1
|
Dos Santos DS, Ossenkoppele B, Hopf YM, Soozande M, Noothout E, Vos HJ, Bosch JG, Pertijs MAP, Verweij MD, de Jong N. An Ultrasound Matrix Transducer for High-Frame-Rate 3-D Intra-cardiac Echocardiography. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:285-294. [PMID: 38036310 DOI: 10.1016/j.ultrasmedbio.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023]
Abstract
OBJECTIVE Described here is the development of an ultrasound matrix transducer prototype for high-frame-rate 3-D intra-cardiac echocardiography. METHODS The matrix array consists of 16 × 18 lead zirconate titanate elements with a pitch of 160 µm × 160 µm built on top of an application-specific integrated circuit that generates transmission signals and digitizes the received signals. To reduce the number of cables in the catheter to a feasible number, we implement subarray beamforming and digitization in receive and use a combination of time-division multiplexing and pulse amplitude modulation data transmission, achieving an 18-fold reduction. The proposed imaging scheme employs seven fan-shaped diverging transmit beams operating at a pulse repetition frequency of 7.7 kHz to obtain a high frame rate. The performance of the prototype is characterized, and its functionality is fully verified. RESULTS The transducer exhibits a transmit efficiency of 28 Pa/V at 5 cm per element and a bandwidth of 60% in transmission. In receive, a dynamic range of 80 dB is measured with a minimum detectable pressure of 10 Pa per element. The element yield of the prototype is 98%, indicating the efficacy of the manufacturing process. The transducer is capable of imaging at a frame rate of up to 1000 volumes/s and is intended to cover a volume of 70° × 70° × 10 cm. CONCLUSION These advanced imaging capabilities have the potential to support complex interventional procedures and enable full-volumetric flow, tissue, and electromechanical wave tracking in the heart.
Collapse
Affiliation(s)
- Djalma Simões Dos Santos
- Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands.
| | - Boudewine Ossenkoppele
- Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Yannick M Hopf
- Electronic Instrumentation Laboratory, Delft University of Technology, Delft, The Netherlands
| | - Mehdi Soozande
- Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Emile Noothout
- Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Hendrik J Vos
- Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands; Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Johan G Bosch
- Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Michiel A P Pertijs
- Electronic Instrumentation Laboratory, Delft University of Technology, Delft, The Netherlands
| | - Martin D Verweij
- Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands; Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nico de Jong
- Laboratory of Medical Imaging, Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands; Department of Biomedical Engineering, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Tourni M, Han SJ, Weber R, Kucinski M, Wan EY, Biviano AB, Konofagou EE. Electromechanical Cycle Length Mapping for atrial arrhythmia detection and cardioversion success assessment. Comput Biol Med 2023; 163:107084. [PMID: 37302374 PMCID: PMC10527498 DOI: 10.1016/j.compbiomed.2023.107084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/26/2023] [Accepted: 05/27/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND Direct current cardioversion (DCCV) is an established treatment to acutely convert atrial fibrillation (AF) to normal sinus rhythm. Yet, more than 70% of patients revert to AF shortly thereafter. Electromechanical Cycle Length Mapping (ECLM) is a high framerate, spectral analysis technique shown to non-invasively characterize electromechanical activation in paced canines and re-entrant flutter patients. This study assesses ECLM feasibility to map and quantify atrial arrhythmic electromechanical activation rates and inform on 1-day and 1-month DCCV response. METHODS Forty-five subjects (30 AF; 15 healthy sinus rhythm (SR) controls) underwent transthoracic ECLM in four standard apical 2D echocardiographic views. AF patients were imaged within 1 h pre- and post-DCCV. 3D-rendered atrial ECLM cycle length (CL) maps and spatial CL histograms were generated. CL dispersion and percentage of arrhythmic CLs≤333ms across the entire atrial myocardium were computed transmurally. ECLM results were subsequently used as indicators of DCCV success. RESULTS ECLM successfully confirmed the electrical atrial activation rates in 100% of healthy subjects (R2=0.96). In AF, ECLM maps localized the irregular activation rates pre-DCCV and confirmed successful post-DCCV with immediate reduction or elimination. ECLM metrics successfully distinguished DCCV 1-day and 1-month responders from non-responders, while pre-DCCV ECLM values independently predicted AF recurrence within 1-month post-DCCV. CONCLUSIONS ECLM can characterize electromechanical activation rates in AF, quantify their extent, and identify and predict short- and long-term AF recurrence. ELCM constitutes thus a noninvasive arrhythmia imaging modality that can aid clinicians in simultaneous AF severity quantification, prediction of AF DCCV response, and personalized treatment planning.
