1
|
Yoshida E, Yamaya T. PET detectors with depth-of-interaction and time-of-flight capabilities. Radiol Phys Technol 2024; 17:596-609. [PMID: 38888821 DOI: 10.1007/s12194-024-00821-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/09/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
In positron emission tomography (PET), measurements of depth-of-interaction (DOI) information and time-of-flight (TOF) information are important. DOI information reduces the parallax error, and TOF information reduces noise by measuring the arrival time difference of the annihilation photons. Historically, these have been studied independently, and there has been less implementation of both DOI and TOF capabilities because previous DOI detectors did not have good TOF resolution. However, recent improvements in PET detector performance have resulted in commercial PET scanners achieving a coincidence resolving time of around 200 ps, which result in an effect even for small objects. This means that TOF information can now be utilized even for a brain PET scanner, which also requires DOI information. Therefore, various methods have been proposed to obtain better DOI and TOF information. In addition, the cost of PET detectors is also an important factor to consider, since several hundred detectors are used per PET scanner. In this paper, we review the latest DOI-TOF detectors including the history of detector development. When put into practical use, these DOI-TOF detectors are expected to contribute to the improvement of imaging performance in brain PET scanners.
Collapse
Affiliation(s)
- Eiji Yoshida
- National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| | - Taiga Yamaya
- National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
2
|
Zeimpekis KG, Mercolli L, Conti M, Sari H, Rominger A, Rathke H. 90Y post-radioembolization clinical assessment with whole-body Biograph Vision Quadra PET/CT: image quality, tumor, liver and lung dosimetry. Eur J Nucl Med Mol Imaging 2024; 51:2100-2113. [PMID: 38347299 PMCID: PMC11139701 DOI: 10.1007/s00259-024-06650-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/07/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE Evaluation of 90Y liver radioembolization post-treatment clinical data using a whole-body Biograph Vision Quadra PET/CT to investigate the potential of protocol optimization in terms of scan time and dosimetry. METHODS 17 patients with hepatocellular carcinoma with median (IQR) injected activity 2393 (1348-3298) MBq were included. Pre-treatment dosimetry plan was based on 99mTc-MAA SPECT/CT with Simplicit90Y™ and post-treatment validation with Quadra using Simplicit90Y™ and HERMIA independently. Regarding the image analysis, mean and peak SNR, the coefficient of variation (COV) and lesion-to-background ratio (LBR) were evaluated. For the post-treatment dosimetry validation, the mean tumor, whole liver and lung absorbed dose evaluation was performed using Simplicit90Y and HERMES. Images were reconstructed with 20-, 15-, 10-, 5- and 1- min sinograms with 2, 4, 6 and 8 iterations. Wilcoxon signed rank test was used to show statistical significance (p < 0.05). RESULTS There was no difference of statistical significance between 20- and 5- min reconstructed times for the peak SNR, COV and LBR. In addition, there was no difference of statistical significance between 20- and 1- min reconstructed times for all dosimetry metrics. Lung dosimetry showed consistently lower values than the expected. Tumor absorbed dose based on Simplicit90Y™ was similar to the expected while HERMES consistently underestimated significantly the measured tumor absorbed dose. Finally, there was no difference of statistical significance between expected and measured tumor, whole liver and lung dose for all reconstruction times. CONCLUSION In this study we evaluated, in terms of image quality and dosimetry, whole-body PET clinical images of patients after having been treated with 90Y microspheres radioembolization for liver cancer. Compared to the 20-min standard scan, the simulated 5-min reconstructed images provided equal image peak SNR and noise behavior, while performing also similarly for post-treatment dosimetry of tumor, whole liver and lung absorbed doses.
Collapse
Affiliation(s)
- Konstantinos G Zeimpekis
- Department of Nuclear Medicine, Bern University Hospital, Inselspital, University of Bern, Freiburgstrasse 18, Bern, 3010, Switzerland.
