >3% higher than the OR obtained using the modified mD detector with reversed contact (mD_reversed). Combining the results obtained with the different versions of the detector, the OR have been corrected for the effect of radiation imbalance. The OR obtained using the modified mD detector with shortened contacts (mD_shortened) agree with the corrected OR, all showing an over-response of less than 2% at the field sizes investigated. The discrepancy between the experimental and simulated output correction factors has been eliminated after accounting for the effect of charge imbalance. DISCUSSIONS AND CONCLUSIONS The role of radiation-induced charge imbalance on the dose-response of mD detector in small field dosimetry has been studied and quantified. It has been demonstrated that the effect is significant at small field sizes. Multiple methods were used to quantify the effect of charge imbalance with good agreement between Monte Carlo simulations and experimental results obtained with modified detectors. When this correction is applied to the Monte Carlo data, the discrepancy from experimental data is eliminated. Based on the detailed component analysis using an adapted Monte Carlo user-code, it has been demonstrated that the effect of charge imbalance can be minimized by modifying the design of the detector's contacts.
Collapse
Affiliation(s)
- Hui Khee Looe
- University Clinic for Medical Radiation PhysicsMedical Campus Pius HospitalCarl von Ossietzky UniversityOldenburgGermany
| | | | | | - Isabel Büsing
- University Clinic for Medical Radiation PhysicsMedical Campus Pius HospitalCarl von Ossietzky UniversityOldenburgGermany
| | - Tuba Tekin
- University Clinic for Medical Radiation PhysicsMedical Campus Pius HospitalCarl von Ossietzky UniversityOldenburgGermany
| | - Ann‐Britt Ulrichs
- University Clinic for Medical Radiation PhysicsMedical Campus Pius HospitalCarl von Ossietzky UniversityOldenburgGermany
| | - Björn Delfs
- University Clinic for Medical Radiation PhysicsMedical Campus Pius HospitalCarl von Ossietzky UniversityOldenburgGermany
| | | | | | - Björn Poppe
- University Clinic for Medical Radiation PhysicsMedical Campus Pius HospitalCarl von Ossietzky UniversityOldenburgGermany
| |
Collapse
|
15
|
Büsing I, Brant A, Lange T, Delfs B, Poppinga D, Kranzer R, Looe HK, Poppe B. Experimental and Monte-Carlo characterization of the novel compact ionization chamber PTW 31023 for reference and relative dosimetry in high energy photon beams. Z Med Phys 2019; 29:303-313. [PMID: 30878324 DOI: 10.1016/j.zemedi.2019.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The aim of the present work is to perform dosimetric characterization of a novel vented PinPoint ionization chamber (PTW 31023, PTW-Freiburg, Germany). This chamber replaces the previous model (PTW 31014), where the diameter of the central electrode has been increased from 0.3 to 0.6mm and the guard ring has been redesigned. Correction factors for reference and non-reference measurement conditions were examined. MATERIALS AND METHODS Measurements and calculations of the correction factors were performed according to the DIN 6800-2. The shifts of the effective point of measurement (EPOM) from the chamber's reference point were determined by comparison of the measured PDD with the reference curve obtained with a Roos chamber. Its lateral dose response functions, which act according to a mathematical convolution model as the convolution kernel transforming the dose profile D(x) to the measured signal M(x), have been approximated by Gaussian functions with standard deviation σ. Additionally, the saturation correction factors kS have been determined using different dose-per-pulse (DPP) values. The polarity effect correction factors kP were measured for field sizes from 5cm×5cm to 40cm×40cm. The influence of the diameter of the central electrode and the new guard ring on the beam quality correction factors kQ was studied by Monte-Carlo simulations. The non-reference condition correction factors kNR have been computed for 6MV photo beam by varying the field size and measurement depth. Comparisons on these aspects have been made to the previous model. RESULTS The shifts of the EPOM from the reference point, Δz, are found to be -0.55 (6MV) and -0.56 (10MV) in the radial orientation and -0.97mm (6MV) and -0.91mm (10MV) in the axial orientation. All values of Δz have an uncertainty of 0.1mm. The σ values are 0.80mm (axial), 0.75mm (radial lateral) and 1.76mm (radial longitudinal) for 6MV photon beam and are 0.85mm (axial), 0.75mm (radial lateral) and 1.82mm (radial longitudinal) for 15MV photon beam. All σ values have an uncertainty of 0.05mm. The correction factor kS was found to be 1.0034±0.0009 for the PTW 31014 chamber and 1.0024±0.0007 for the PTW 31023 chamber at the highest DPP (0.827mGy) investigated in this study. Under reference conditions, the polarity effect correction factor kP of the PTW 31014 chamber is 1.0094 and 1.0116 for 6 and 10MV respectively, while the kP of the PTW 31023 chamber is 1.0005 and 1.0013 for 6 and 