Collapse
Affiliation(s)
- Melina Tourni
- Depatrment of Biomedical Engineering, Columbia University, 630 W 168th Street, New York, 10032, NY, USA.
| | - Seungyeon Julia Han
- Depatrment of Biomedical Engineering, Columbia University, 630 W 168th Street, New York, 10032, NY, USA
| | - Rachel Weber
- Depatrment of Biomedical Engineering, Columbia University, 630 W 168th Street, New York, 10032, NY, USA
| | - Mary Kucinski
- Depatrment of Biomedical Engineering, Columbia University, 630 W 168th Street, New York, 10032, NY, USA
| | - Elaine Y Wan
- Department of Medicine and Vagelos College of Physicians and Surgeons, Columbia University, 630 W 168th Street, New York, 10032, NY, USA
| | - Angelo B Biviano
- Department of Medicine and Vagelos College of Physicians and Surgeons, Columbia University, 630 W 168th Street, New York, 10032, NY, USA
| | - Elisa E Konofagou
- Depatrment of Biomedical Engineering, Columbia University, 630 W 168th Street, New York, 10032, NY, USA; Department of Radiology, Columbia University, 630 W 168th Street, New York, 10032, NY, USA.
| |
Collapse
|
3
|
Moore C, McCrary AW, LeFevre M, Sturgeon GM, Barker PAC, von Ramm OT. Ultrasound Visualization and Recording of Transient Myocardial Vibrations. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1431-1440. [PMID: 36990961 DOI: 10.1016/j.ultrasmedbio.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/19/2023] [Accepted: 02/12/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE A new visualization and recording method used to assess and quantitate autogenic high-velocity motions in myocardial walls to provide a new description of cardiac function is described. METHODS The regional motion display (RMD) is based on high-speed difference ultrasound B-mode images and spatiotemporal processing to record propagating events (PEs). Sixteen normal participants and one patient with cardiac amyloidosis were imaged at rates of 500-1000/s using the Duke Phased Array Scanner, T5. RMDs were generated using difference images and spatially integrating these to display velocity as function of time along a cardiac wall. RESULTS In normal participants, RMDs revealed four discrete PEs with average onset timing with respect to the QRS complex of -31.7, +46, +365 and +536 ms. The late diastolic PE propagated apex to base in all participants at an average velocity of 3.4 m/s by the RMD. The RMD of the amyloidosis patient revealed significant changes in the appearance of PEs compared with normal participants. The late diastolic PE propagated at 5.3 m/s from apex to base. All four PEs lagged the average timing of normal participants. CONCLUSION The RMD method reliably reveals PEs as discrete events and successfully allows reproducible measurement of PE timing and the velocity of at least one PE. The RMD method is applicable to live, clinical high-speed studies and may offer a new approach to characterization of cardiac function.
Collapse
Affiliation(s)
- Cooper Moore
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | - Andrew W McCrary
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Melissa LeFevre
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Gregory M Sturgeon
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Piers A C Barker
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Olaf T von Ramm
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
4
|
Soozande M, Ossenkoppele BW, Hopf Y, Pertijs MAP, Verweij MD, de Jong N, Vos HJ, Bosch JG. Imaging Scheme for 3-D High-Frame-Rate Intracardiac Echography: A Simulation Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2862-2874. [PMID: 35759589 DOI: 10.1109/tuffc.2022.3186487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia and is normally treated by RF ablation. Intracardiac echography (ICE) is widely employed during RF ablation procedures to guide the electrophysiologist in navigating the ablation catheter, although only 2-D probes are currently clinically used. A 3-D ICE catheter would not only improve visualization of the atrium and ablation catheter, but it might also provide the 3-D mapping of the electromechanical wave (EW) propagation pattern, which represents the mechanical response of cardiac tissue to electrical activity. The detection of this EW needs 3-D high-frame-rate imaging, which is generally only realizable in tradeoff with channel count and image quality. In this simulation-based study, we propose a high volume rate imaging scheme for a 3-D ICE probe design that employs 1-D micro-beamforming in the elevation direction. Such a probe can achieve a high frame rate while reducing the channel count sufficiently for realization in a 10-Fr catheter. To suppress the grating-lobe (GL) artifacts associated with micro-beamforming in the elevation direction, a limited number of fan-shaped beams with a wide azimuthal and narrow elevational opening angle are sequentially steered to insonify slices of the region of interest. An angular weighted averaging of reconstructed subvolumes further reduces the GL artifacts. We optimize the transmit beam divergence and central frequency based on the required image quality for EW imaging (EWI). Numerical simulation results show that a set of seven fan-shaped transmission beams can provide a frame rate of 1000 Hz and a sufficient spatial resolution to visualize the EW propagation on a large 3-D surface.
