1
|
Nagpal I, Yuan ZM. p53-mediated metabolic response to low doses of ionizing radiation. Int J Radiat Biol 2022; 99:934-940. [DOI: 10.1080/09553002.2022.2142983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Isha Nagpal
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zhi-Min Yuan
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
2
|
Kaushik N, Kim MJ, Kaushik NK, Myung JK, Choi MY, Kang JH, Cha HJ, Kim CS, Nam SY, Lee SJ. Low dose radiation regulates BRAF-induced thyroid cellular dysfunction and transformation. Cell Commun Signal 2019; 17:12. [PMID: 30760304 PMCID: PMC6373124 DOI: 10.1186/s12964-019-0322-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Background The existence of differentiated thyroid cells is critical to respond radioactive iodide treatment strategy in thyroid cancer, and loss of the differentiated phenotype is a trademark of iodide-refractive thyroid disease. While high-dose therapy has been beneficial to several cancer patients, many studies have indicated this clinical benefit was limited to patients having BRAF mutation. BRAF-targeted paired box gene-8 (PAX8), a thyroid-specific transcription factor, generally dysregulated in BRAF-mutated thyroid cancer. Methods In this study, thyroid iodine-metabolizing gene levels were detected in BRAF-transformed thyroid cells after low and high dose of ionizing radiation. Also, an mRNA-targeted approach was used to figure out the underlying mechanism of low (0.01Gyx10 or 0.1Gy) and high (2Gy) radiation function on thyroid cancer cells after BRAFV600E mutation. Results Low dose radiation (LDR)-induced PAX8 upregulation restores not only BRAF-suppressive sodium/iodide symporter (NIS) expression, one of the major protein necessary for iodine uptake in healthy thyroid, on plasma membrane but also regulate other thyroid metabolizing genes levels. Importantly, LDR-induced PAX8 results in decreased cellular transformation in BRAF-mutated thyroid cells. Conclusion The present findings provide evidence that LDR-induced PAX8 acts as an important regulator for suppression of thyroid carcinogenesis through novel STAT3/miR-330-5p pathway in thyroid cancers. Electronic supplementary material The online version of this article (10.1186/s12964-019-0322-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Neha Kaushik
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Min-Jung Kim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Jae Kyung Myung
- Department of Radiation Pathology, Korea Cancer Center Hospital, Seoul, South Korea
| | - Mi-Young Choi
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jae-Hyeok Kang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Cha-Soon Kim
- Department of Preventive Medicine, College of Medicine, Dongguk University, Gyeongju, 38066, Korea
| | - Seon-Young Nam
- Radiation Health Institute, Korea Hydro and Nuclear Power Co. Ltd, Seoul, South Korea.
| | - Su-Jae Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea. .,Laboratory of Molecular Biochemistry, Department of Life Science, Hanyang University, 17 Haengdang-Dong, Seongdong-Ku, Seoul, 04763, South Korea.
| |
Collapse
|
3
|
Maqsudur Rashid A, Ramalingam L, Al-Jawadi A, Moustaid-Moussa N, Moussa H. Low dose radiation, inflammation, cancer and chemoprevention. Int J Radiat Biol 2018; 95:506-515. [DOI: 10.1080/09553002.2018.1484194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Al Maqsudur Rashid
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA
| | - Arwa Al-Jawadi
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
- Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA
| | - Hanna Moussa
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
- Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
4
|
Yim JH, Yun JM, Kim JY, Lee IK, Nam SY, Kim CS. Phosphoprotein profiles of candidate markers for early cellular responses to low-dose γ-radiation in normal human fibroblast cells. JOURNAL OF RADIATION RESEARCH 2017; 58:329-340. [PMID: 28122968 PMCID: PMC5440887 DOI: 10.1093/jrr/rrw126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/24/2016] [Accepted: 12/09/2016] [Indexed: 05/24/2023]
Abstract
Ionizing radiation causes biological damage that leads to severe health effects. However, the effects and subsequent health implications caused by exposure to low-dose radiation are unclear. The objective of this study was to determine phosphoprotein profiles in normal human fibroblast cell lines in response to low-dose and high-dose γ-radiation. We examined the cellular response in MRC-5 cells 0.5 h after exposure to 0.05 or 2 Gy. Using 1318 antibodies by antibody array, we observed ≥1.3-fold increases in a number of identified phosphoproteins in cells subjected to low-dose (0.05 Gy) and high-dose (2 Gy) radiation, suggesting that both radiation levels stimulate distinct signaling pathways. Low-dose radiation induced nucleic acid-binding transcription factor activity, developmental processes, and multicellular organismal processes. By contrast, high-dose radiation stimulated apoptotic processes, cell adhesion and regulation, and cellular organization and biogenesis. We found that phospho-BTK (Tyr550) and phospho-Gab2 (Tyr643) protein levels at 0.5 h after treatment were higher in cells subjected to low-dose radiation than in cells treated with high-dose radiation. We also determined that the phosphorylation of BTK and Gab2 in response to ionizing radiation was regulated in a dose-dependent manner in MRC-5 and NHDF cells. Our study provides new insights into the biological responses to low-dose γ-radiation and identifies potential candidate markers for monitoring exposure to low-dose ionizing radiation.