| | - Lorenzo Mercolli
- Department of Nuclear Medicine, Bern University Hospital, Inselspital, University of Bern, Freiburgstrasse 18, Bern, 3010, Switzerland
| | - Maurizio Conti
- Molecular Imaging, Siemens Healthineers, Knoxville, TN, USA
| | - Hasan Sari
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Bern University Hospital, Inselspital, University of Bern, Freiburgstrasse 18, Bern, 3010, Switzerland
| | - Hendrik Rathke
- Department of Nuclear Medicine, Bern University Hospital, Inselspital, University of Bern, Freiburgstrasse 18, Bern, 3010, Switzerland
| |
Collapse
|
3
|
Nuyts J, Defrise M, Morel C, Lecoq P. The SNR of time-of-flight positron emission tomography data for joint reconstruction of the activity and attenuation images. Phys Med Biol 2023; 69:10.1088/1361-6560/ad078c. [PMID: 37890469 PMCID: PMC10811362 DOI: 10.1088/1361-6560/ad078c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/27/2023] [Indexed: 10/29/2023]
Abstract
Objective.Measurement of the time-of-flight (TOF) difference of each coincident pair of photons increases the effective sensitivity of positron emission tomography (PET). Many authors have analyzed the benefit of TOF for quantification and hot spot detection in the reconstructed activity images. However, TOF not only improves the effective sensitivity, it also enables the joint reconstruction of the tracer concentration and attenuation images. This can be used to correct for errors in CT- or MR-derived attenuation maps, or to apply attenuation correction without the help of a second modality. This paper presents an analysis of the effect of TOF on the variance of the jointly reconstructed attenuation and (attenuation corrected) tracer concentration images.Approach.The analysis is performed for PET systems that have a distribution of possibly non-Gaussian TOF-kernels, and includes the conventional Gaussian TOF-kernel as a special case. Non-Gaussian TOF-kernels are often observed in novel detector designs, which make use of two (or more) different mechanisms to convert the incoming 511 keV photon to optical photons. The analytical result is validated with a simple 2D simulation.Main results.We show that if two different TOF-kernels are equivalent for image reconstruction with known attenuation, then they are also equivalent for joint reconstruction of the activity and the attenuation images. The variance increase in the activity, caused by also jointly reconstructing the attenuation image, vanishes when the TOF-resolution approaches perfection.Significance.These results are of interest for PET detector development and for the development of stand-alone PET systems.
Collapse
Affiliation(s)
- Johan Nuyts
- KU Leuven, University of Leuven, Department of Imaging and Pathology, Nuclear Medicine & Molecular imaging; Medical Imaging Research Center (MIRC), B-3000, Leuven, Belgium
| | - Michel Defrise
- Department of Nuclear Medicine, Vrije Universiteit Brussel, B-1090, Brussels, Belgium
| | | | - Paul Lecoq
- Polytechnic University of Valencia, Spain
| |
Collapse
|
4
|
Naunheim S, Kuhl Y, Solf T, Schug D, Schulz V, Mueller F. Analysis of a convex time skew calibration for light sharing-based PET detectors. Phys Med Biol 2023; 68. [PMID: 36595338 DOI: 10.1088/1361-6560/aca872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022]
Abstract
Objective.Positron emission tomography (PET) detectors providing attractive coincidence time resolutions (CTRs) offer time-of-flight information, resulting in an improved signal-to-noise ratio of the PET image. In applications with photosensor arrays that employ timestampers for individual channels, timestamps typically are not time synchronized, introducing time skews due to different signal pathways. The scintillator topology and transportation of the scintillation light might provoke further skews. If not accounted for these effects, the achievable CTR deteriorates. We studied a convex timing calibration based on a matrix equation. In this work, we extended the calibration concept to arbitrary structures targeting different aspects of the time skews and focusing on optimizing the CTR performance for detector characterization. The radiation source distribution, the stability of the estimations, and the energy dependence of calibration data are subject to the analysis.Approach.A coincidence setup, equipped with a semi-monolithic detector comprising 8 LYSO slabs, each 3.9 mm × 31.9 mm × 19.0 mm, and a one-to-one coupled detector with 8 × 8 LYSO segments of 3.9 mm × 3.9 mm × 19.0 mm volume is used. Both scintillators utilize a dSiPM (DPC3200-22-44, Philips Digital Photon Counting) operated in first photon trigger. The calibration was also conducted with solely one-to-one coupled detectors and extrapolated for a slab-only setup.Main results.All analyzed hyperparameters show a strong influence on the calibration. Using multiple radiation positions improved the skew estimation. The statistical significance of the calibration dataset and the utilized energy window was of great importance. Compared to a one-to-one coupled detector pair achieving CTRs of 224 ps the slab detector configuration reached CTRs down to 222 ps, demonstrating that slabs can compete with a clinically used segmented detector design.Significance.This is the first work that systematically studies the influence of hyperparameters on skew estimation and proposes an extension to arbitrary calibration structures (e.g. scintillator volumes) of a known calibration technique.