Collapse
|
5
|
Melki L, Tourni M, Wang DY, Weber R, Wan EY, Konofagou EE. A new Electromechanical Wave Imaging dispersion metric for the characterization of ventricular activation in different Cardiac Resynchronization Therapy pacing schemes. IEEE Trans Biomed Eng 2022; 70:853-859. [PMID: 36049009 PMCID: PMC9975111 DOI: 10.1109/tbme.2022.3203653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Conventional biventricular (BiV) pacing cardiac resynchronization therapy (CRT) is an established treatment for heart failure patients. Recently, multiple novel CRT delivering technologies such as His-Bundle pacing have been investigated as alternative pacing strategies for optimal treatment benefit. Electromechanical Wave Imaging (EWI), a high frame-rate echocardiography-based modality, is capable of visualizing the change from dyssynchronous activation to resynchronized BiV-paced ventricles in 3D. This proof-of-concept study introduces a new EWI-based dispersion metric to further characterize ventricular activation. Patients with His-Bundle device implantation (n=4), left-bundle branch block (n=10), right-ventricular (RV) pacing (n=10), or BiV pacing (n=15) were imaged, as well as four volunteers in normal sinus rhythm (NSR). EWI successfully mapped the ventricular activation resulting from His-Bundle pacing. Additionally, very similar activation patterns were obtained in the NSR subjects, confirming recovery of physiological activation with His pacing. The dispersion metric was the most sensitive EWI-based metric that identified His pacing as the most efficient treatment (lowest activation time spread), followed by BiV and RV pacing. More specifically, the dispersion metric significantly (p 0.005) distinguished His pacing from the other two pacing schemes as well as LBBB. The initial findings presented herein indicate that EWI and its new dispersion metric may provide a useful resynchronization evaluation clinical tool in CRT patients under both novel His-Bundle pacing and more conventional BiV pacing strategies.
Collapse
Affiliation(s)
| | | | - Daniel Y. Wang
- Department of Medicine, Division of Cardiology, Columbia University
| | - Rachel Weber
- Department of Biomedical Engineering, Columbia University
| | - Elaine Y. Wan
- Department of Medicine, Division of Cardiology, Columbia University
| | - Elisa E. Konofagou
- Biomedical Engineering and Radiology Departments, Columbia University, New York, NY 10032 USA
| |
Collapse
|
6
|
Robert J, Bessiere F, Cao E, Loyer V, Abell E, Vaillant F, Quesson B, Catheline S, Lafon C. Spectral Analysis of Tissue Displacement for Cardiac Activation Mapping: Ex Vivo Working Heart and In Vivo Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:942-956. [PMID: 34941506 DOI: 10.1109/tuffc.2021.3137989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Characterizing myocardial activation is of major interest for understanding the underlying mechanism of cardiac arrhythmias. Electromechanical wave imaging (EWI) is an ultrafast ultrasound-based method used to map the propagation of the local contraction triggered by electrical activation of the heart. This study introduces a novel way to characterize cardiac activation based on the time evolution of the instantaneous frequency content of the cardiac tissue displacement curves. The first validation of this method was performed on an ex vivo dataset of 36 acquisitions acquired from two working heart models in paced rhythms. It was shown that the activation mapping described by spectral analysis of interframe displacement is similar to the standard EWI method based on zero-crossing of interframe strain. An average median error of 3.3 ms was found in the ex vivo dataset between the activation maps obtained with the two methods. The feasibility of mapping cardiac activation by EWI was then investigated on two open-chest pigs during sinus and paced rhythms in a pilot trial of cardiac mapping with an intracardiac probe. Seventy-five acquisitions were performed with reasonable stability and analyzed with the novel algorithm to map cardiac contraction propagation in the left ventricle (LV). Sixty-one qualitatively continuous isochrones were successfully computed based on this method. The region of contraction onset was coherently described while pacing in the imaging plane. These findings highlight the potential of implementing EWI acquisition on intracardiac probes and emphasize the benefit of performing short time-frequency analysis of displacement data to characterize cardiac activation in vivo.
Collapse
|
7
|
Melki L, Wang DY, Grubb CS, Weber R, Biviano A, Wan EY, Garan H, Konofagou EE. Cardiac Resynchronization Therapy Response Assessment with Electromechanical Activation Mapping within 24 Hours of Device Implantation: A Pilot Study. J Am Soc Echocardiogr 2021; 34:757-766.e8. [PMID: 33675941 DOI: 10.1016/j.echo.2021.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/14/2021] [Accepted: 02/14/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Cardiac resynchronization therapy (CRT) response assessment relies on the QRS complex narrowing criterion. Yet one third of patients do not improve despite narrowed QRS after implantation. Electromechanical wave imaging (EWI) is a quantitative echocardiography-based technique capable of noninvasively mapping cardiac electromechanical activation in three dimensions. The aim of this exploratory study was to investigate the EWI technique, sensitive to ventricular dyssynchrony, for informing CRT response on the day of implantation. METHODS Forty-four patients with heart failure with left bundle branch block or right ventricular (RV) paced rhythm and decreased left ventricular ejection fraction (LVEF; mean, 25.3 ± 9.6%) underwent EWI without and with CRT within 24 hours of device implantation. Of those, 16 were also scanned while in left ventricular (LV) pacing. Improvement in LVEF at 3-, 6-, or 9-month follow-up defined (1) super-responders (ΔLVEF ≥ 20%), (2) responders (10% ≤ ΔLVEF < 20%), and (3) nonresponders (ΔLVEF ≤ 5%). Three-dimensionally rendered electromechanical maps were obtained under RV, LV, and biventricular CRT pacing conditions. Mean RV free wall and LV lateral wall activation times were computed. The percentage of resynchronized myocardium was measured by quantifying the percentage of the left ventricle activated within 120 msec of QRS onset. Correlations between percentage of resynchronized myocardium and type of CRT response were assessed. RESULTS LV lateral wall activation time was significantly different (P ≤ .05) among all three pacing conditions in the 16 patients: LV lateral wall activation time with CRT in biventricular pacing (73.1 ± 17.6 msec) was lower compared with LV pacing (89.5 ± 21.5 msec) and RV pacing (120.3 ± 17.8 msec). Retrospective analysis showed that the percentage of resynchronized myocardium with CRT was a reliable response predictor within 24 hours of implantation for significantly (P ≤ .05) identifying super-responders (n = 7; 97.7 ± 1.9%) from nonresponders (n = 17; 89.9 ± 9.9%). CONCLUSION Electromechanical activation mapping constitutes a valuable three-dimensional visualization tool within 24 hours of implantation and could potentially aid in the timely assessment of CRT response rates, including during implantation for adjustment of lead placement and pacing outcomes.
