1
|
Ahmed M, Beyreuther E, Gantz S, Horst F, Meyer J, Pawelke J, Schmid TE, Stolz J, Wilkens JJ, Bartzsch S. Design and dosimetric characterization of a transportable proton minibeam collimation system. Front Oncol 2024; 14:1473625. [PMID: 39741979 PMCID: PMC11685229 DOI: 10.3389/fonc.2024.1473625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025] Open
Abstract
Background Proton Minibeam Radiation Therapy has shown to widen the therapeutic window compared to conventional radiation treatment in pre-clinical studies. The underlying biological mechanisms, however, require more research. Purpose The purpose of this study was to develop and characterize a mechanical collimation setup capable of producing 250µm wide proton minibeams with a center-to-center distance of 1000µm. Methods To find the optimal arrangement Monte Carlo simulations were employed using the Geant4 toolkit TOPAS to maximize key parameters such as the peak-to-valley dose ratio (PVDR) and the valley dose rate. The experimental characterization of the optimized setup was carried out with film dosimetry at the University Proton Therapy beamline in Dresden and the proton beamline of the University of Washington Medical Center in Seattle with 150MeV and 50.5MeV, respectively. A microDiamond detector (PTW, Freiburg, Germany) was utilized at both beamlines for online proton minibeam dosimetry. Results A PVDR of 10 was achieved in Dresden and a PVDR of 14 in Seattle. Dosimetry measurements were carried out with EBT3 films at a depth of 5mm in a polymethylmethacrylate (PMMA) phantom. When comparing film dosimetry with the microDiamond, excellent agreement was observed in the valleys. However, the peak dose showed a discrepancy of approximately 10% in the 150MeV beam and 20% in the 50.5MeV beam between film and microDiamond. Discussion The characteristics of the minibeams generated with our system compares well with those of other collimated minibeams despite being smaller. The deviations of microDiamond measurements from film readings might be subject to the diamond detector responding differently in the peak and valley regions. Applying previously reported correction factors aligns the dose profile measured by the microDiamond with the profile acquired with EBT3 films in Dresden. Conclusion The novel proton minibeam system can be operated independently of specific beamlines. It can be transported easily and hence used for inter-institutional comparative studies. The quality of the minibeams allows us to perform in vitro and in vivo experiments in the future. The microDiamond was demonstrated to have great potential for online dosimetry for proton minibeams, yet requires more research to explain the observed discrepancies.
Collapse
Affiliation(s)
- Mabroor Ahmed
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Radiation Oncology, TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Elke Beyreuther
- Institute of Radiation Physics, Helmholtz Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
| | - Sebastian Gantz
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- Institute of Radiooncology - OncoRay, Helmholtz Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Felix Horst
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- Institute of Radiooncology - OncoRay, Helmholtz Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Juergen Meyer
- Department of Radiation Oncology, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, United States
| | - Jörg Pawelke
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
- Institute of Radiooncology - OncoRay, Helmholtz Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Thomas E. Schmid
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Radiation Oncology, TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jessica Stolz
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Radiation Oncology, TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan J. Wilkens
- Department of Radiation Oncology, TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stefan Bartzsch