Collapse
Affiliation(s)
- Stephan Naunheim
- Department of Physics of Molecular Imaging Systems (PMI), Institute for Experimental Imaging, RWTH Aachen University, Germany
| | - Yannick Kuhl
- Department of Physics of Molecular Imaging Systems (PMI), Institute for Experimental Imaging, RWTH Aachen University, Germany
| | - Torsten Solf
- Philips Digital Photon Counting, Aachen, Germany
| | - David Schug
- Department of Physics of Molecular Imaging Systems (PMI), Institute for Experimental Imaging, RWTH Aachen University, Germany.,Hyperion Hybrid Imaging Systems GmbH, Aachen, Germany
| | - Volkmar Schulz
- Department of Physics of Molecular Imaging Systems (PMI), Institute for Experimental Imaging, RWTH Aachen University, Germany.,Hyperion Hybrid Imaging Systems GmbH, Aachen, Germany.,Fraunhofer Institute for Digital Medicine MEVIS, Aachen, Germany.,Physics Institute III B, RWTH Aachen University, Aachen, Germany
| | - Florian Mueller
- Department of Physics of Molecular Imaging Systems (PMI), Institute for Experimental Imaging, RWTH Aachen University, Germany
| |
Collapse
|
5
|
Phantom-based evaluation of yttrium-90 datasets using biograph vision quadra. Eur J Nucl Med Mol Imaging 2023; 50:1168-1182. [PMID: 36504278 PMCID: PMC9931793 DOI: 10.1007/s00259-022-06074-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE The image quality characteristics of two NEMA phantoms with yttrium-90 (90Y) were evaluated on a long axial field-of-view (AFOV) PET/CT. The purpose was to identify the optimized reconstruction setup for the imaging of patients with hepatocellular carcinoma after 90Y radioembolization. METHODS Two NEMA phantoms were used, where one had a 1:10 sphere to background activity concentration ratio and the second had cold background. Reconstruction parameters used are as follows: iterations 2 to 8, Gaussian filter 2- to 6-mm full-width-at-half-maximum, reconstruction matrices 440 × 440 and 220 × 220, high sensitivity (HS), and ultra-high sensitivity (UHS) modes. 50-, 40-, 30-, 20-, 10-, and 5-min acquisitions were reconstructed. The measurements included recovery coefficients (RC), signal-to-noise ratio (SNR), background variability, and lung error which measures the residual error in the corrections. Patient data were reconstructed with 20-, 10-, 5-, and 1-min time frames and evaluated in terms of SNR. RESULTS The RC for the hot phantom was 0.36, 0.45, 0.53, 0.63, 0.68, and 0.84 for the spheres with diameters of 10, 13, 17, 22, 28, and 37 mm, respectively, for UHS 2 iterations, a 220 × 220 matrix, and 50-min acquisition. The RC values did not differ with acquisition times down to 20 min. The SNR was the highest for 2 iterations, measured 11.7, 16.6, 17.6, 19.4, 21.9, and 27.7 while the background variability was the lowest (27.59, 27.08, 27.36, 26.44, 30.11, and 33.51%). The lung error was 18%. For the patient dataset, the SNR was 19%, 20%, 24%, and 31% higher for 2 iterations compared to 4 iterations for 20-, 10-, 5-, and 1-min time frames, respectively. CONCLUSIONS This study evaluates the NEMA image quality of a long AFOV PET/CT scanner with 90Y. It provides high RC for the smallest sphere compared to other standard AFOV scanners at shorter scan times. The maximum patient SNR was for 2 iterations, 20 min, while 5 min delivers images with acceptable SNR.
Collapse
|
6
|
Akamatsu G, Takahashi M, Tashima H, Iwao Y, Yoshida E, Wakizaka H, Kumagai M, Yamashita T, Yamaya T. Performance evaluation of VRAIN: a brain-dedicated PET with a hemispherical detector arrangement. Phys Med Biol 2022; 67. [PMID: 36317319 DOI: 10.1088/1361-6560/ac9e87] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
Objective.For PET imaging systems, a smaller detector ring enables less intrinsic spatial resolution loss due to the photon non-collinearity effect as well as better balance between production cost and sensitivity, and a hemispherical detector arrangement is more appropriate for brain imaging than a conventional cylindrical arrangement. Therefore, we have developed a brain-dedicated PET system with a hemispherical detector arrangement, which has been commercialized in Japan under the product name of VRAINTM. In this study, we evaluated imaging performance of VRAIN.Approach.The VRAIN used 54 detectors to form the main hemispherical unit and an additional half-ring behind the neck. Each detector was composed of a 12 × 12 array of lutetium fine silicate crystals (4.1 × 4.1 × 10 mm3) and a 12 × 12 array of silicon photomultipliers (4 × 4 mm2active area) with the one-to-one coupling. We evaluated the physical performance of VRAIN according to the NEMA NU 2-2018 standards. Some measurements were modified so as to fit the hemispherical geometry. In addition, we performed18F-FDG imaging in a healthy volunteer.Main results.In the phantom study, the VRAIN showed high resolution for separating 2.2 mm rods, 229 ps TOF resolution and 19% scatter fraction. With the TOF gain for a 20 cm diameter object (an assumed head diameter), the peak noise-equivalent count rate was 144 kcps at 9.8 kBq ml-1and the sensitivity was 25 kcps MBq-1. Overall, the VRAIN provided excellent image quality in phantom and human studies. In the human FDG images, small brain nuclei and gray matter structures were clearly visualized with high contrast and low noise.Significance.We demonstrated the excellent imaging performance of VRAIN, which supported the advantages of the hemispherical detector arrangement.