Collapse
Affiliation(s)
- Lea Melki
- Ultrasound Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| | - Daniel Y Wang
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Christopher S Grubb
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Rachel Weber
- Ultrasound Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| | - Angelo Biviano
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Elaine Y Wan
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Hasan Garan
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Elisa E Konofagou
- Ultrasound Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York; Department of Radiology, Columbia University Irving Medical Center, New York, New York.
| |
Collapse
|
8
|
Andersen MS, Moore C, LeFevre M, Arges K, Friedman DJ, Atwater BD, Kisslo J, Søgaard P, Struijk JJ, von Ramm OT, Schmidt SE. Contractile Fronts In The Interventricular Septum: A Case For High Frame Rate Echocardiographic Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2181-2192. [PMID: 32561068 DOI: 10.1016/j.ultrasmedbio.2020.04.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
The real time high frame rate (HFR) 2-dimensional ultrasound system, T5, at Duke University is capable of imaging at up to 1000 images per second for adult cardiac imaging. A method for detecting and visualizing the mechanical contraction fronts using HFR echocardioagraphy-derived Strain Rate Image (SRI) was described in 26 patients. The Tissue Shortening Onset front durations for echocardiographic normal patients were significantly shorter than conduction disorder patients with left bundle branch block (LBBB) with intrinsic conduction and conduction disorder patients without LBBB (non-LBBB) with simulated LBBB (sLBBB). Echocardiographic normal patients had significantly higher correlation coefficients between their SRIs and spatially inverted versions of themselves compared to non-LBBB patients with intrinsic conduction and sLBBB. In conclusion, SRIs could spatially resolve contractile event fronts in patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Kisslo
- Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
9
|
Grubb CS, Melki L, Wang DY, Peacock J, Dizon J, Iyer V, Sorbera C, Biviano A, Rubin DA, Morrow JP, Saluja D, Tieu A, Nauleau P, Weber R, Chaudhary S, Khurram I, Waase M, Garan H, Konofagou EE, Wan EY. Noninvasive localization of cardiac arrhythmias using electromechanical wave imaging. Sci Transl Med 2020; 12:eaax6111. [PMID: 32213631 PMCID: PMC7234276 DOI: 10.1126/scitranslmed.aax6111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 02/21/2020] [Indexed: 12/13/2022]
Abstract
Cardiac arrhythmias are a major cause of morbidity and mortality worldwide. The 12-lead electrocardiogram (ECG) is the current noninvasive clinical tool used to diagnose and localize cardiac arrhythmias. However, it has limited accuracy and is subject to operator bias. Here, we present electromechanical wave imaging (EWI), a high-frame rate ultrasound technique that can noninvasively map with high accuracy the electromechanical activation of atrial and ventricular arrhythmias in adult patients. This study evaluates the accuracy of EWI for localization of various arrhythmias in all four chambers of the heart before catheter ablation. Fifty-five patients with an accessory pathway (AP) with Wolff-Parkinson-White (WPW) syndrome, premature ventricular complexes (PVCs), atrial tachycardia (AT), or atrial flutter (AFL) underwent transthoracic EWI and 12-lead ECG. Three-dimensional (3D) rendered EWI isochrones and 12-lead ECG predictions by six electrophysiologists were applied to a standardized segmented cardiac model and subsequently compared to the region of successful ablation on 3D electroanatomical maps generated by invasive catheter mapping. There was significant interobserver variability among 12-lead ECG reads by expert electrophysiologists. EWI correctly predicted 96% of arrhythmia locations as compared with 71% for 12-lead ECG analyses [unadjusted for arrhythmia type: odds ratio (OR), 11.8; 95% confidence interval (CI), 2.2 to 63.2; P = 0.004; adjusted for arrhythmia type: OR, 12.1; 95% CI, 2.3 to 63.2; P = 0.003]. This double-blinded clinical study demonstrates that EWI can localize atrial and ventricular arrhythmias including WPW, PVC, AT, and AFL. EWI when used with ECG may allow for improved treatment for patients with arrhythmias.