10MV respectively, all values have an uncertainty of 0.002. The kP of the new chamber also exhibits a weaker field size dependence. The kQ values of the PTW 31023 chamber are closer to unity than those of the PTW 31014 chamber due to the thicker central electrode and the new guard ring design. The kNR values of the PTW 31023 chamber for 6MV photon beam deviate by not more than 1% from unity for the conditions investigated. DISCUSSIONS Correction factors associated with the new chamber required to perform reference and relative dose measurements have been determined according to the DIN-protocol. The correction factor kS of the new chamber is 0.1% smaller than that of the PTW 31014 at the highest DPP investigated. Under reference conditions, the correction factor kP of the PTW 31023 chamber is approximately 1% smaller than that of the PTW 31014 chamber for both energies used. The dosimetric characteristics of the new chamber investigated in this work have been demonstrated to fulfil the requirements of the TG-51 addendum for reference-class dosimeters at reference conditions.
Collapse
Affiliation(s)
- Isabel Büsing
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany.
| | - Andre Brant
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Tobias Lange
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Björn Delfs
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | | | | | - Hui Khee Looe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Björn Poppe
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
16
|
Delfs B, Kapsch RP, Chofor N, Looe HK, Harder D, Poppe B. A new reference-type ionization chamber with direction-independent response for use in small-field photon-beam dosimetry – An experimental and Monte Carlo study. Z Med Phys 2019; 29:39-48. [DOI: 10.1016/j.zemedi.2018.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/18/2018] [Accepted: 05/04/2018] [Indexed: 10/14/2022]
|
17
|
Looe HK, Büsing I, Tekin T, Brant A, Delfs B, Poppinga D, Poppe B. The polarity effect of compact ionization chambers used for small field dosimetry. Med Phys 2018; 45:5608-5621. [DOI: 10.1002/mp.13227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 11/07/2022] Open
Affiliation(s)
- Hui Khee Looe
- University Clinic for Medical Radiation Physics Medical Campus Pius Hospital Carl von Ossietzky University Oldenburg Germany
| | - Isabel Büsing
- University Clinic for Medical Radiation Physics Medical Campus Pius Hospital Carl von Ossietzky University Oldenburg Germany
| | - Tuba Tekin
- University Clinic for Medical Radiation Physics Medical Campus Pius Hospital Carl von Ossietzky University Oldenburg Germany
| | - Andre Brant
- University Clinic for Medical Radiation Physics Medical Campus Pius Hospital Carl von Ossietzky University Oldenburg Germany
| | - Björn Delfs
- University Clinic for Medical Radiation Physics Medical Campus Pius Hospital Carl von Ossietzky University Oldenburg Germany
| | | | - Björn Poppe
- University Clinic for Medical Radiation Physics Medical Campus Pius Hospital Carl von Ossietzky University Oldenburg Germany
| |
Collapse
|
18
|
Liu H, Li F, Park J, Lebron S, Wu J, Lu B, Li JG, Liu C, Yan G. Feasibility of photon beam profile deconvolution using a neural network. Med Phys 2018; 45:5586-5596. [PMID: 30295949 DOI: 10.1002/mp.13230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Ionization chambers are the detectors of choice for photon beam profile scanning. However, they introduce significant volume averaging effect (VAE) that can artificially broaden the penumbra width by 2-3 mm. The purpose of this study was to examine the feasibility of photon beam profile deconvolution (the elimination of VAE from ionization chamber-measured beam profiles) using a three-layer feedforward neural network. METHODS Transverse beam profiles of photon fields between 2 × 2 and 10 × 10 cm2 were collected with both a CC13 ionization chamber and an EDGE diode detector on an Elekta Versa HD accelerator. These profiles were divided into three datasets (training, validation and test) to train and test a three-layer feedforward neural network. A sliding window was used to extract input data from the CC13-measured profiles. The neural network produced the deconvolved value at the center of the sliding window. The full deconvolved profile was obtained after the sliding window was moved over the measured profile from end to end. The EDGE-measured beam profiles were used as reference for the training, validation, and test. The number of input neurons, which equals the sliding window width, and the number of hidden neurons were optimized with a parametric sweeping method. A total of 135 neural networks were fully trained with the Levenberg-Marquardt backpropagation algorithm. The one with the best overall performance on the training and validation dataset was selected to test its generalization ability on the test dataset. The agreement between the neural network-deconvolved profiles and the EDGE-measured profiles was evaluated with two metrics: mean squared error (MSE) and penumbra width