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Radiation Oncology, TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Stengl C, Arbes E, Thai LYJ, Echner G, Vedelago J, Jansen J, Jäkel O, Seco J. Development and characterization of a versatile mini-beam collimator for pre-clinical photon beam irradiation. Med Phys 2023; 50:5222-5237. [PMID: 37145971 DOI: 10.1002/mp.16432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Interest in spatial fractionation radiotherapy has exponentially increased over the last decade as a significant reduction of healthy tissue toxicity was observed by mini-beam irradiation. Published studies, however, mostly use rigid mini-beam collimators dedicated to their exact experimental arrangement such that changing the setup or testing new mini-beam collimator configurations becomes challenging and expensive. PURPOSE In this work, a versatile, low-cost mini-beam collimator was designed and manufactured for pre-clinical applications with X-ray beams. The mini-beam collimator enables variability of the full width at half maximum (FWHM), the center-to-center distance (ctc), the peak-to-valley dose ratio (PVDR), and the source-to-collimator distance (SCD). METHODS The mini-beam collimator is an in-house development, which was constructed of 10 × 40 mm2 tungsten or brass plates. These metal plates were combined with 3D-printed plastic plates that can be stacked together in the desired order. A standard X-ray source was used for the dosimetric characterization of four different configurations of the collimator, including a combination of plastic plates of 0.5, 1, or 2 mm width, assembled with 1 or 2 mm thick metal plates. Irradiations were done at three different SCDs for characterizing the performance of the collimator. For the SCDs closer to the radiation source, the plastic plates were 3D-printed with a dedicated angle to compensate for the X-ray beam divergence, making it possible to study ultra-high dose rates of around 40 Gy/s. All dosimetric quantifications were performed using EBT-XD films. Additionally, in vitro studies with H460 cells were carried out. RESULTS Characteristic mini-beam dose distributions were obtained with the developed collimator using a conventional X-ray source. With the exchangeable 3D-printed plates, FWHM and ctc from 0.52 to 2.11 mm, and from 1.77 to 4.61 mm were achieved, with uncertainties ranging from 0.01% to 8.98%, respectively. The FWHM and ctc obtained with the EBT-XD films are in agreement with the design of each mini-beam collimator configuration. For dose rates in the order of several Gy/min, the highest PVDR of 10.09 ± 1.08 was achieved with a collimator configuration of 0.5 mm thick plastic plates and 2 mm thick metal plates. Exchanging the tungsten plates with the lower-density metal brass reduced the PVDR by approximately 50%. Also, increasing the dose rate to ultra-high dose rates was feasible with the mini-beam collimator, where a PVDR of 24.26 ± 2.10 was achieved. Finally, it was possible to deliver and quantify mini-beam dose distribution patterns in vitro. CONCLUSIONS With the developed collimator, we achieved various mini-beam dose distributions that can be adjusted according to the needs of the user in regards to FWHM, ctc, PVDR and SCD, while accounting for beam divergence. Therefore, the designed mini-beam collimator may enable low-cost and versatile pre-clinical research on mini-beam irradiation.
Collapse
Affiliation(s)
- Christina Stengl
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Eric Arbes
- Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department for Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Long-Yang Jan Thai
- Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department for Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Gernot Echner
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - José Vedelago
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Jeannette Jansen
- Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Jäkel
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Heidelberg Ion Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Joao Seco
- Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department for Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Technical aspects of proton minibeam radiation therapy: Minibeam generation and delivery. Phys Med 2022; 100:64-71. [PMID: 35750002 DOI: 10.1016/j.ejmp.2022.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Proton minibeam radiation therapy (pMBRT) is a novel therapeutic strategy that combines the normal tissue sparing of sub-millimetric, spatially fractionated beams with the improved ballistics of protons. This may allow a safe dose escalation in the tumour and has already proven to provide a remarkable increase of the therapeutic index for high-grade gliomas in animal experiments. One of the main challenges in pMBRT concerns the generation of minibeams and the implementation in a clinical environment. This article reviews the different approaches for generating minibeams, using mechanical collimators and focussing magnets, and discusses the technical aspects of the implementation and delivery of pMBRT.