Collapse
Affiliation(s)
- Go Akamatsu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Miwako Takahashi
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Hideaki Tashima
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Yuma Iwao
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Eiji Yoshida
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Hidekatsu Wakizaka
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | | | | | - Taiga Yamaya
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| |
Collapse
|
7
|
Watanabe M, Moriya T, Uchida H, Omura T. Simulation study of potential time-of-flight capabilities for a multilayer DOI-PET detector with an independent readout structure. Phys Med Biol 2021; 66. [PMID: 34293731 DOI: 10.1088/1361-6560/ac16e7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/22/2021] [Indexed: 11/11/2022]
Abstract
A multilayer depth-of-interaction positron emission tomography (DOI-PET) detector with an independent readout structure has a potential advantage as a time-of-flight (TOF)-PET detector. The thin scintillator block of each detector layer can afford an improved coincidence time resolution (CTR) of ∼100 ps because the photon transfer time spread within the scintillator inherently decreases. To evaluate the potential TOF capabilities of a multilayer DOI-PET detector, which consists of thin layers of a cerium-doped lutetium-yttrium oxyorthosilicate (LYSO:Ce) scintillator coupled to a multi-pixel photon counter (MPPC) array, we examined the detector's CTR performance via Monte Carlo simulations. We used several types of scintillator structures: a monolithic plate, laser-processing array with 3.2 mm pitch, fine laser-processing array with 1.6 mm pitch, and pixelated array with 3.2 mm pitch, with 2, 4, 6, and 8 mm thickness values of a 25.6 mm × 25.6 mm scintillator cross-section. The MPPC array was composed of 3.0 mm × 3.0 mm photosensitive segments arranged in an 8 × 8 array. Here, we note that the CTR performance also significantly depends on the timing detection method, which generates a timing trigger signal for coincidence detection. Thus, we evaluated the CTRs for each scintillator structure by adopting four timing detection methods: using the total sum signal of 64 MPPC chips (T_sum), the maximum signal in the 64 MPPC chips (Max), the sum signal of a partial number of MPPC chips located at and in the vicinity of theγ-ray interaction position (P_sum), and the average of the timestamps generated at several MPPC chips (Ave). When using the T_sum for timing detection, the CTR full width at half-maximum values were ∼100 ps regardless of the scintillator structure. However, when using the Max signal approach, the CTRs of the monolithic plates, laser-processing arrays, and fine-pitch laser-processing arrays were drastically degraded with increasing thickness. On the other hand, the CTRs of the pixelated arrays exhibited almost no degradation. To improve the CTRs of the monolithic plate and the (fine-pitch) laser-processing array that exhibit a large light spread in the scintillator block, we applied the P_sum and Ave methods. The resulting CTRs significantly improved upon using P_sum; however, in the Ave approach the improvement effect disappeared when the thickness was <6 mm in case of our simulation.
Collapse
Affiliation(s)
- Mitsuo Watanabe
- Central Research Laboratory, Hamamatsu Photonics K. K., Hamamatsu, Japan
| | - Takahiro Moriya
- Central Research Laboratory, Hamamatsu Photonics K. K., Hamamatsu, Japan
| | - Hiroshi Uchida
- Global Strategic Challenge Center, Hamamatsu Photonics K. K., Hamamatsu, Japan
| | - Tomohide Omura
- Central Research Laboratory, Hamamatsu Photonics K. K., Hamamatsu, Japan
| |
Collapse
|
8
|
Yoshida E, Obata F, Kamada K, Yamaya T. A Crosshair Light Sharing PET Detector With DOI and TOF Capabilities Using Four-to-One Coupling and Single-Ended Readout. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3032466] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Akamatsu G, Tashima H, Takyu S, Kang HG, Iwao Y, Takahashi M, Yoshida E, Yamaya T. Design consideration of compact cardiac TOF-PET systems: a simulation study. Phys Med Biol 2021; 66. [PMID: 33721860 DOI: 10.1088/1361-6560/abeea4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/15/2021] [Indexed: 11/12/2022]
Abstract
Myocardial perfusion imaging (MPI) with PET plays a vital role in the management of coronary artery disease. High sensitivity systems can contribute to maximizing the potential value of PET MPI; therefore, we have proposed two novel detector arrangements, an elliptical geometry and a D-shape geometry, that are more sensitive and more compact than a conventional large-bore cylindrical geometry. Here we investigate two items: the benefits of the proposed geometries for cardiac imaging; and the effects of scatter components on cardiac PET image quality. Using the Geant4 toolkit, we modeled four time-of-flight (TOF) PET systems: an 80-cm-diameter cylinder, a 40-cm-diameter cylinder, a compact ellipse, and a compact D-shape. Spatial resolution and sensitivity were measured using point sources. Noise equivalent count rate (NECR) and image quality were examined using an anthropomorphic digital chest phantom. The proposed geometries showed higher sensitivity and better count rate characteristics with a fewer number of detectors than the conventional large-bore cylindrical geometry. In addition, we found that the increased intensity of the scatter components was a big factor affecting the contrast in defect regions for such a compact geometry. It is important to address the issue of the increased intensity of the scatter components to develop a high-performance compact cardiac TOF PET system.