Collapse
Affiliation(s)
- Ji-Hye Yim
- Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seongnam-si, Gyeonggi-do, 13605, Korea
| | - Jung Mi Yun
- Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seongnam-si, Gyeonggi-do, 13605, Korea
| | - Ji Young Kim
- Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seongnam-si, Gyeonggi-do, 13605, Korea
| | - In Kyung Lee
- Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seongnam-si, Gyeonggi-do, 13605, Korea
| | - Seon Young Nam
- Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seongnam-si, Gyeonggi-do, 13605, Korea
| | - Cha Soon Kim
- Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seongnam-si, Gyeonggi-do, 13605, Korea
| |
Collapse
|
5
|
Zhao X, Cui JW, Hu JH, Gao SJ, Liu XL. Effects of low-dose radiation on adaptive response in colon cancer stem cells. Clin Transl Oncol 2017; 19:907-914. [DOI: 10.1007/s12094-017-1624-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 01/28/2017] [Indexed: 11/29/2022]
|
6
|
Hahn HJ, Youn HJ, Cha HJ, Kim K, An S, Ahn KJ. Single Low-Dose Radiation Induced Regulation of Keratinocyte Differentiation in Calcium-Induced HaCaT Cells. Ann Dermatol 2016; 28:433-7. [PMID: 27489424 PMCID: PMC4969471 DOI: 10.5021/ad.2016.28.4.433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 01/24/2023] Open
Abstract
Background We are continually exposed to low-dose radiation (LDR) in the range 0.1 Gy from natural sources, medical devices, nuclear energy plants, and other industrial sources of ionizing radiation. There are three models for the biological mechanism of LDR: the linear no-threshold model, the hormetic model, and the threshold model. Objective We used keratinocytes as a model system to investigate the molecular genetic effects of LDR on epidermal cell differentiation. Methods To identify keratinocyte differentiation, we performed western blots using a specific antibody for involucrin, which is a precursor protein of the keratinocyte cornified envelope and a marker for keratinocyte terminal differentiation. We also performed quantitative polymerase chain reaction. We examined whether LDR induces changes in involucrin messenger RNA (mRNA) and protein levels in calcium-induced keratinocyte differentiation. Results Exposure of HaCaT cells to LDR (0.1 Gy) induced p21 expression. p21 is a key regulator that induces growth arrest and represses stemness, which accelerates keratinocyte differentiation. We correlated involucrin expression with keratinocyte differentiation, and examined the effects of LDR on involucrin levels and keratinocyte development. LDR significantly increased involucrin mRNA and protein levels during calcium-induced keratinocyte differentiation. Conclusion These studies provide new evidence for the biological role of LDR, and identify the potential to utilize LDR to regulate or induce keratinocyte differentiation.