Collapse
|
4
|
Dose Profile Modulation of Proton Minibeam for Clinical Application. Cancers (Basel) 2022; 14:cancers14122888. [PMID: 35740553 PMCID: PMC9221247 DOI: 10.3390/cancers14122888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 01/25/2023] Open
Abstract
Simple Summary Proton minibeam radiation therapy (pMBRT) using multislit collimator (MSC) and scatterers has been proposed to spare healthy tissues and organs on the beam path and beyond the Bragg peak. An MSC that was much thicker than the maximum range of the proton beam could provide a sufficiently high peak-to-valley dose ratio at the patient’s skin, and the scatterers could actively convert the spatially fractionated proton beam to a uniform and broad beam in tumors by changing their thickness. The combination of the MSC and the scatterers can be a good solution for implementing pMBRT in clinical proton therapy facilities. Abstract The feasibility of proton minibeam radiation therapy (pMBRT) using a multislit collimator (MSC) and a scattering device was evaluated for clinical use at a clinical proton therapy facility. We fabricated, through Monte Carlo (MC) simulations, not only an MSC with a high peak-to-valley dose ratio (PVDR) at the entrance of the proton beam, to prevent radiation toxicity, but also a scattering device to modulate the PVDR in depth. The slit width and center-to-center distance of the diverging MSC were 2.5 mm and 5.0 mm at the large end, respectively, and its thickness and available field size were 100 mm and 76 × 77.5 mm2, respectively. Spatially fractionated dose distributions were measured at various depths using radiochromic EBT3 films and also tested on bacterial cells. MC simulation showed that the thicker the MSC, the higher the PVDR at the phantom surface. Dosimetric evaluations showed that lateral dose profiles varied according to the scatterer’s thickness, and the depths satisfying PVDR = 1.1 moved toward the surface as their thickness increased. The response of the bacterial cells to the proton minibeams’ depth was also established, in a manner similar to the dosimetric pattern. Conclusively, these results strongly suggest that pMBRT can be implemented in clinical centers by using MSC and scatterers.
Collapse
|
5
|
Eley JG, Haga CW, Keller A, Lazenby EM, Raver C, Rusek A, Dilmanian FA, Krishnan S, Waddell J. Heavy Ion Minibeam Therapy: Side Effects in Normal Brain. Cancers (Basel) 2021; 13:cancers13246207. [PMID: 34944825 PMCID: PMC8699126 DOI: 10.3390/cancers13246207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of this work was to investigate whether minibeam therapy with heavy ions might offer improvements of the therapeutic ratio for the treatment of human brain cancers. To assess neurotoxicity, we irradiated normal juvenile rats using 120 MeV lithium-7 ions at an absorbed integral dose of 20 Gy. Beams were configured either as a solid parallel circular beam or as an array of planar parallel minibeams having 300-micron width and 1-mm center-to-center spacing within a circular array. We followed animals for 6 months after treatment and utilized behavioral testing and immunohistochemical studies to investigate the resulting cognitive impairment and chronic pathologic changes. We found both solid-beam therapy and minibeam therapy to result in cognitive impairment compared with sham controls, with no apparent reduction in neurotoxicity using heavy ion minibeams instead of solid beams under the conditions of this study.
Collapse
Affiliation(s)
- John G. Eley
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Correspondence:
| | - Catherine W. Haga
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Asaf Keller
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.K.); (C.R.)
| | - Ellis M. Lazenby
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - Charles Raver
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.K.); (C.R.)
| | - Adam Rusek
- Brookhaven National Laboratory, Upton, NY 11973, USA;
- NASA Space Radiation Laboratory, Upton, NY 11973, USA
| | - Farrokh Avraham Dilmanian
- Health Sciences Center, Departments of Radiation Oncology, Radiology, and Neurology, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Sunil Krishnan
- Mayo Clinic Cancer Center, Department of Radiation Oncology, Jacksonville, FL 32224, USA;
| | - Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|
6
|
Sotiropoulos M, Prezado Y. A scanning dynamic collimator for spot-scanning proton minibeam production. Sci Rep 2021; 11:18321. [PMID: 34526628 PMCID: PMC8443660 DOI: 10.1038/s41598-021-97941-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022] Open
Abstract
In proton minibeam radiation therapy, proton minibeams are typically produced by modulating a uniform field using a multislit collimator. Multislit collimators produce minibeams of fixed length and width, and a new collimator has to be manufactured each time a new minibeam array is required, limiting its flexibility. In this work, we propose a scanning dynamic collimator for the generation of proton minibeams arrays. The new collimator system proposed is able to produce any minibeam required on an on-line basis by modulating the pencil beam spots of modern proton therapy machines, rather than a uniform field. The new collimator is evaluated through Monte Carlo simulations and the produced proton minibeams are compared with that of a multislit collimator. Furthermore, a proof of concept experiment is conducted to demonstrate the feasibility of producing a minibeam array by repositioning (i.e. scanning) a collimator. It is concluded that besides the technical challenges, the new collimator design is producing equivalent minibeam arrays to the multislit collimator, whilst is flexible to produce any minibeam array desired.