difference (PWD). RESULTS Based on the two-dimensional MSE plots, the optimal combination of sliding window width of 15 and 5 hidden neurons was selected for the final neural network. Excellent agreement was achieved between the neural network-deconvolved profiles and the reference profiles in all three datasets. After deconvolution, the mean PWD reduced from 2.43 ± 0.26, 2.44 ± 0.36, and 2.46 ± 0.29 mm to 0.15 ± 0.15, 0.04 ± 0.03, and 0.14 ± 0.09 mm for the training, validation, and test dataset, respectively. CONCLUSIONS We demonstrated the feasibility of photon beam profile deconvolution with a feedforward neural network in this work. The beam profiles deconvolved with a three-layer neural network had excellent agreement with diode-measured profiles.
Collapse
Affiliation(s)
- Han Liu
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Feifei Li
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Jiyeon Park
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Sharon Lebron
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Jian Wu
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Bo Lu
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Jonathan G Li
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Chihray Liu
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Guanghua Yan
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Delfs B, Poppinga D, Ulrichs AB, Kapsch RP, Harder D, Poppe B, Looe HK. The 1D lateral dose response functions of photon-dosimetry detectors in magnetic fields—measurement and Monte-Carlo simulation. ACTA ACUST UNITED AC 2018; 63:195002. [DOI: 10.1088/1361-6560/aadd3d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Hartmann GH, Zink K. Decomposition of the dose conversion factor based on fluence spectra of secondary charged particles: Application to lateral dose profiles in photon fields. Med Phys 2018; 45:4246-4256. [PMID: 29974479 DOI: 10.1002/mp.13081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 11/05/2022] Open
Abstract
PURPOSE The dose conversion factor plays an important role in the dosimetry by enabling the absorbed dose in the sensitive volume of a detector to be converted into the absorbed dose in the surrounding medium (in most cases water). The purpose of this paper is to demonstrate that a specific fluence-based approach for the decomposition of the dose conversion factor is in particular useful for the interpretation of the influences of detector properties on measurements under nonreference conditions. METHODS Data for the dose conversion factor and secondary fluence spectra were obtained by the Monte Carlo method. The calculation of the secondary charged particle fluence (electrons and positrons) in the sensitive detector volume was imbedded into the code for the calculation of absorbed dose in the detector. The decomposition method into subfactors is based on the use of these fluence data applied to a stepwise transition from the dose at the point of measurement next to a pure water detector and finally to the fully simulated detector geometry. Each subfactor is obtained as a ratio, at which the stopping power only is different in the numerator and the denominator or at which the fluence only is different in the numerator and the denominator. This method was applied at photon dose profiles obtained in water at different radiation qualities and with various detectors of cylindrical type. RESULTS The resulting subfactors can be well identified as a stopping power ratio and as perturbation factors each reflecting particular detector properties. Two of them (f1 and f4 ) are equivalent with perturbation factors which have already been introduced by other authors previously. These are the volume perturbation factor and the extracameral perturbation factor. Subfactor f2 denoted as medium perturbation factor was found to resemble the density perturbation factor. Results obtained for the volume perturbation factor applied to dose profiles measured with cylindrical detectors confirm that the volume effect can be well described by a convolution of the true profile in water with a Gaussian kernel. It was found that the sigma parameter depends on the cylinder radius only and amounts almost exactly to half of its value. The medium perturbation factor strongly depends on the density of the detector medium. For an air-filled detector, the influence of the air again can be described by a Gauss convolution, however, with a less good agreement. For detectors with a density of the cavity medium larger than that of water, for instance, for a diamond detector, it was found that there is a tendency of compensation between the volume averaging effect and the medium effect. CONCLUSION The fluence-based decomposition of the dose conversion factor leads to a fluence-based formulation of perturbation factors, referred to as volume, medium, and extracameral perturbation factor. These factors offer useful explanations for the behavior of detectors in nonreference conditions. An example was given for cylindrical detectors at dose profile measurements.