Collapse
Affiliation(s)
- Go Akamatsu
- National Institute of Radiological Sciences, Chiba, 263-8555, JAPAN
| | | | - Sodai Takyu
- National Institute of Radiological Sciences, Chiba, JAPAN
| | - Han Gyu Kang
- National Institute of Radiological Sciences, Chiba, JAPAN
| | - Yuma Iwao
- National Institute of Radiological Sciences, Chiba, JAPAN
| | | | - Eiji Yoshida
- National Institute of Radiological Sciences, Chiba, JAPAN
| | - Taiga Yamaya
- National Institute of Radiological Sciences, Chiba, JAPAN
| |
Collapse
|
10
|
Yoshida E, Tashima H, Akamatsu G, Iwao Y, Takahashi M, Yamashita T, Yamaya T. 245 ps-TOF brain-dedicated PET prototype with a hemispherical detector arrangement. ACTA ACUST UNITED AC 2020; 65:145008. [DOI: 10.1088/1361-6560/ab8c91] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Tao W, Weng F, Chen G, Lv L, Zhao Z, Xie S, Zan Y, Xu J, Huang Q, Peng Q. Design study of fully wearable high-performance brain PETs for neuroimaging in free movement. Phys Med Biol 2020; 65:135006. [PMID: 32325449 DOI: 10.1088/1361-6560/ab8c90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A practical wearable brain PET scanner capable of dynamic neuroimaging during free bodily movement will enable potential breakthrough basic neuroscience studies and help develop imaging-based neurological diagnoses and treatments. Weight, brain coverage, and sensitivity are three fundamental technical obstacles in the development of Fully Wearable High-Performance (FWHP) brain PET scanners. The purpose of this study is to investigate the feasibility of building a FWHP brain PET using a limited volume of lutetium-yttrium oxyorthosilicate (LYSO) scintillator crystals. Six scanners, consisted of the same volume (2.66 kg) of LYSO scintillators with combinations of 2 different crystal pitches (3 mm and 1.5 mm) and 3 different crystal lengths (20 mm, 10 mm, and 5 mm), were simulated. The performances of the six scanners were assessed and compared with Siemen's HRRT brain PET and mCT whole-body PET, in terms of aperture, axial field of views (AFOV), sensitivity, spatial resolution, count rates, and image noise property. The time-of-flight (TOF) information was included in the image reconstruction to improve the effective sensitivity. The effects of the TOF was assessed by scanning a Jaszczak phantom and reconstructing images with the maximum likelihood expectation maximization (MLEM) algorithm with different timing settings (non-TOF, 500 ps, 200 ps, 100 ps and 50 ps Coincidence Time Resolution, CTR). The signal-noise ratio (SNR) of the images were assessed and compared with those of the HRRT scanner and mCT scanner. The results show that it is possible to construct a FWHP brain PET with better spatial resolution than the dedicated HRRT brain PET, comparable effective sensitivity (with 50 ∼ 100 ps CTR), and whole-brain coverage (23.7 cm inner diameter and 13.4 cm axial field of view) using 2.66 kg of LYSO.