Collapse
Affiliation(s)
- Marios Sotiropoulos
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400, Orsay, France.
| | - Yolanda Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400, Orsay, France
| |
Collapse
|
7
|
Park H, Paganetti H, Schuemann J, Jia X, Min CH. Monte Carlo methods for device simulations in radiation therapy. Phys Med Biol 2021; 66:10.1088/1361-6560/ac1d1f. [PMID: 34384063 PMCID: PMC8996747 DOI: 10.1088/1361-6560/ac1d1f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/12/2021] [Indexed: 11/12/2022]
Abstract
Monte Carlo (MC) simulations play an important role in radiotherapy, especially as a method to evaluate physical properties that are either impossible or difficult to measure. For example, MC simulations (MCSs) are used to aid in the design of radiotherapy devices or to understand their properties. The aim of this article is to review the MC method for device simulations in radiation therapy. After a brief history of the MC method and popular codes in medical physics, we review applications of the MC method to model treatment heads for neutral and charged particle radiation therapy as well as specific in-room devices for imaging and therapy purposes. We conclude by discussing the impact that MCSs had in this field and the role of MC in future device design.
Collapse
Affiliation(s)
- Hyojun Park
- Department of Radiation Convergence Engineering, Yonsei University, Wonju, Republic of Korea
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Xun Jia
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75235, United States of America
| | - Chul Hee Min
- Department of Radiation Convergence Engineering, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
8
|
Brusan A, Durmaz FA, Yaman A, Öztürk C. iBEX: Modular Open-Source Software for Digital Radiography. J Digit Imaging 2021; 33:708-721. [PMID: 31845123 DOI: 10.1007/s10278-019-00304-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A device-independent software package, named iBEX, is developed to accelerate the research and development efforts for X-ray imaging setups such as chest radiography, linear and multidirectional tomography, and dental and skeletal radiography. Its extension mechanism makes the software adaptable for a wide range of digital X-ray imaging hardware combinations and provides capabilities for researchers to develop image processing plug-ins. Independent of the X-ray sensor technology, iBEX could integrate with heterogeneous communication channels of digital detectors. iBEX is a freeware option for preclinical and early clinical testing of radiography devices. It provides tools to calibrate the device, integrate to health information infrastructure, acquire image, store studies on local storage, and send them to Picture Archiving and Communication System (PACS). iBEX is a unique open-source project bringing X-ray imaging devices' software into the scope of the open-source community to reduce the X-ray scanners' research effort, potentially increase the image quality, and cut down the production and testing costs of radiography devices.
Collapse
Affiliation(s)
- Altay Brusan
- Institute of Biomedical Engineering, Bogazici University, Kandilli Campus, Feza Gursey Bld., 34684, Cengelkoy-Istanbul, Turkey.