Collapse
Affiliation(s)
- Hyung Jin Hahn
- Department of Dermatology, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - Hae Jeong Youn
- Department of Dermatology, Konkuk University School of Medicine, Seoul, Korea
| | - Hwa Jun Cha
- Korea Institute for Skin and Clinical Sciences and Molecular-Targeted Drug Research Center, Konkuk University, Seoul, Korea
| | - Karam Kim
- Korea Institute for Skin and Clinical Sciences and Molecular-Targeted Drug Research Center, Konkuk University, Seoul, Korea
| | - Sungkwan An
- Korea Institute for Skin and Clinical Sciences and Molecular-Targeted Drug Research Center, Konkuk University, Seoul, Korea
| | - Kyu Joong Ahn
- Department of Dermatology, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
7
|
McColl N, Auvinen A, Kesminiene A, Espina C, Erdmann F, de Vries E, Greinert R, Harrison J, Schüz J. European Code against Cancer 4th Edition: Ionising and non-ionising radiation and cancer. Cancer Epidemiol 2015; 39 Suppl 1:S93-100. [PMID: 26126928 DOI: 10.1016/j.canep.2015.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/14/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
Ionising radiation can transfer sufficient energy to ionise molecules, and this can lead to chemical changes, including DNA damage in cells. Key evidence for the carcinogenicity of ionising radiation comes from: follow-up studies of the survivors of the atomic bombings in Japan; other epidemiological studies of groups that have been exposed to radiation from medical, occupational or environmental sources; experimental animal studies; and studies of cellular responses to radiation. Considering exposure to environmental ionising radiation, inhalation of naturally occurring radon is the major source of radiation in the population - in doses orders of magnitude higher than those from nuclear power production or nuclear fallout. Indoor exposure to radon and its decay products is an important cause of lung cancer; radon may cause approximately one in ten lung cancers in Europe. Exposures to radon in buildings can be reduced via a three-step process of identifying those with potentially elevated radon levels, measuring radon levels, and reducing exposure by installation of remediation systems. In the 4th Edition of the European Code against Cancer it is therefore recommended to: "Find out if you are exposed to radiation from naturally high radon levels in your home. Take action to reduce high radon levels". Non-ionising types of radiation (those with insufficient energy to ionise molecules) - including extremely low-frequency electric and magnetic fields as well as radiofrequency electromagnetic fields - are not an established cause of cancer and are therefore not addressed in the recommendations to reduce cancer risk.
Collapse
Affiliation(s)
- Neil McColl
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon, OX11 0RQ, United Kingdom
| | - Anssi Auvinen
- School of Health Sciences, University of Tampere, FI-33014, Tampere, Finland; STUK - Radiation and Nuclear Safety Authority, Research and Environmental Surveillance, Helsinki, Finland
| | - Ausrele Kesminiene
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372, Lyon, France
| | - Carolina Espina
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372, Lyon, France
| | - Friederike Erdmann
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372, Lyon, France
| | - Esther de Vries
- Department of Public Health, Erasmus MC/Section of Cancer Information, Gravendijkwal 230, 3015, CE Rotterdam, The Netherlands
| | - Rüdiger Greinert
- Centre of Dermatology, Department of Molecular Cell Biology, Elbekliniken Stade/Buxtehude, Am Krankenhaus 1, D-21614, Buxtehude, Germany
| | - John Harrison
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon, OX11 0RQ, United Kingdom
| | - Joachim Schüz
- International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372, Lyon, France.
| |
Collapse
|
8
|
Ross CL, Siriwardane M, Almeida-Porada G, Porada CD, Brink P, Christ GJ, Harrison BS. The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation. Stem Cell Res 2015; 15:96-108. [PMID: 26042793 PMCID: PMC4516580 DOI: 10.1016/j.scr.2015.04.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/17/2015] [Accepted: 04/27/2015] [Indexed: 12/12/2022] Open
Abstract
Human bone marrow stromal cells (hBMSCs, also known as bone marrow-derived mesenchymal stem cells) are a population of progenitor cells that contain a subset of skeletal stem cells (hSSCs), able to recreate cartilage, bone, stroma that supports hematopoiesis and marrow adipocytes. As such, they have become an important resource in developing strategies for regenerative medicine and tissue engineering due to their self-renewal and differentiation capabilities. The differentiation of SSCs/BMSCs is dependent on exposure to biophysical and biochemical stimuli that favor early and rapid activation of the in vivo tissue repair process. Exposure to exogenous stimuli such as an electromagnetic field (EMF) can promote differentiation of SSCs/BMSCs via ion dynamics and small signaling molecules. The plasma membrane is often considered to be the main target for EMF signals and most results point to an effect on the rate of ion or ligand binding due to a receptor site acting as a modulator of signaling cascades. Ion fluxes are closely involved in differentiation control as stem cells move and grow in specific directions to form tissues and organs. EMF affects numerous biological functions such as gene expression, cell fate, and cell differentiation, but will only induce these effects within a certain range of low frequencies as well as low amplitudes. EMF has been reported to be effective in the enhancement of osteogenesis and chondrogenesis of hSSCs/BMSCs with no documented negative effects. Studies show specific EMF frequencies enhance hSSC/BMSC adherence, proliferation, differentiation, and viability, all of which play a key role in the use of hSSCs/BMSCs for tissue engineering. While many EMF studies report significant enhancement of the differentiation process, results differ depending on the experimental and environmental conditions. Here we review how specific EMF parameters (frequency, intensity, and time of exposure) significantly regulate hSSC/BMSC differentiation in vitro. We discuss optimal conditions and parameters for effective hSSC/BMSC differentiation using EMF treatment in an in vivo setting, and how these can be translated to clinical trials.
