1
|
Torres J, Callejas A, Gomez A, Rus G. Optical micro-elastography with magnetic excitation for high frequency rheological characterization of soft media. ULTRASONICS 2023; 132:107021. [PMID: 37141701 DOI: 10.1016/j.ultras.2023.107021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
The propagation of shear waves in elastography at high frequency (>3 kHz) in viscoelastic media has not been extensively studied due to the high attenuation and technical limitations of current techniques. An optical micro-elastography (OME) technique using magnetic excitation for generating and tracking high frequency shear waves with enough spatial and temporal resolution was proposed. Ultrasonics shear waves (above 20 kHz) were generated and observed in polyacrylamide samples. A cutoff frequency, from where the waves no longer propagate, was observed to vary depending on the mechanical properties of the samples. The ability of the Kelvin-Voigt (KV) model to explain the high cutoff frequency was investigated. Two alternative measurement techniques, Dynamic Mechanical Analysis (DMA) and Shear Wave Elastography (SWE), were used to complete the whole frequency range of the velocity dispersion curve while avoid capturing guided waves in the low frequency range (<3 kHz). The combination of the three measurement techniques provided rheology information from quasi-static to ultrasonic frequency range. A key observation was that the full frequency range of the dispersion curve was necessary if one wanted to infer accurate physical parameters from the rheological model. By comparing the low frequency range with the high frequency range, the relative errors for the viscosity parameter could reach 60 % and they could be higher with higher dispersive behavior. The high cutoff frequency may be predicted in materials that follow a KV model over their entire measurable frequency range. The mechanical characterization of cell culture media could benefit from the proposed OME technique.
Collapse
Affiliation(s)
- Jorge Torres
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada 18071, Spain; TEC-12 group, Instituto de Investigación Biosanitaria, ibs.Granada 18001, Spain.
| | - Antonio Callejas
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada 18071, Spain; TEC-12 group, Instituto de Investigación Biosanitaria, ibs.Granada 18001, Spain
| | - Antonio Gomez
- Department of Mechanical Engineering, University College London, London WC1E 6BT, UK
| | - Guillermo Rus
- Ultrasonics Lab (TEP-959), Department of Structural Mechanics, University of Granada, Granada 18071, Spain; TEC-12 group, Instituto de Investigación Biosanitaria, ibs.Granada 18001, Spain; Excellence Research Unit "ModelingNature" (MNat), Universidad de Granada, Granada 18001, Spain
| |
Collapse
|
2
|
Lorentz force induced shear waves for magnetic resonance elastography applications. Sci Rep 2021; 11:12785. [PMID: 34140568 PMCID: PMC8211670 DOI: 10.1038/s41598-021-91895-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/02/2021] [Indexed: 11/08/2022] Open
Abstract
Quantitative mechanical properties of biological tissues can be mapped using the shear wave elastography technique. This technology has demonstrated a great potential in various organs but shows a limit due to wave attenuation in biological tissues. An option to overcome the inherent loss in shear wave magnitude along the propagation pathway may be to stimulate tissues closer to regions of interest using alternative motion generation techniques. The present study investigated the feasibility of generating shear waves by applying a Lorentz force directly to tissue mimicking samples for magnetic resonance elastography applications. This was done by combining an electrical current with the strong magnetic field of a clinical MRI scanner. The Local Frequency Estimation method was used to assess the real value of the shear modulus of tested phantoms from Lorentz force induced motion. Finite elements modeling of reported experiments showed a consistent behavior but featured wavelengths larger than measured ones. Results suggest the feasibility of a magnetic resonance elastography technique based on the Lorentz force to produce an shear wave source.
Collapse
|
3
|
Sun Z, Giammarinaro B, Birer A, Liu G, Catheline S. Shear Wave Generation by Remotely Stimulating Aluminum Patches With a Transient Magnetic Field and Its Preliminary Application in Elastography. IEEE Trans Biomed Eng 2021; 68:2129-2139. [PMID: 33001796 DOI: 10.1109/tbme.2020.3028098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This article presents shear wave generation by remotely stimulating aluminum patches through a transient magnetic field, and its preliminary application in the cross-correlation approach based ultrasound elastography. METHODS A transient magnetic field is employed to remotely vibrate the patch actuators through the Lorentz force. The origin, and the characteristics of the Lorentz force are confirmed using an interferometric laser probe. The shear wave displacement fields generated in the soft medium are studied through the ultrafast ultrasound imaging. The potential of the shear wave fields generated through the patch actuators for the cross-correlation approach based elastography is confirmed through experiments on an agar phantom sample. RESULTS Under a transient magnetic field of changing rate of 10.44 kT/s, the patch actuator generates a shear wave source of amplitude of 100 μm in a polyvinyl alcohol (PVA) phantom sample. The shear wave fields created by experiments agree qualitatively well with those by theory. From the shear wave velocity map computed from 100 frames of shear wave fields, the boundaries of cylindrical regions of different stiffness can be clearly recognized, which are completely concealed in the ultrasound image. CONCLUSION Shear wave fields in the level of 100 μm can be remotely generated in soft medium through stimulating aluminum patches with a transient magnetic field, and qualitative shear wave velocity maps can be reconstructed from the shear wave fields generated. SIGNIFICANCE The proposed method allows potential application of the cross-correlation approach based elastography in intravascular-based or catheter-based cardiology.