Collapse
Affiliation(s)
- Christopher S Grubb
- Division of Cardiology, Department of Medicine and Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Lea Melki
- Ultrasound Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Daniel Y Wang
- Division of Cardiology, Department of Medicine and Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - James Peacock
- Division of Cardiology, Department of Medicine and Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jose Dizon
- Division of Cardiology, Department of Medicine and Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Vivek Iyer
- Division of Cardiology, Department of Medicine and Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Carmine Sorbera
- Division of Cardiology, Department of Medicine and Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Angelo Biviano
- Division of Cardiology, Department of Medicine and Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - David A Rubin
- Division of Cardiology, Department of Medicine and Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - John P Morrow
- Division of Cardiology, Department of Medicine and Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Deepak Saluja
- Division of Cardiology, Department of Medicine and Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Andrew Tieu
- Ultrasound Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Pierre Nauleau
- Ultrasound Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Rachel Weber
- Ultrasound Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Salma Chaudhary
- Division of Cardiology, Department of Medicine and Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Irfan Khurram
- Division of Cardiology, Department of Medicine and Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Marc Waase
- Division of Cardiology, Department of Medicine and Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Hasan Garan
- Division of Cardiology, Department of Medicine and Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Elisa E Konofagou
- Ultrasound Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA.
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Elaine Y Wan
- Division of Cardiology, Department of Medicine and Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
10
|
Bessière F, Zorgani A, Robert J, Daunizeau L, Cao E, Vaillant F, Abell E, Quesson B, Catheline S, Chevalier P, Lafon C. High Frame Rate Ultrasound for Electromechanical Wave Imaging to Differentiate Endocardial From Epicardial Myocardial Activation. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:405-414. [PMID: 31767455 DOI: 10.1016/j.ultrasmedbio.2019.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/04/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Differentiation between epicardial and endocardial ventricular activation remains a challenge despite the latest technologies available. The aim of the present study was to develop a new tool method, based on electromechanical wave imaging (EWI), to improve arrhythmogenic substrate activation analysis. Experiments were conducted on left ventricles (LVs) of four isolated working mode swine hearts. The protocol aimed at demonstrating that different patterns of mechanical activation could be observed whether the ventricle was in sinus rhythm, paced from the epicardium or from the endocardium. A total of 72 EWI acquisitions were recorded on the anterior, lateral and posterior segments of the LV. A total of 54 loop records were blindly assigned to two readers. EWI sequences interpretations were correct in 89% of cases. The overall agreement rate between the two readers was 83%. When in a paced ventricle, the origin of the wave front was focal and originated from the endocardium or the epicardium. In sinus rhythm, wave front was global and activated within the entire endocardium toward the epicardium at a speed of 1.7 ± 0.28 m·s-1. Wave front speeds were respectively measured when the endocardium or the epicardium were paced at a speed of 1.1 ± 0.35 m·s-1 versus 1.3 ± 0.34 m·s-1 (p = NS). EWI activation mapping allows activation localization within the LV wall and calculation of the wave front propagation speed through the muscle. In the future, this technology could help localize activation within the LV thickness during complex ablation procedures.
Collapse
Affiliation(s)
- Francis Bessière
- Hôpital Cardiologique Louis Pradel, Hospices Civils de Lyon, Lyon, France; LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France; Université de Lyon, Lyon, France.
| | - Ali Zorgani
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France; Université de Lyon, Lyon, France
| | - Jade Robert
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France; Université de Lyon, Lyon, France
| | - Loïc Daunizeau
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France; Université de Lyon, Lyon, France
| | - Elodie Cao
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France; Université de Lyon, Lyon, France
| | - Fanny Vaillant
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France; Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, 33000 Bordeaux, France
| | - Emma Abell
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France; Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, 33000 Bordeaux, France
| | - Bruno Quesson
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France; Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, 33000 Bordeaux, France
| | - Stéphane Catheline
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France; Université de Lyon, Lyon, France
| | - Philippe Chevalier
- Hôpital Cardiologique Louis Pradel, Hospices Civils de Lyon, Lyon, France; Université de Lyon, Lyon, France
| | - Cyril Lafon
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ Lyon, Lyon, France; Université de Lyon, Lyon, France
| |
Collapse
|
11
|
Melki L, Grubb CS, Weber R, Nauleau P, Garan H, Wan E, Silver ES, Liberman L, Konofagou EE. 3D-rendered Electromechanical Wave Imaging for Localization of Accessory Pathways in Wolff-Parkinson-White Minors .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:6192-6195. [PMID: 31947257 DOI: 10.1109/embc.2019.8857876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Arrhythmia localization prior to catheter ablation is critical for clinical decision making and treatment planning. The current standard lies in 12-lead electrocardiogram (ECG) interpretation, but this method is non-specific and anatomically limited. Accurate localization requires intracardiac catheter mapping prior to ablation. Electromechanical Wave Imaging (EWI) is a high frame-rate ultrasound modality capable of non-invasively mapping the electromechanical activation in all cardiac chambers in vivo. In this study, we evaluate 3D-rendered EWI as a technique for consistently localizing the accessory pathway (AP) in Wolff-Parkinson-White (WPW) pediatric patients. A 2000 Hz EWI diverging sequence was used to transthoracically image 13 patients with evidence of ECG pre-excitation, immediately prior to catheter ablation and after successful ablation whenever possible. 3D-rendered activation maps were generated by co-registering and interpolating the 4 resulting multi-2D isochrones. A blinded electrophysiologist predicted the AP location on 12-lead ECG prior to ablation. Double-blinded EWI isochrones and clinician assessments were compared to the successful ablation site as confirmed by intracardiac mapping using a segmented template of the heart with 19 ventricular regions. 3D-rendered EWI was shown capable of consistently localizing AP in all the WPW cases. Clinical ECG interpretation correctly predicted the origin with an accuracy of 53.8%, respectively 84.6% when considering predictions in immediately adjacent segments correct. Our method was also capable of assessing the difference in activation pattern from before to after successful ablation on the same patient. These findings indicate that EWI could inform current diagnosis and expedite treatment planning of WPW ablation procedures.