Collapse
Affiliation(s)
- Christina L Ross
- Wake Forest Institute for Regenerative Medicine, USA; Wake Forest Center for Integrative Medicine, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | | | | | | | - Peter Brink
- Department of Physiology and Biophysics, SUNY Stony Brook, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
9
|
Low-dose radiation exposure induces a HIF-1-mediated adaptive and protective metabolic response. Cell Death Differ 2014; 21:836-44. [PMID: 24583639 DOI: 10.1038/cdd.2014.24] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 12/25/2022] Open
Abstract
Because of insufficient understanding of the molecular effects of low levels of radiation exposure, there is a great uncertainty regarding its health risks. We report here that treatment of normal human cells with low-dose radiation induces a metabolic shift from oxidative phosphorylation to aerobic glycolysis resulting in increased radiation resistance. This metabolic change is highlighted by upregulation of genes encoding glucose transporters and enzymes of glycolysis and the oxidative pentose phosphate pathway, concomitant with downregulation of mitochondrial genes, with corresponding changes in metabolic flux through these pathways. Mechanistically, the metabolic reprogramming depends on HIF1α, which is induced specifically by low-dose irradiation linking the metabolic pathway with cellular radiation dose response. Increased glucose flux and radiation resistance from low-dose irradiation are also observed systemically in mice. This highly sensitive metabolic response to low-dose radiation has important implications in understanding and assessing the health risks of radiation exposure.
Collapse
|
10
|
González AJ, Akashi M, Boice JD, Chino M, Homma T, Ishigure N, Kai M, Kusumi S, Lee JK, Menzel HG, Niwa O, Sakai K, Weiss W, Yamashita S, Yonekura Y. Radiological protection issues arising during and after the Fukushima nuclear reactor accident. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2013; 33:497-571. [PMID: 23803462 DOI: 10.1088/0952-4746/33/3/497] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Following the Fukushima accident, the International Commission on Radiological Protection (ICRP) convened a task group to compile lessons learned from the nuclear reactor accident at the Fukushima Daiichi nuclear power plant in Japan, with respect to the ICRP system of radiological protection. In this memorandum the members of the task group express their personal views on issues arising during and after the accident, without explicit endorsement of or approval by the ICRP. While the affected people were largely protected against radiation exposure and no one incurred a lethal dose of radiation (or a dose sufficiently large to cause radiation sickness), many radiological protection questions were raised. The following issues were identified: inferring radiation risks (and the misunderstanding of nominal risk coefficients); attributing radiation effects from low dose exposures; quantifying radiation exposure; assessing the importance of internal exposures; managing emergency crises; protecting rescuers and volunteers; responding with medical aid; justifying necessary but disruptive protective actions; transiting from an emergency to an existing situation; rehabilitating evacuated areas; restricting individual doses of members of the public; caring for infants and children; categorising public exposures due to an accident; considering pregnant women and their foetuses and embryos; monitoring public protection; dealing with 'contamination' of territories, rubble and residues and consumer products; recognising the importance of psychological consequences; and fostering the sharing of information. Relevant ICRP Recommendations were scrutinised, lessons were collected and suggestions were compiled. It was concluded that the radiological protection community has an ethical duty to learn from the lessons of Fukushima and resolve any identified challenges. Before another large accident occurs, it should be ensured that inter alia: radiation risk coefficients of potential health effects are properly interpreted; the limitations of epidemiological studies for attributing radiation effects following low exposures are understood; any confusion on protection quantities and units is resolved; the potential hazard from the intake of radionuclides into the body is elucidated; rescuers and volunteers are protected with an ad hoc system; clear recommendations on crisis management and medical care and on recovery and rehabilitation are available; recommendations on public protection levels (including infant, children and pregnant women and their expected offspring) and associated issues are consistent and understandable; updated recommendations on public monitoring policy are available; acceptable (or tolerable) 'contamination' levels are clearly stated and defined; strategies for mitigating the serious psychological consequences arising from radiological accidents are sought; and, last but not least, failures in fostering information sharing on radiological protection policy after an accident need to be addressed with recommendations to minimise such lapses in communication.