Collapse
Affiliation(s)
- Weijie Tao
- Department of Nuclear Medicine, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China. School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Carra P, Bertazzoni M, Bisogni MG, Cela Ruiz JM, Del Guerra A, Gascon D, Gomez S, Morrocchi M, Pazzi G, Sanchez D, Sarasola Martin I, Sportelli G, Belcari N. Auto-Calibrating TDC for an SoC-FPGA Data Acquisition System. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019. [DOI: 10.1109/trpms.2018.2882709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Kochebina O, Jan S, Stute S, Sharyy V, Verrecchia P, Mancardi X, Yvon D. Performance Estimation for the High Resolution CaLIPSO Brain PET Scanner: A Simulation Study. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2019. [DOI: 10.1109/trpms.2018.2880811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Moskal P, Kisielewska D, Curceanu C, Czerwiński E, Dulski K, Gajos A, Gorgol M, Hiesmayr B, Jasińska B, Kacprzak K, Kapłon Ł, Korcyl G, Kowalski P, Krzemień W, Kozik T, Kubicz E, Mohammed M, Niedźwiecki S, Pałka M, Pawlik-Niedźwiecka M, Raczyński L, Raj J, Sharma S, Shivani, Shopa RY, Silarski M, Skurzok M, Stępień E, Wiślicki W, Zgardzińska B. Feasibility study of the positronium imaging with the J-PET tomograph. Phys Med Biol 2019; 64:055017. [PMID: 30641509 DOI: 10.1088/1361-6560/aafe20] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A detection system of the conventional PET tomograph is set-up to record data from [Formula: see text] annihilation into two photons with energy of 511 keV, and it gives information on the density distribution of a radiopharmaceutical in the body of the object. In this paper we explore the possibility of performing the three gamma photons imaging based on ortho-positronium annihilation, as well as the possibility of positronium mean lifetime imaging with the J-PET tomograph constructed from plastic scintillators. For this purposes simulations of the ortho-positronium formation and its annihilation into three photons were performed taking into account distributions of photons' momenta as predicted by the theory of quantum electrodynamics and the response of the J-PET tomograph. In order to test the proposed ortho-positronium lifetime image reconstruction method, we concentrate on the decay of the ortho-positronium into three photons and applications of radiopharmaceuticals labeled with isotopes emitting a prompt gamma. The proposed method of imaging is based on the determination of hit-times and hit-positions of registered photons which enables the reconstruction of the time and position of the annihilation point as well as the lifetime of the ortho-positronium on an event-by-event basis. We have simulated the production of the positronium in point-like sources and in a cylindrical phantom composed of a set of different materials in which the ortho-positronium lifetime varied from 2.0 ns to 3.0 ns, as expected for ortho-positronium created in the human body. The presented reconstruction method for total-body J-PET like detector allows to achieve a mean lifetime resolution of ∼40 ps. Recent positron annihilation lifetime spectroscopy measurements of cancerous and healthy uterine tissues show that this sensitivity may allow to study the morphological changes in cell structures.
Collapse
Affiliation(s)
- P Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Walrand S, Hesse M, Jamar F, Lhommel R. The origin and reduction of spurious extrahepatic counts observed in 90Y non-TOF PET imaging post radioembolization. Phys Med Biol 2018. [PMID: 29513273 DOI: 10.1088/1361-6560/aab4e9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Our literature survey revealed a physical effect unknown to the nuclear medicine community, i.e. internal bremsstrahlung emission, and also the existence of long energy resolution tails in crystal scintillation. None of these effects has ever been modelled in PET Monte Carlo (MC) simulations. This study investigates whether these two effects could be at the origin of two unexplained observations in 90Y imaging by PET: the increasing tails in the radial profile of true coincidences, and the presence of spurious extrahepatic counts post radioembolization in non-TOF PET and their absence in TOF PET. These spurious extrahepatic counts hamper the microsphere delivery check in liver radioembolization. An acquisition of a 32P vial was performed on a GSO PET system. This is the ideal setup to study the impact of bremsstrahlung x-rays on the true coincidence rate when no positron emission and no crystal radioactivity are present. A MC simulation of the acquisition was performed using Gate-Geant4. MC simulations of non-TOF PET and TOF-PET imaging of a synthetic 90Y human liver radioembolization phantom were also performed. Internal bremsstrahlung and long energy resolution tails inclusion in MC simulations quantitatively predict the increasing tails in the radial profile. In addition, internal bremsstrahlung explains the discrepancy previously observed in bremsstrahlung SPECT between the measure of the 90Y bremsstrahlung spectrum and its simulation with Gate-Geant4. However the spurious extrahepatic counts in non-TOF PET mainly result from the failure of conventional random correction methods in such low count rate studies and poor robustness versus emission-transmission inconsistency. A novel proposed random correction method succeeds in cleaning the spurious extrahepatic counts in non-TOF PET. Two physical effects not considered up to now in nuclear medicine were identified to be at the origin of the unusual 90Y true coincidences radial profile. TOF reconstruction removing of the spurious extrahepatic counts was theoretically explained by a better robustness against emission-transmission inconsistency. A novel random correction method was proposed to overcome the issue in non-TOF PET. Further studies are needed to assess the novel random correction method robustness.