Collapse
Affiliation(s)
| | - Klemens Zink
- Institute of Medical Physics and Radiation Protection (IMPS), University of Applied Sciences Giessen, 35390, Giessen, Germany
- Department for Radiotherapy and Radiooncology, University Medical Center Giessen-Marburg, 35043, Marburg, Germany
- Frankfurt Institute for Advanced Studies (FIAS), Goethe-University, 60438, Frankfurt, Germany
| |
Collapse
|
21
|
Fenwick JD, Georgiou G, Rowbottom CG, Underwood TSA, Kumar S, Nahum AE. Origins of the changing detector response in small megavoltage photon radiation fields. Phys Med Biol 2018; 63:125003. [PMID: 29757158 DOI: 10.1088/1361-6560/aac478] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Differences in detector response between measured small fields, f clin, and wider reference fields, f msr , can be overcome by using correction factors [Formula: see text] or by designing detectors with field-size invariant responses. The changing response in small fields is caused by perturbations of the electron fluence within the detector sensitive volume. For solid-state detectors, it has recently been suggested that these perturbations might be caused by the non-water-equivalent effective atomic numbers Z of detector materials, rather than by their non-water-like densities. Using the EGSnrc Monte Carlo code we have analyzed the response of a PTW 60017 diode detector in a 6 MV beam, calculating the [Formula: see text] correction factor from computed doses absorbed by water and by the detector sensitive volume in 0.5 × 0.5 and 4 × 4 cm2 fields. In addition to the 'real' detector, fully modelled according to the manufacturer's blue-prints, we calculated doses and [Formula: see text] factors for a 'Z → water' detector variant in which mass stopping-powers and microscopic interaction coefficients were set to those of water while preserving real material densities, and for a 'density → 1' variant in which densities were set to 1 g cm-3, leaving mass stopping-powers and interaction coefficients at real levels. [Formula: see text] equalled 0.910 ± 0.005 (2 standard deviations) for the real detector, was insignificantly different at 0.912 ± 0.005 for the 'Z → H2O' variant, but equalled 1.012 ± 0.006 for the 'density → 1' variant. For the 60017 diode in a 6 MV beam, then, [Formula: see text] was determined primarily by the detector's density rather than its atomic composition. Further calculations showed this remained the case in a 15 MV beam. Interestingly, the sensitive volume electron fluence was perturbed more by detector atomic composition than by density; however, the density-dependent perturbation varied with field-size, whereas the Z-dependent perturbation was relatively constant, little affecting [Formula: see text].