| | - F Aytaç Durmaz
- Institute of Biomedical Engineering, Bogazici University, Kandilli Campus, Feza Gursey Bld., 34684, Cengelkoy-Istanbul, Turkey
| | - Alper Yaman
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA Department of Biomechatronic Systems, Stuttgart, Germany
| | - Cengizhan Öztürk
- Institute of Biomedical Engineering, Bogazici University, Kandilli Campus, Feza Gursey Bld., 34684, Cengelkoy-Istanbul, Turkey
| |
Collapse
|
9
|
Mazal A, Prezado Y, Ares C, de Marzi L, Patriarca A, Miralbell R, Favaudon V. FLASH and minibeams in radiation therapy: the effect of microstructures on time and space and their potential application to protontherapy. Br J Radiol 2020; 93:20190807. [PMID: 32003574 PMCID: PMC7066940 DOI: 10.1259/bjr.20190807] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
After years of lethargy, studies on two non-conventional microstructures in time and space of the beams used in radiation therapy are enjoying a huge revival. The first effect called “FLASH” is based on very high dose-rate irradiation (pulse amplitude ≥106 Gy/s), short beam-on times (≤100 ms) and large single doses (≥10 Gy) as experimental parameters established so far to give biological and potential clinical effects. The second effect relies on the use of arrays of minibeams (e.g., 0.5–1 mm, spaced 1–3.5 mm). Both approaches have been shown to protect healthy tissues as an endpoint that must be clearly specified and could be combined with each other (e.g., minibeams under FLASH conditions). FLASH depends on the presence of oxygen and could proceed from the chemistry of peroxyradicals and a reduced incidence on DNA and membrane damage. Minibeams action could be based on abscopal effects, cell signalling and/or migration of cells between “valleys and hills” present in the non-uniform irradiation field as well as faster repair of vascular damage. Both effects are expected to maintain intact the tumour control probability and might even preserve antitumoural immunological reactions. FLASH in vivo experiments involving Zebrafish, mice, pig and cats have been done with electron beams, while minibeams are an intermediate approach between X-GRID and synchrotron X-ray microbeams radiation. Both have an excellent rationale to converge and be applied with proton beams, combining focusing properties and high dose rates in the beam path of pencil beams, and the inherent advantage of a controlled limited range. A first treatment with electron FLASH (cutaneous lymphoma) has recently been achieved, but clinical trials have neither been presented for FLASH with protons, nor under the minibeam conditions. Better understanding of physical, chemical and biological mechanisms of both effects is essential to optimize the technical developments and devise clinical trials.
Collapse
Affiliation(s)
| | - Yolanda Prezado
- IMNC, University Paris-Sud and Paris-Saclay, CNRS/IN2P3, Orsay, France
| | - Carme Ares
- Centro de Protonterapia Quironsalud, Madrid, Spain
| | - Ludovic de Marzi
- Institut Curie, Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, Orsay 91898, France.,Institut Curie, Inserm U 1021-CNRS UMR 3347, Paris-Saclay and PSL Research Universities, Orsay, France
| | - Annalisa Patriarca
- Institut Curie, Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, Orsay 91898, France
| | | | - Vincent Favaudon
- Institut Curie, Inserm U 1021-CNRS UMR 3347, Paris-Saclay and PSL Research Universities, Orsay, France
| |
Collapse
|
10
|
Dilmanian FA, Venkatesulu BP, Sahoo N, Wu X, Nassimi JR, Herchko S, Lu J, Dwarakanath BS, Eley JG, Krishnan S. Proton minibeams-a springboard for physics, biology and clinical creativity. Br J Radiol 2020; 93:20190332. [PMID: 31944824 DOI: 10.1259/bjr.20190332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proton minibeam therapy (PMBT) is a form of spatially fractionated radiotherapy wherein broad beam radiation is replaced with segmented minibeams-either parallel, planar minibeam arrays generated by a multislit collimator or scanned pencil beams that converge laterally at depth to create a uniform dose layer at the tumor. By doing so, the spatial pattern of entrance dose is considerably modified while still maintaining tumor dose and efficacy. Recent studies using computational modeling, phantom experiments, in vitro and in vivo preclinical models, and early clinical feasibility assessments suggest that unique physical and biological attributes of PMBT can be exploited for future clinical benefit. We outline some of the guiding principle of PMBT in this concise overview of this emerging area of preclinical and clinical research inquiry.