Collapse
Affiliation(s)
- Abel J González
- Argentine Nuclear Regulatory Authority, Av. del Libertador 8520, (1429) Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Currently, the International Commission on Radiological Protection (ICRP) uses the dose conversion convention to calculate effective dose per unit exposure to radon and its progeny. In a recent statement, ICRP indicated the intention that, in future, the same approach will be applied to intakes of radon and its progeny as is applied to all other radionuclides, calculating effective dose using reference biokinetic and dosimetric models, and radiation and tissue weighting factors. Effective dose coefficients will be given for reference conditions of exposure. In this paper, preliminary results of dose calculations for Rn-222 progeny are presented and compared with values obtained using the dose conversion convention. Implications for the setting of reference levels are also discussed.
Collapse
Affiliation(s)
- J D Harrison
- Health Protection Agency, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ, UK.
| | | |
Collapse
|
12
|
Olipitz W, Wiktor-Brown D, Shuga J, Pang B, McFaline J, Lonkar P, Thomas A, Mutamba JT, Greenberger JS, Samson LD, Dedon PC, Yanch JC, Engelward BP. Integrated molecular analysis indicates undetectable change in DNA damage in mice after continuous irradiation at ~ 400-fold natural background radiation. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1130-6. [PMID: 22538203 PMCID: PMC3440074 DOI: 10.1289/ehp.1104294] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 04/26/2012] [Indexed: 05/25/2023]
Abstract
BACKGROUND In the event of a nuclear accident, people are exposed to elevated levels of continuous low dose-rate radiation. Nevertheless, most of the literature describes the biological effects of acute radiation. OBJECTIVES DNA damage and mutations are well established for their carcinogenic effects. We assessed several key markers of DNA damage and DNA damage responses in mice exposed to low dose-rate radiation to reveal potential genotoxic effects associated with low dose-rate radiation. METHODS We studied low dose-rate radiation using a variable low dose-rate irradiator consisting of flood phantoms filled with 125Iodine-containing buffer. Mice were exposed to 0.0002 cGy/min (~ 400-fold background radiation) continuously over 5 weeks. We assessed base lesions, micronuclei, homologous recombination (HR; using fluorescent yellow direct repeat mice), and transcript levels for several radiation-sensitive genes. RESULTS We did not observe any changes in the levels of the DNA nucleobase damage products hypoxanthine, 8-oxo-7,8-dihydroguanine, 1,N6-ethenoadenine, or 3,N4-ethenocytosine above background levels under low dose-rate conditions. The micronucleus assay revealed no evidence that low dose-rate radiation induced DNA fragmentation, and there was no evidence of double strand break-induced HR. Furthermore, low dose-rate radiation did not induce Cdkn1a, Gadd45a, Mdm2, Atm, or Dbd2. Importantly, the same total dose, when delivered acutely, induced micronuclei and transcriptional responses. CONCLUSIONS These results demonstrate in an in vivo animal model that lowering the dose-rate suppresses the potentially deleterious impact of radiation and calls attention to the need for a deeper understanding of the biological impact of low dose-rate radiation.