Collapse
Affiliation(s)
- John D Fenwick
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, The Sherrington Building, Ashton Street, Liverpool L69 3BX, United Kingdom. Department of Physics, Clatterbridge Cancer Centre, Clatterbridge Road, Wirral CH63 4JY, United Kingdom
| | | | | | | | | | | |
Collapse
|
22
|
Looe HK, Delfs B, Poppinga D, Harder D, Poppe B. 2D convolution kernels of ionization chambers used for photon-beam dosimetry in magnetic fields: the advantage of small over large chamber dimensions. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1361-6560/aab50c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Butler DJ, Beveridge T, Lehmann J, Oliver CP, Stevenson AW, Livingstone J. Spatial response of synthetic microDiamond and diode detectors measured with kilovoltage synchrotron radiation. Med Phys 2018; 45:943-952. [PMID: 29244899 DOI: 10.1002/mp.12733] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/16/2017] [Accepted: 11/30/2017] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To map the spatial response of four solid-state radiation detectors of types commonly used for radiotherapy dosimetry. METHODS PTW model 60016 Diode P, 60017 Diode E, 60018 Diode SRS, and 60019 microDiamond detectors were radiographed using a high resolution conventional X-ray system. Their spatial response was then investigated using a 0.1 mm diameter beam of 95 keV average energy photons generated by a synchrotron. The detectors were scanned through the beam while their signal was recorded as a function of position, to map the response. These 2D response maps were created in both the end-on and side-on orientations. RESULTS The results show the location and size of the active region. End-on, the active area was determined to be centrally located and within 0.2 mm of the manufacturer's specified diameter. The active areas of the 60016 Diode P, 60017 Diode E, 60018 Diode SRS detectors are uniform to within approximately 5%. The 60019 microDiamond showed local variations up to 30%. The extra-cameral signal in the microDiamond was calculated from the side-on scan to be approximately 8% of the signal from the active element. CONCLUSIONS The spatial response of four solid-state detectors has been measured. The technique yielded information about the location and uniformity of the active area, and the extra-cameral signal, for the beam quality used.
Collapse
Affiliation(s)
- Duncan J Butler
- Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), Yallambie, Vict., 3085, Australia
| | - Toby Beveridge
- Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), Yallambie, Vict., 3085, Australia
| | - Joerg Lehmann
- Institute of Medical Physics, University of Sydney, Physics Road A28, Sydney, NSW, 2006, Australia
| | - Christopher P Oliver
- Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), Yallambie, Vict., 3085, Australia
| | - Andrew W Stevenson
- Australian Synchrotron, 800 Blackburn Road, Clayton, Vict., 3168, Australia.,CSIRO, Manufacturing, Clayton, Vict., 3168, Australia
| | - Jayde Livingstone
- Australian Synchrotron, 800 Blackburn Road, Clayton, Vict., 3168, Australia
| |
Collapse
|
24
|
Looe HK, Delfs B, Poppinga D, Jiang P, Harder D, Poppe B. The ‘cutting away’ of potential secondary electron tracks explains the effects of beam size and detector wall density in small-field photon dosimetry. ACTA ACUST UNITED AC 2017; 63:015001. [DOI: 10.1088/1361-6560/aa9b46] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Poppinga D, Delfs B, Meyners J, Harder D, Poppe B, Looe HK. The output factor correction as function of the photon beam field size - direct measurement and calculation from the lateral dose response functions of gas-filled and solid detectors. Z Med Phys 2017; 28:224-235. [PMID: 28869164 DOI: 10.1016/j.zemedi.2017.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/07/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
The first aim of this study has been to extend the systematic experimental study of the field size dependence of the output factor correction for three micro-ionization chambers (PTW 31014, PTW 31022 and IBA Razor chamber), two silicon diodes (PTW 60017 and IBA Razor Diode) and the synthetic diamond detector microDiamond (PTW 60019) in a 6 MV photon beam down to an effective field side length of 2.6mm, and to summarize the present knowledge of this factor by treating it as a function of the dosimetric field size. In order to vary the dosimetric field size over this large range, output factors measurements were performed at source-to-surface distances of 60cm and 90cm. Since the output factors obtained with the organic scintillation detector Exradin W1 (Standard Imaging, Middleton, USA) at all field sizes closely agreed with those measured by EBT3 radiochromic films (ISP Corp, Wayne, USA), the scintillation detector served as the reference detector. The measured output correction factors reflect the influences of the volume averaging and density effects upon the uncorrected output factor values. In case of the microDiamond detector these opposing influences result in output factor correction values less than 1 for moderately small field sizes and larger than 1 for very small field sizes. Our results agree with most of the published experimental as well as Monte-Carlo simulated data within detector-specific limits of uncertainty. The dosimetric field side length has been identified as a reliable determinant of the output factor correction, and typical functional curve shapes of the field-size dependent output factor correction vs. dosimetric field side length have been associated with gas-filled, silicon diode and synthetic diamond detectors. The second aim of this study has been a novel, semi-empirical approach to calculate the field-size dependent output correction factors of small photon detectors by convolving film measured true dose profile data with measured lateral response functions of the detectors. To achieve this, the set of previously published 2D lateral dose response functions was complemented by those of the novel detectors PTW PinPoint chamber 31022 (PTW Freiburg, Freiburg, Germany), Razor chamber and Razor Diode (IBA Dosimetry, Schwarzenbruck, Germany). The output correction factors calculated from the lateral dose response functions closely fit with the directly measured output correction factors, thus supporting the latter by an independent method.