Collapse
Affiliation(s)
- F Avraham Dilmanian
- Departments of Radiology, Health Sciences Center and Cancer Center, Stony Brook University, Stony Brook, NY, USA.,Departments of Radiation Oncology, Health Sciences Center and Cancer Center, Stony Brook University, Stony Brook, NY, USA.,Departments of Neurology, Health Sciences Center and Cancer Center, Stony Brook University, Stony Brook, NY, USA.,Departments of Psychiatry, Health Sciences Center and Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Bhanu P Venkatesulu
- Department of Experimental Radiation Oncology, Health Sciences Center and Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Narayan Sahoo
- Departments of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaodong Wu
- Biophysics Research Institute of America, Miami, FL, USA.,Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Jessica R Nassimi
- Departments of Radiology, Health Sciences Center and Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Steven Herchko
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Jiade Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | | | - John G Eley
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| |
Collapse
|
11
|
Meyer J, Eley J, Schmid TE, Combs SE, Dendale R, Prezado Y. Spatially fractionated proton minibeams. Br J Radiol 2019; 92:20180466. [PMID: 30359081 PMCID: PMC6541186 DOI: 10.1259/bjr.20180466] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/26/2022] Open
Abstract
Extraordinary normal tissue response to highly spatially fractionated X-ray beams has been explored for over 25 years. More recently, alternative radiation sources have been developed and utilized with the aim to evoke comparable effects. These include protons, which lend themselves well for this endeavour due to their physical depth dose characteristics as well as corresponding variable biological effectiveness. This paper addresses the motivation for using protons to generate spatially fractionated beams and reviews the technological implementations and experimental results to date. This includes simulation and feasibility studies, collimation and beam characteristics, dosimetry and biological considerations as well as the results of in vivo and in vitro studies. Experimental results are emerging indicating an extraordinary normal tissue sparing effect analogous to what has been observed for synchrotron generated X-ray microbeams. The potential for translational research and feasibility of spatially modulated proton beams in clinical settings is discussed.
Collapse
Affiliation(s)
- Juergen Meyer
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - John Eley
- Department of Radiation Oncology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | | | | | - Remi Dendale
- Institut Curie, Centre de Protonthérapie d’Orsay, Orsay, France
| | - Yolanda Prezado
- Laboratoire d'Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), Centre National de la Recherche Scientifique, Universités Paris 11 and Paris 7, Campus d'Orsay, Orsay, France
| |
Collapse
|
12
|
De Marzi L, Patriarca A, Nauraye C, Hierso E, Dendale R, Guardiola C, Prezado Y. Implementation of planar proton minibeam radiation therapy using a pencil beam scanning system: A proof of concept study. Med Phys 2018; 45:5305-5316. [PMID: 30311639 DOI: 10.1002/mp.13209] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/26/2018] [Accepted: 09/02/2018] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Proton minibeam radiation therapy (pMBRT) is an innovative approach that combines the advantages of minibeam radiation therapy with the more precise ballistics of protons to further reduce the side effects of radiation. One of the main challenges of this approach is the generation of very narrow proton pencil beams with an adequate dose-rate to treat patients within a reasonable treatment time (several minutes) in existing clinical facilities. The aim of this study was to demonstrate the feasibility of implementing pMBRT by combining the pencil beam scanning (PBS) technique with the use of multislit collimators. This proof of concept study of pMBRT with a clinical system is intended to guide upcoming biological experiments. METHODS Monte Carlo simulations (TOPAS v3.1.p2) were used to design a suitable multislit collimator to implement planar pMBRT for conventional pencil beam scanning settings. Dose distributions (depth-dose curves, lateral profiles, Peak-to-Valley Dose Ratio (PVDR) and dose-rates) for different proton beam energies were assessed by means of Monte Carlo simulations and experimental measurements in a water tank using commercial ionization chambers and a new p-type silicon diode, the IBA RAZOR. An analytical intensity-modulated dose calculation algorithm designed to optimize the weight of individual Bragg peaks composing the field was also developed and validated. RESULTS Proton minibeams were then obtained using a brass multislit collimator with five slits measuring 2 cm × 400 μm in width with a center-to-center distance of 4 mm. The measured and calculated dose distributions (depth-dose curves and lateral profiles) showed a good agreement. Spread-out Bragg peaks (SOBP) and homogeneous dose distributions around the target were obtained by means of intensity modulation of Bragg peaks, while maintaining spatial fractionation at shallow depths. Mean dose-rates of 0.12 and 0.09 Gy/s were obtained for one iso-energy layer and a SOBP conditions in the presence of multislit collimator. CONCLUSIONS This study demonstrates the feasibility of implementing pMBRT on a PBS system. It also confirms the reliability of RAZOR detector for pMBRT dosimetry. This newly developed experimental methodology will support the design of future preclinical research with pMBRT.