Collapse
|
17
|
Zhang X, Peng Q, Zhou J, Huber JS, Moses WW, Qi J. Lesion detection and quantification performance of the Tachyon-I time-of-flight PET scanner: phantom and human studies. Phys Med Biol 2018; 63:065010. [PMID: 29461254 DOI: 10.1088/1361-6560/aab0f3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The first generation Tachyon PET (Tachyon-I) is a demonstration single-ring PET scanner that reaches a coincidence timing resolution of 314 ps using LSO scintillator crystals coupled to conventional photomultiplier tubes. The objective of this study was to quantify the improvement in both lesion detection and quantification performance resulting from the improved time-of-flight (TOF) capability of the Tachyon-I scanner. We developed a quantitative TOF image reconstruction method for the Tachyon-I and evaluated its TOF gain for lesion detection and quantification. Scans of either a standard NEMA torso phantom or healthy volunteers were used as the normal background data. Separately scanned point source and sphere data were superimposed onto the phantom or human data after accounting for the object attenuation. We used the bootstrap method to generate multiple independent noisy datasets with and without a lesion present. The signal-to-noise ratio (SNR) of a channelized hotelling observer (CHO) was calculated for each lesion size and location combination to evaluate the lesion detection performance. The bias versus standard deviation trade-off of each lesion uptake was also calculated to evaluate the quantification performance. The resulting CHO-SNR measurements showed improved performance in lesion detection with better timing resolution. The detection performance was also dependent on the lesion size and location, in addition to the background object size and shape. The results of bias versus noise trade-off showed that the noise (standard deviation) reduction ratio was about 1.1-1.3 over the TOF 500 ps and 1.5-1.9 over the non-TOF modes, similar to the SNR gains for lesion detection. In conclusion, this Tachyon-I PET study demonstrated the benefit of improved time-of-flight capability on lesion detection and ROI quantification for both phantom and human subjects.
Collapse
Affiliation(s)
- Xuezhu Zhang
- Department of Biomedical Engineering, University of California, Davis, CA 95616, United States of America
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Combined PET/MR imaging scanners capable of acquiring simultaneously the complementary information provided by the 2 imaging modalities are now available for human use. After addressing the hardware challenges for integrating the 2 imaging modalities, most of the efforts in the field have focused on developing MR-based attenuation correction methods for neurologic and whole-body applications, implementing approaches for improving one modality by using the data provided by the other and exploring research and clinical applications that could benefit from the synergistic use of the multimodal data.
Collapse
Affiliation(s)
- Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Room 2.301, Charlestown, MA 02129, USA.
| |
Collapse
|
19
|
Borghi G, Peet BJ, Tabacchini V, Schaart DR. A 32 mm × 32 mm × 22 mm monolithic LYSO:Ce detector with dual-sided digital photon counter readout for ultrahigh-performance TOF-PET and TOF-PET/MRI. Phys Med Biol 2016; 61:4929-49. [PMID: 27286232 DOI: 10.1088/0031-9155/61/13/4929] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
New applications for positron emission tomography (PET) and combined PET/magnetic resonance imaging (MRI) are currently emerging, for example in the fields of neurological, breast, and pediatric imaging. Such applications require improved image quality, reduced dose, shorter scanning times, and more precise quantification. This can be achieved by means of dedicated scanners based on ultrahigh-performance detectors, which should provide excellent spatial resolution, precise depth-of-interaction (DOI) estimation, outstanding time-of-flight (TOF) capability, and high detection efficiency. Here, we introduce such an ultrahigh-performance TOF/DOI PET detector, based on a 32 mm × 32 mm × 22 mm monolithic LYSO:Ce crystal. The 32 mm × 32 mm front and back faces of the crystal are coupled to a digital photon counter (DPC) array, in so-called dual-sided readout (DSR) configuration. The fully digital detector offers a spatial resolution of ~1.1 mm full width at half maximum (FWHM)/~1.2 mm mean absolute error, together with a DOI resolution of ~2.4 mm FWHM, an energy resolution of 10.2% FWHM, and a coincidence resolving time of 147 ps FWHM. The time resolution closely approaches the best results (135 ps FWHM) obtained to date with small crystals made from the same material coupled to the same DPC arrays, illustrating the excellent correction for optical and electronic transit time spreads that can be achieved in monolithic scintillators using maximum-likelihood techniques for estimating the time of interaction. The performance barely degrades for events with missing data (up to 6 out of 32 DPC dies missing), permitting the use of almost all events registered under realistic acquisition conditions. Moreover, the calibration procedures and computational methods used for position and time estimation follow recently made improvements that make them fast and practical, opening up realistic perspectives for using DSR monolithic scintillator detectors in TOF-PET and TOF-PET/MRI systems.