Collapse
|
12
|
Grondin J, Wang D, Grubb CS, Trayanova N, Konofagou EE. 4D cardiac electromechanical activation imaging. Comput Biol Med 2019; 113:103382. [PMID: 31476587 DOI: 10.1016/j.compbiomed.2019.103382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/30/2019] [Accepted: 08/04/2019] [Indexed: 12/15/2022]
Abstract
Cardiac abnormalities, a major cause of morbidity and mortality, affect millions of people worldwide. Despite the urgent clinical need for early diagnosis, there is currently no noninvasive technique that can infer to the electrical function of the whole heart in 3D and thereby localize abnormalities at the point of care. Here we present a new method for noninvasive 4D mapping of the cardiac electromechanical activity in a single heartbeat for heart disease characterization such as arrhythmia and infarction. Our novel technique captures the 3D activation wave of the heart in vivo using high volume-rate (500 volumes per second) ultrasound with a 32 × 32 matrix array. Electromechanical activation maps are first presented in a normal and infarcted cardiac model in silico and in canine heart during pacing and re-entrant ventricular tachycardia in vivo. Noninvasive 4D electromechanical activation mapping in a healthy volunteer and a heart failure patient are also determined. The technique described herein allows for direct, simultaneous and noninvasive visualization of electromechanical activation in 3D, which provides complementary information on myocardial viability and/or abnormality to clinical imaging.
Collapse
Affiliation(s)
- Julien Grondin
- Department of Radiology, Columbia University, 630 W 168th, Street, New York, NY, 10032, USA.
| | - Dafang Wang
- Institute of Computational Medicine, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Christopher S Grubb
- Department of Medicine, Columbia University, 630 W 168th, Street, New York, NY, 10032, USA
| | - Natalia Trayanova
- Institute of Computational Medicine, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Elisa E Konofagou
- Department of Radiology, Columbia University, 630 W 168th, Street, New York, NY, 10032, USA; Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY, 10027, USA.
| |
Collapse
|
13
|
Melki L, Grubb CS, Weber R, Nauleau P, Garan H, Wan E, Silver ES, Liberman L, Konofagou EE. Localization of Accessory Pathways in Pediatric Patients With Wolff-Parkinson-White Syndrome Using 3D-Rendered Electromechanical Wave Imaging. JACC Clin Electrophysiol 2019; 5:427-437. [PMID: 31000096 DOI: 10.1016/j.jacep.2018.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/02/2018] [Accepted: 12/04/2018] [Indexed: 11/25/2022]
Abstract
OBJECTIVES This study sought to demonstrate the feasibility of electromechanical wave imaging (EWI) for localization of accessory pathways (AP) prior to catheter ablation in a pediatric population. BACKGROUND Prediction of AP locations in patients with Wolff-Parkinson-White syndrome is currently based on analysis of 12-lead electrocardiography (ECG). In the pediatric population, specific algorithms have been developed to aid in localization, but these can be unreliable. EWI is a noninvasive imaging modality relying on a high frame rate ultrasound sequence capable of visualizing cardiac electromechanical activation. METHODS Pediatric patients with ventricular pre-excitation presenting for catheter ablation were imaged with EWI immediately prior to the start of the procedure. Two clinical pediatric electrophysiologists predicted the location of the AP based on ECG. Both EWI and ECG predictions were blinded to the results of catheter ablation. EWI and ECG localizations were subsequently compared with the site of successful ablation. RESULTS Fifteen patients were imaged with EWI. One patient was excluded for poor echocardiographic windows and the inability to image the entire ventricular myocardium. EWI correctly predicted the location of the AP in all 14 patients. ECG analysis correctly predicted 11 of 14 (78.6%) of the AP locations. CONCLUSIONS EWI was shown to be capable of consistently localizing accessory pathways. EWI predicted the site of successful ablation more frequently than analysis of 12-lead ECG. EWI isochrones also provide anatomical visualization of ventricular pre-excitation. These findings suggest that EWI can predict AP locations, and EWI may have the potential to better inform clinical electrophysiologists prior to catheter ablation procedures.