Collapse
Affiliation(s)
- Daniela Poppinga
- University Clinic for Medical Radiation Physics, Medical Campus Pius-Hospital, Carl von Ossietzky University, Georgstraße 12, 26121 Oldenburg, Germany.
| | - Björn Delfs
- University Clinic for Medical Radiation Physics, Medical Campus Pius-Hospital, Carl von Ossietzky University, Georgstraße 12, 26121 Oldenburg, Germany
| | - Jutta Meyners
- Radiotherapy Department, Imland Hospital, Lilienstraße 20-28, 24768 Rendsburg, Germany
| | - Dietrich Harder
- Prof. em., Medical Physics and Biophysics, Georg August University, Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Björn Poppe
- University Clinic for Medical Radiation Physics, Medical Campus Pius-Hospital, Carl von Ossietzky University, Georgstraße 12, 26121 Oldenburg, Germany
| | - Hui Khee Looe
- University Clinic for Medical Radiation Physics, Medical Campus Pius-Hospital, Carl von Ossietzky University, Georgstraße 12, 26121 Oldenburg, Germany
| |
Collapse
|
26
|
Looe HK, Delfs B, Poppinga D, Harder D, Poppe B. Magnetic field influences on the lateral dose response functions of photon-beam detectors: MC study of wall-less water-filled detectors with various densities. Phys Med Biol 2017; 62:5131-5148. [DOI: 10.1088/1361-6560/aa6ca0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Czarnecki D, Poppe B, Zink K. Monte Carlo-based investigations on the impact of removing the flattening filter on beam quality specifiers for photon beam dosimetry. Med Phys 2017; 44:2569-2580. [DOI: 10.1002/mp.12252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/13/2017] [Accepted: 03/21/2017] [Indexed: 01/07/2023] Open
Affiliation(s)
- Damian Czarnecki
- Institute of Medical Physics and Radiation Protection; University of Applied Sciences Giessen; Wiesenstrasse 14 Giessen D-35390 Germany
- University Clinic for Medical Radiation Physics; Medical Campus Pius Hospital; Carl von Ossietzky University; Oldenburg Germany
| | - Björn Poppe
- University Clinic for Medical Radiation Physics; Medical Campus Pius Hospital; Carl von Ossietzky University; Oldenburg Germany
| | - Klemens Zink
- Institute of Medical Physics and Radiation Protection; University of Applied Sciences Giessen; Giessen D-35390 Germany
- Department of Radiotherapy and Radiation Oncology; University Medical Center Giessen and Marburg; Marburg D-35043 Germany
- Frankfurt Institute for Advanced Studies (FIAS); Ruth-Moufang-Straße 1; 60438 Frankfurt am Main Germany
| |
Collapse
|
28
|
Stelljes TS, Looe HK, Harder D, Poppe B. The “collimator monitoring fill factor” of a two-dimensional detector array, a measure of its ability to detect collimation errors. Med Phys 2017; 44:1128-1138. [DOI: 10.1002/mp.12106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/27/2016] [Accepted: 12/18/2016] [Indexed: 11/08/2022] Open
Affiliation(s)
- Tenzin Sonam Stelljes
- University Clinic for Medical Radiation Physics; Medical Campus Pius Hospital; Carl von Ossietzky University Oldenburg; Germany
| | - Hui Khee Looe
- University Clinic for Medical Radiation Physics; Medical Campus Pius Hospital; Carl von Ossietzky University Oldenburg; Germany
| | - Dietrich Harder
- Prof. em.; Medical Physics and Biophysics; Georg-August-University; Göttingen Germany
| | - Björn Poppe
- University Clinic for Medical Radiation Physics; Medical Campus Pius Hospital; Carl von Ossietzky University Oldenburg; Germany
| |
Collapse
|
29
|