Collapse
|
20
|
Schug D, Lerche C, Weissler B, Gebhardt P, Goldschmidt B, Wehner J, Dueppenbecker PM, Salomon A, Hallen P, Kiessling F, Schulz V. Initial PET performance evaluation of a preclinical insert for PET/MRI with digital SiPM technology. Phys Med Biol 2016; 61:2851-78. [PMID: 26987774 PMCID: PMC5362057 DOI: 10.1088/0031-9155/61/7/2851] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hyperion-II(D) is a positron emission tomography (PET) insert which allows simultaneous operation in a clinical magnetic resonance imaging (MRI) scanner. To read out the scintillation light of the employed lutetium yttrium orthosilicate crystal arrays with a pitch of 1 mm and 12 mm in height, digital silicon photomultipliers (DPC 3200-22, Philips Digital Photon Counting) (DPC) are used. The basic PET performance in terms of energy resolution, coincidence resolution time (CRT) and sensitivity as a function of the operating parameters, such as the operating temperature, the applied overvoltage, activity and configuration parameters of the DPCs, has been evaluated at system level. The measured energy resolution did not show a large dependency on the selected parameters and is in the range of 12.4%-12.9% for low activity, degrading to ∼13.6% at an activity of ∼100 MBq. The CRT strongly depends on the selected trigger scheme (trig) of the DPCs, and we measured approximately 260 ps, 440 ps, 550 ps and 1300 ps for trig 1-4, respectively. The trues sensitivity for a NEMA NU 4 mouse-sized scatter phantom with a 70 mm long tube of activity was dependent on the operating parameters and was determined to be 0.4%-1.4% at low activity. The random fraction stayed below 5% at activity up to 100 MBq and the scatter fraction was evaluated as ∼6% for an energy window of 411 keV-561 keV and ∼16% for 250 keV-625 keV. Furthermore, we performed imaging experiments using a mouse-sized hot-rod phantom and a large rabbit-sized phantom. In 2D slices of the reconstructed mouse-sized hot-rod phantom (∅ = 28 mm), the rods were distinguishable from each other down to a rod size of 0.8 mm. There was no benefit from the better CRT of trig 1 over trig 3, where in the larger rabbit-sized phantom (∅ = 114 mm) we were able to show a clear improvement in image quality using the time-of-flight information. The findings will allow system architects-aiming at a similar detector design using DPCs-to make predictions about the design requirements and the performance that can be expected.
Collapse
Affiliation(s)
- David Schug
- Physics of Molecular Imaging Systems, Experimental Molecular Imaging, RWTH Aachen University, 52062 Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Moskal P, Rundel O, Alfs D, Bednarski T, Białas P, Czerwiński E, Gajos A, Giergiel K, Gorgol M, Jasińska B, Kamińska D, Kapłon Ł, Korcyl G, Kowalski P, Kozik T, Krzemień W, Kubicz E, Niedźwiecki S, Pałka M, Raczyński L, Rudy Z, Sharma NG, Słomski A, Silarski M, Strzelecki A, Wieczorek A, Wiślicki W, Witkowski P, Zieliński M, Zoń N. Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph. Phys Med Biol 2016; 61:2025-47. [PMID: 26895187 DOI: 10.1088/0031-9155/61/5/2025] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent tests of a single module of the Jagiellonian Positron Emission Tomography system (J-PET) consisting of 30 cm long plastic scintillator strips have proven its applicability for the detection of annihilation quanta (0.511 MeV) with a coincidence resolving time (CRT) of 0.266 ns. The achieved resolution is almost by a factor of two better with respect to the current TOF-PET detectors and it can still be improved since, as it is shown in this article, the intrinsic limit of time resolution for the determination of time of the interaction of 0.511 MeV gamma quanta in plastic scintillators is much lower. As the major point of the article, a method allowing to record timestamps of several photons, at two ends of the scintillator strip, by means of matrix of silicon photomultipliers (SiPM) is introduced. As a result of simulations, conducted with the number of SiPM varying from 4 to 42, it is shown that the improvement of timing resolution saturates with the growing number of photomultipliers, and that the [Formula: see text] configuration at two ends allowing to read twenty timestamps, constitutes an optimal solution. The conducted simulations accounted for the emission time distribution, photon transport and absorption inside the scintillator, as well as quantum efficiency and transit time spread of photosensors, and were checked based on the experimental results. Application of the [Formula: see text] matrix of SiPM allows for achieving the coincidence resolving time in positron emission tomography of [Formula: see text]0.170 ns for 15 cm axial field-of-view (AFOV) and [Formula: see text]0.365 ns for 100 cm AFOV. The results open perspectives for construction of a cost-effective TOF-PET scanner with significantly better TOF resolution and larger AFOV with respect to the current TOF-PET modalities.
Collapse
Affiliation(s)
- P Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348 Cracow, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Carlier T, Willowson KP, Fourkal E, Bailey DL, Doss M, Conti M. 90Y -PET imaging: Exploring limitations and accuracy under conditions of low counts and high random fraction. Med Phys 2015; 42:4295-309. [DOI: 10.1118/1.4922685] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|