Collapse
Affiliation(s)
- Lea Melki
- Ultrasound Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| | - Christopher S Grubb
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Rachel Weber
- Ultrasound Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| | - Pierre Nauleau
- Ultrasound Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| | - Hasan Garan
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Elaine Wan
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Eric S Silver
- Pediatric Electrophysiology, Division of Pediatric Cardiology, Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Leonardo Liberman
- Pediatric Electrophysiology, Division of Pediatric Cardiology, Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Elisa E Konofagou
- Ultrasound Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York; Department of Radiology, Columbia University Medical Center, New York, New York.
| |
Collapse
|
14
|
Costet A, Wan E, Melki L, Bunting E, Grondin J, Garan H, Konofagou E. Non-invasive Characterization of Focal Arrhythmia with Electromechanical Wave Imaging in Vivo. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2241-2249. [PMID: 30093340 PMCID: PMC6163072 DOI: 10.1016/j.ultrasmedbio.2018.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 06/05/2018] [Accepted: 06/11/2018] [Indexed: 06/02/2023]
Abstract
There is currently no established method for the non-invasive characterization of arrhythmia and differentiation between endocardial and epicardial triggers at the point of care. Electromechanical wave imaging (EWI) is a novel ultrasound-based imaging technique based on time-domain transient strain estimation that can map and characterize electromechanical activation in the heart in vivo. The objectives of this initial feasibility study were to determine that EWI is capable of differentiating between endocardial and epicardial sources of focal rhythm and, as a proof-of-concept, that EWI could characterize focal arrhythmia in one patient with premature ventricular contractions (PVCs) before radiofrequency (RF) ablation treatment. First, validation of EWI for differentiation of surface of origin was performed in seven (n = 7) adult dogs using four epicardial and four endocardial pacing protocols. Second, one (n = 1) adult patient diagnosed with PVC was imaged with EWI before the scheduled RF ablation procedure, and EWI results were compared with mapping procedure results. In dogs, EWI was capable of detecting whether pacing was of endocardial or epicardial origin in six of seven cases (86% success rate). In the PVC patient, EWI correctly identified both regions and surface of origin, as confirmed by results from the electrical mapping obtained from the RF ablation procedure. These results reveal that EWI can map the electromechanical activation across the myocardium and indicate that EWI could serve as a valuable pre-treatment planning tool in the clinic.
Collapse
Affiliation(s)
- Alexandre Costet
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Elaine Wan
- Department of Medicine-Cardiology, Columbia University, New York, New York, USA
| | - Lea Melki
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Ethan Bunting
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Julien Grondin
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Hasan Garan
- Department of Medicine-Cardiology, Columbia University, New York, New York, USA
| | - Elisa Konofagou
- Department of Biomedical Engineering, Columbia University, New York, New York, USA; Department of Radiology, Columbia University, New York, New York, USA.
| |
Collapse
|
15
|
Costet A, Melki L, Sayseng V, Hamid N, Nakanishi K, Wan E, Hahn R, Homma S, Konofagou E. Electromechanical wave imaging and electromechanical wave velocity estimation in a large animal model of myocardial infarction. Phys Med Biol 2017; 62:9341-9356. [PMID: 29083316 PMCID: PMC5958905 DOI: 10.1088/1361-6560/aa96d0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Echocardiography is often used in the clinic for detection and characterization of myocardial infarction. Electromechanical wave imaging (EWI) is a non-invasive ultrasound-based imaging technique based on time-domain incremental motion and strain estimation that can evaluate changes in contractility in the heart. In this study, electromechanical activation is assessed in infarcted heart to determine whether EWI is capable of detecting and monitoring infarct formation. Additionally, methods for estimating electromechanical wave (EW) velocity are presented, and changes in the EW propagation velocity after infarct formation are studied. Five (n = 5) adult mongrels were used in this study. Successful infarct formation was achieved in three animals by ligation of the left anterior descending (LAD) coronary artery. Dogs were survived for a few days after LAD ligation and monitored daily with EWI. At the end of the survival period, dogs were sacrificed and TTC (tetrazolium chloride) staining confirmed the formation and location of the infarct. In all three dogs, as soon as day 1 EWI was capable of detecting late-activated and non-activated regions, which grew over the next few days. On final day images, the extent of these regions corresponded to the location of infarct as confirmed by staining. EW velocities in border zones of infarct were significantly lower post-infarct formation when compared to baseline, whereas velocities in healthy tissues were not. These results indicate that EWI and EW velocity might help with the detection of infarcts and their border zones, which may be useful for characterizing arrhythmogenic substrate.