Collapse
|
4
|
Arsalani S, Arsalani S, Hadadian Y, Sampaio DRT, Baffa O, Pavan TZ, Carneiro AAO. The effect of magnetization of natural rubber latex-coated magnetite nanoparticles on shear wave dispersion magneto-motive ultrasound. ACTA ACUST UNITED AC 2019; 64:215019. [DOI: 10.1088/1361-6560/ab4693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Lee WN, Chang EJH, Guo Y, Wang Y. Experimental Investigation of Guided Wave Imaging in Thin Soft Media under Various Coupling Conditions. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2821-2837. [PMID: 30241727 DOI: 10.1016/j.ultrasmedbio.2018.07.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 06/30/2018] [Accepted: 07/28/2018] [Indexed: 06/08/2023]
Abstract
Guided wave imaging for the artery remains in its infancy in clinical practice mainly because of complex arterial microstructure, hemodynamics and boundary conditions. Despite the theoretically known potential effect of the surrounding medium on guided wave propagation in thin media in non-destructive testing, experimental evidence pertaining to thin soft materials, such as the artery, is relatively scarce in the relevant literature. Therefore, this study first evaluated the propagating guided wave generated by acoustic radiation force in polyvinyl alcohol-based hydrogel plates differing in thickness and stiffness under various material coupling conditions (water and polyvinyl alcohol bulk). A thin-walled polyvinyl alcohol hollow cylindrical phantom coupled by softer gelatin-agar phantoms and an excised porcine aorta surrounded by water and pork belly were further examined. Guided waves in the thin structure and shear waves in the bulk media were captured by ultrafast ultrasound imaging, and guided wave dispersion as a function of the frequency-thickness product was analyzed using the zero-order anti-symmetric Lamb wave model to estimate the shear modulus of each thin medium studied. Results confirmed the deviated shear modulus estimates from the ground truth for thin plates, the thin-walled hollow cylindrical phantom and the porcine aorta bounded by stiffness-unmatched bulk medium. The findings indicated the need for (i) careful interpretation of estimated shear moduli of thin structure bounded by bulk media and (ii) a generalized guided wave model that takes into account the effect of coupling medium.
Collapse
Affiliation(s)
- Wei-Ning Lee
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong; Medical Engineering Programme, The University of Hong Kong, Hong Kong.
| | - Enoch Jing-Han Chang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong; Medical Engineering Programme, The University of Hong Kong, Hong Kong
| | - Yuexin Guo
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
| | - Yahua Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
| |
Collapse
|
6
|
Giammarinaro B, Zorgani A, Catheline S. Shear-Wave Sources for Soft Tissues in Ultrasound Elastography. Ing Rech Biomed 2018. [DOI: 10.1016/j.irbm.2018.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
7
|
Bernard S, Cloutier G. Forward and inverse viscoelastic wave scattering by irregular inclusions for shear wave elastography. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:2346. [PMID: 29092551 DOI: 10.1121/1.5007729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Inversion methods in shear wave elastography use simplifying assumptions to recover the mechanical properties of soft tissues. Consequently, these methods suffer from artifacts when applied to media containing strong stiffness contrasts, and do not provide a map of the viscosity. In this work, the shear wave field recorded inside and around an inclusion was used to estimate the viscoelastic properties of the inclusion and surrounding medium, based on an inverse problem approach assuming local homogeneity of both media. An efficient semi-analytical method was developed to model the scattering of an elastic wave by an irregular inclusion, based on a decomposition of the field by Bessel functions and on a decomposition of the boundaries as Fourier series. This model was validated against finite element modeling. Shear waves were experimentally induced by acoustic radiation force in soft tissue phantoms containing stiff and soft inclusions, and the displacement field was imaged at a high frame rate using plane wave imaging. A nonlinear least-squares algorithm compared the model to the experimental data and adjusted the geometrical and mechanical parameters. The estimated shear storage and loss moduli were in good agreement with reference measurements, as well as the estimated inclusion shape. This approach provides an accurate estimation of geometry and viscoelastic properties for a single inclusion in a homogeneous background in the context of radiation force elastography.