Collapse
Affiliation(s)
- Ludovic De Marzi
- Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, Orsay, 91898, France
| | - Annalisa Patriarca
- Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, Orsay, 91898, France
| | - Catherine Nauraye
- Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, Orsay, 91898, France
| | - Eric Hierso
- Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, Orsay, 91898, France
| | - Rémi Dendale
- Institut Curie, PSL Research University, Centre de protonthérapie d'Orsay, Campus universitaire, bâtiment 101, Orsay, 91898, France
| | - Consuelo Guardiola
- IMNC-UMR 8165, CNRS, Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex, 91405, France
| | - Yolanda Prezado
- IMNC-UMR 8165, CNRS, Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, Orsay Cedex, 91405, France
| |
Collapse
|
13
|
Meyer J, Stewart RD, Smith D, Eagle J, Lee E, Cao N, Ford E, Hashemian R, Schuemann J, Saini J, Marsh S, Emery R, Dorman E, Schwartz J, Sandison G. Biological and dosimetric characterisation of spatially fractionated proton minibeams. Phys Med Biol 2017; 62:9260-9281. [PMID: 29053105 DOI: 10.1088/1361-6560/aa950c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The biological effectiveness of proton beams varies with depth, spot size and lateral distance from the beam central axis. The aim of this work is to incorporate proton relative biological effectiveness (RBE) and equivalent uniform dose (EUD) considerations into comparisons of broad beam and highly modulated proton minibeams. A Monte Carlo model of a small animal proton beamline is presented. Dose and variable RBE is calculated on a per-voxel basis for a range of energies (30-109 MeV). For an open beam, the RBE values at the beam entrance ranged from 1.02-1.04, at the Bragg peak (BP) from 1.3 to 1.6, and at the distal end of the BP from 1.4 to 2.0. For a 50 MeV proton beam, a minibeam collimator designed to produce uniform dose at the depth of the BP peak, had minimal impact on the open beam RBE values at depth. RBE changes were observed near the surface when the collimator was placed flush with the irradiated object, due to a higher neutron contribution derived from proton interactions with the collimator. For proton minibeams, the relative mean RBE weighted entrance dose (RWD) was ~25% lower than the physical mean dose. A strong dependency of the EUD with fraction size was observed. For 20 Gy fractions, the EUD varied widely depending on the radiosensitivity of the cells. For radiosensitive cells, the difference was up to ~50% in mean dose and ~40% in mean RWD and the EUD trended towards the valley dose rather than the mean dose. For comparative studies of uniform dose with spatially fractionated proton minibeams, EUD derived from a per-voxel RWD distribution is recommended for biological assessments of reproductive cell survival and related endpoints.
Collapse
Affiliation(s)
- Juergen Meyer
- Department of Radiation Oncology, University of Washington, 1959 NE Pacific Street, Box 356043, Seattle, WA 98195, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ford E, Emery R, Huff D, Narayanan M, Schwartz J, Cao N, Meyer J, Rengan R, Zeng J, Sandison G, Laramore G, Mayr N. An image-guided precision proton radiation platform for preclinicalin vivoresearch. Phys Med Biol 2016; 62:43-58. [DOI: 10.1088/1361-6560/62/1/43] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|