Collapse
Affiliation(s)
- Alexandre Costet
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Lea Melki
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Vincent Sayseng
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Nadira Hamid
- Department of Medicine - Division of Cardiology; College of Physicians and Surgeons, Columbia University, New York, NY. USA
| | - Koki Nakanishi
- Department of Medicine - Division of Cardiology; College of Physicians and Surgeons, Columbia University, New York, NY. USA
| | - Elaine Wan
- Department of Medicine - Division of Cardiology; College of Physicians and Surgeons, Columbia University, New York, NY. USA
| | - Rebecca Hahn
- Department of Medicine - Division of Cardiology; College of Physicians and Surgeons, Columbia University, New York, NY. USA
| | - Shunichi Homma
- Department of Medicine - Division of Cardiology; College of Physicians and Surgeons, Columbia University, New York, NY. USA
| | - Elisa Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
| |
Collapse
|
16
|
Melki L, Costet A, Konofagou EE. Reproducibility and Angle Independence of Electromechanical Wave Imaging for the Measurement of Electromechanical Activation during Sinus Rhythm in Healthy Humans. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2256-2268. [PMID: 28778420 PMCID: PMC5562524 DOI: 10.1016/j.ultrasmedbio.2017.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/13/2017] [Accepted: 06/19/2017] [Indexed: 05/31/2023]
Abstract
Electromechanical wave imaging (EWI) is an ultrasound-based technique that can non-invasively map the transmural electromechanical activation in all four cardiac chambers in vivo. The objective of this study was to determine the reproducibility and angle independence of EWI for the assessment of electromechanical activation during normal sinus rhythm (NSR) in healthy humans. Acquisitions were performed transthoracically at 2000 frames/s on seven healthy human hearts in parasternal long-axis, apical four- and two-chamber views. EWI data was collected twice successively in each view in all subjects, while four successive acquisitions were obtained in one case. Activation maps were generated and compared (i) within the same acquisition across consecutive cardiac cycles; (ii) within same view across successive acquisitions; and (iii) within equivalent left-ventricular regions across different views. EWI was capable of characterizing electromechanical activation during NSR and of reliably obtaining similar patterns of activation. For consecutive heart cycles, the average 2-D correlation coefficient between the two isochrones across the seven subjects was 0.9893, with a mean average activation time fluctuation in LV wall segments across acquisitions of 6.19%. A mean activation time variability of 12% was obtained across different views with a measurement bias of only 3.2 ms. These findings indicate that EWI can map the electromechanical activation during NSR in human hearts in transthoracic echocardiography in vivo and results in reproducible and angle-independent activation maps.
Collapse
Affiliation(s)
- Lea Melki
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Alexandre Costet
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, New York, USA; Department of Radiology, Columbia University Medical Center, New York, New York, USA.
| |
Collapse
|
17
|
Nauleau P, Melki L, Wan E, Konofagou E. Technical Note: A 3-D rendering algorithm for electromechanical wave imaging of a beating heart. Med Phys 2017. [PMID: 28626939 DOI: 10.1002/mp.12411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Arrhythmias can be treated by ablating the heart tissue in the regions of abnormal contraction. The current clinical standard provides electroanatomic 3-D maps to visualize the electrical activation and locate the arrhythmogenic sources. However, the procedure is time-consuming and invasive. Electromechanical wave imaging is an ultrasound-based noninvasive technique that can provide 2-D maps of the electromechanical activation of the heart. In order to fully visualize the complex 3-D pattern of activation, several 2-D views are acquired and processed separately. They are then manually registered with a 3-D rendering software to generate a pseudo-3-D map. However, this last step is operator-dependent and time-consuming. METHODS This paper presents a method to generate a full 3-D map of the electromechanical activation using multiple 2-D images. Two canine models were considered to illustrate the method: one in normal sinus rhythm and one paced from the lateral region of the heart. Four standard echographic views of each canine heart were acquired. Electromechanical wave imaging was applied to generate four 2-D activation maps of the left ventricle. The radial positions and activation timings of the walls were automatically extracted from those maps. In each slice, from apex to base, these values were interpolated around the circumference to generate a full 3-D map. RESULTS In both cases, a 3-D activation map and a cine-loop of the propagation of the electromechanical wave were automatically generated. The 3-D map showing the electromechanical activation timings overlaid on realistic anatomy assists with the visualization of the sources of earlier activation (which are potential arrhythmogenic sources). The earliest sources of activation corresponded to the expected ones: septum for the normal rhythm and lateral for the pacing case. CONCLUSIONS The proposed technique provides, automatically, a 3-D electromechanical activation map with a realistic anatomy. This represents a step towards a noninvasive tool to efficiently localize arrhythmias in 3-D.
Collapse
Affiliation(s)
- Pierre Nauleau
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY, 10027, USA
| | - Lea Melki
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY, 10027, USA
| | - Elaine Wan
- Department of Medicine - Division of Cardiology, College of Physicians and Surgeons, Columbia University, 161 Fort Washington Avenue, New York, NY, 10032, USA
| | - Elisa Konofagou
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY, 10027, USA.,Department of Radiology, Columbia University, 622 W 168th Street, New York, NY, 10032, USA
| |
Collapse
|