Collapse
Affiliation(s)
- Simon Bernard
- Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center (CRCHUM), 900 St-Denis, Suite R11.720, Montréal, Québec H2X 0A9, Canada
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center (CRCHUM), 900 St-Denis, Suite R11.720, Montréal, Québec H2X 0A9, Canada
| |
Collapse
|
8
|
Grasland-Mongrain P, Lu Y, Lesage F, Catheline S, Cloutier G. Generation of Shear Waves by Laser in Soft Media in the Ablative and Thermoelastic Regimes. APPLIED PHYSICS LETTERS 2016; 109:2219011-2219015. [PMID: 28090117 PMCID: PMC5226822 DOI: 10.1063/1.4968538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This article describes the generation of elastic shear waves in a soft medium using a laser beam. Our experiments show two different regimes depending on laser energy. Physical modeling of the underlying phenomena reveals a thermoelastic regime caused by a local dilatation resulting from temperature increase, and an ablative regime caused by a partial vaporization of the medium by the laser. Computed theoretical displacements are close to experimental measurements. A numerical study based on the physical modeling gives propagation patterns comparable to those generated experimentally. These results provide a physical basis for the feasibility of a shear wave elastography technique (a technique which measures a soft solid stiffness from shear wave propagation) by using a laser beam.
Collapse
Affiliation(s)
- Pol Grasland-Mongrain
- Laboratory of Biorheology and Medical Ultrasonics, Montreal Hospital Research Center, Montreal (QC), H1X0A9, Canada
| | - Yuankang Lu
- Laboratory of Biorheology and Medical Ultrasonics, Montreal Hospital Research Center, Montreal (QC), H1X0A9, Canada; Departement of Electrical Engineering, École Polytechnique of Montreal, Montreal (QC), H3C3A7, Canada
| | - Frederic Lesage
- Departement of Electrical Engineering, École Polytechnique of Montreal, Montreal (QC), H3C3A7, Canada; Institute of Biomedical Engineering, École Polytechnique and University of Montreal, Montreal (QC), H3T1J4, Canada
| | - Stefan Catheline
- Laboratory of Therapeutic Applications of Ultrasound, Inserm u1032, Inserm, Lyon, F-69003, France
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, Montreal Hospital Research Center, Montreal (QC), H1X0A9, Canada; Institute of Biomedical Engineering, École Polytechnique and University of Montreal, Montreal (QC), H3T1J4, Canada; Departement of Radiology, Radio-oncology and Nuclear Medicine, University of Montreal, Montreal (QC), H3C3J7, Canada
| |
Collapse
|
9
|
Wu C, Singh M, Han Z, Raghunathan R, Liu CH, Li J, Schill A, Larin KV. Lorentz force optical coherence elastography. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:90502. [PMID: 27622242 PMCID: PMC5018684 DOI: 10.1117/1.jbo.21.9.090502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/16/2016] [Indexed: 05/21/2023]
Abstract
Quantifying tissue biomechanical properties can assist in detection of abnormalities and monitoring disease progression and/or response to a therapy. Optical coherence elastography (OCE) has emerged as a promising technique for noninvasively characterizing tissue biomechanical properties. Several mechanical loading techniques have been proposed to induce static or transient deformations in tissues, but each has its own areas of applications and limitations. This study demonstrates the combination of Lorentz force excitation and phase-sensitive OCE at ?1.5??million A-lines per second to quantify the elasticity of tissue by directly imaging Lorentz force-induced elastic waves. This method of tissue excitation opens the possibility of a wide range of investigations using tissue biocurrents and conductivity for biomechanical analysis.
Collapse
Affiliation(s)
- Chen Wu
- University of Houston, Department of Biomedical Engineering, 3605 Cullen Boulevard, Houston, Texas 77204, United States
| | - Manmohan Singh
- University of Houston, Department of Biomedical Engineering, 3605 Cullen Boulevard, Houston, Texas 77204, United States
| | - Zhaolong Han
- University of Houston, Department of Biomedical Engineering, 3605 Cullen Boulevard, Houston, Texas 77204, United States
| | - Raksha Raghunathan
- University of Houston, Department of Biomedical Engineering, 3605 Cullen Boulevard, Houston, Texas 77204, United States
| | - Chih-Hao Liu
- University of Houston, Department of Biomedical Engineering, 3605 Cullen Boulevard, Houston, Texas 77204, United States
| | - Jiasong Li
- University of Houston, Department of Biomedical Engineering, 3605 Cullen Boulevard, Houston, Texas 77204, United States
| | - Alexander Schill
- University of Houston, Department of Biomedical Engineering, 3605 Cullen Boulevard, Houston, Texas 77204, United States
| | - Kirill V. Larin
- University of Houston, Department of Biomedical Engineering, 3605 Cullen Boulevard, Houston, Texas 77204, United States
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, 36 Lenin Avenue, Tomsk 634050, Russia
- Baylor College of Medicine, Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77030, United States
- Address all correspondence to: Kirill V. Larin, E-mail:
| |
Collapse
|