Osinga-Blättermann JM, Brons S, Greilich S, Jäkel O, Krauss A. Direct determination of k Q for Farmer-type ionization chambers in a clinical scanned carbon ion beam using water calorimetry. Phys Med Biol 2017; 62:2033-2054. [DOI: 10.1088/1361-6560/aa5bac] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Looe HK, Harder D, Poppe B. The energy dependence of the lateral dose response functions of detectors with various densities in photon-beam dosimetry. Phys Med Biol 2017; 62:N32-N44. [DOI: 10.1088/1361-6560/aa54aa] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Poppinga D, Meyners J, Delfs B, Muru A, Harder D, Poppe B, Looe HK. Experimental determination of the lateral dose response functions of detectors to be applied in the measurement of narrow photon-beam dose profiles. Phys Med Biol 2015; 60:9421-36. [PMID: 26583596 DOI: 10.1088/0031-9155/60/24/9421] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study aims at the experimental determination of the detector-specific 1D lateral dose response function K(x) and of its associated rotational symmetric counterpart K(r) for a set of high-resolution detectors presently used in narrow-beam photon dosimetry. A combination of slit-beam, radiochromic film, and deconvolution techniques served to accomplish this task for four detectors with diameters of their sensitive volumes ranging from 1 to 2.2 mm. The particular aim of the experiment was to examine the existence of significant negative portions of some of these response functions predicted by a recent Monte-Carlo-simulation (Looe et al 2015 Phys. Med. Biol. 60 6585-607). In a 6 MV photon slit beam formed by the Siemens Artiste collimation system and a 0.5 mm wide slit between 10 cm thick lead blocks serving as the tertiary collimator, the true cross-beam dose profile D(x) at 3 cm depth in a large water phantom was measured with radiochromic film EBT3, and the detector-affected cross-beam signal profiles M(x) were recorded with a silicon diode, a synthetic diamond detector, a miniaturized scintillation detector, and a small ionization chamber. For each detector, the deconvolution of the convolution integral M(x) = K(x) ∗ D(x) served to obtain its specific 1D lateral dose response function K(x), and K(r) was calculated from it. Fourier transformations and back transformations were performed using function approximations by weighted sums of Gaussian functions and their analytical transformation. The 1D lateral dose response functions K(x) of the four types of detectors and their associated rotational symmetric counterparts K(r) were obtained. Significant negative curve portions of K(x) and K(r) were observed in the case of the silicon diode and the diamond detector, confirming the Monte-Carlo-based prediction (Looe et al 2015 Phys. Med. Biol. 60 6585-607). They are typical for the perturbation of the secondary electron field by a detector with enhanced electron density compared with the surrounding water. In the cases of the scintillation detector and the small ionization chamber, the negative curve portions of K(x) practically vanish. It is planned to use the measured functions K(x) and K(r) to deconvolve clinical narrow-beam signal profiles and to correct the output factor values obtained with various high-resolution detectors.
Collapse
Affiliation(s)
- D Poppinga
- University Clinic for Medical Radiation Physics, Medical Campus Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | | | | | | | | | | | | |
Collapse
|