Collapse
Affiliation(s)
- Werner Olipitz
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Richi B, Kale RK, Tiku AB. Radio-modulatory effects of Green Tea Catechin EGCG on pBR322 plasmid DNA and murine splenocytes against gamma-radiation induced damage. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 747:62-70. [DOI: 10.1016/j.mrgentox.2012.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 03/20/2012] [Accepted: 04/02/2012] [Indexed: 11/25/2022]
|
14
|
González AJ. The recommendations of the ICRP vis-à-vis the Fukushima Dai-ichi NPP accident aftermath. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2012; 32:N1-N7. [PMID: 22394644 DOI: 10.1088/0952-4746/32/1/n1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The International Commission on Radiological Protection (ICRP) created a Task Group (ICRP TG84) on the initial lessons learned from the nuclear accident at the Fukushima Dai-ichi NPPs vis-à-vis the ICRP system of radiological protection. The ICRP TG84 is expected to compile lessons learned related to the efforts carried out to protect people against radiation exposure during and after the emergency exposure situation caused by the accident and, in light of these lessons, to consider ad hoc recommendations to strengthen the ICRP system of radiological protection for dealing with this type of emergency exposure. The Chairman of ICRP TG84 presents in this paper his personal views on the main issues being considered by the group at the time of the Fukushima Expert Symposium. ICRP TG84 expects to finalize its work by the end of 2012.
Collapse
Affiliation(s)
- Abel J González
- Autoridad Regulatoria Nuclear (ARN) de Argentina, Avenida del Libertador 8250, AR-1429 Buenos Aires, Argentina.
| |
Collapse
|
15
|
Wakeford R. Cancer risk modelling and radiological protection. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2012; 32:N89-N93. [PMID: 22395099 DOI: 10.1088/0952-4746/32/1/n89] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Statistical models describing how the radiation-related risks of particular types of cancer vary with the doses of radiation received by specific tissues are derived from data gathered in epidemiological studies of exposed groups of people, guided by an incomplete understanding of radiobiological mechanisms gleaned from experimental studies. Cancer risk models have been developed for a dozen or so different types of cancer, and take account of the effect of important risk modifying factors such as age at exposure and time since exposure. Of primary importance in the development of cancer risk models is the experience of the Japanese atomic bomb survivors, but other exposed groups contribute information, including those exposed to radiation from internally deposited radioactive material, such as inhaled radon. Cancer risk models predict that at low doses or low dose rates the excess risk of cancer is directly proportional to the dose of radiation received, with no threshold dose--the linear no threshold (LNT) dose-response model--and the inferred summary estimate of the overall average lifetime excess risk of developing a serious cancer is ∼ 5%/Sv. It is these cancer risk models and this inferred nominal risk estimate that provide the technical basis of radiological protection. Although it is difficult to definitively test the LNT model at low doses or low dose rates, because the predicted excess risk is small compared with fluctuations in the baseline risk, evidence exists that a small risk of cancer results from low-level exposure to radiation and that the excess risk is around that predicted by current risk models.
Collapse
Affiliation(s)
- Richard Wakeford
- Dalton Nuclear Institute, The University of Manchester, Pariser Building G Floor, Sackville Street, Manchester M13 9PL, UK.
| |
Collapse
|
16
|
Ory C, Ugolin N, Schlumberger M, Hofman P, Chevillard S. Discriminating gene expression signature of radiation-induced thyroid tumors after either external exposure or internal contamination. Genes (Basel) 2011; 3:19-34. [PMID: 24704841 PMCID: PMC3899964 DOI: 10.3390/genes3010019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/06/2011] [Accepted: 12/09/2011] [Indexed: 01/02/2023] Open
Abstract
Both external radiation exposure and internal radionuclide contamination are well known risk factors in the development of thyroid epithelial tumors. The identification of specific molecular markers deregulated in radiation-induced thyroid tumors is important for the etiological diagnosis since neither histological features nor genetic alterations can discriminate between sporadic and radiation-induced tumors. Identification of highly discriminating markers in radiation-induced tumors is challenging as it relies on the ability to identify marker deregulation which is associated with a cellular stress that occurred many years before in the thyroid cells. The existence of such a signature is still controversial, as it was not found in several studies while a highly discriminating signature was found in both post-radiotherapy and post-Chernobyl series in other studies. Overall, published studies searching for radiation-induced thyroid tumor specificities, using transcriptomic, proteomic and comparative genomic hybridization approaches, and bearing in mind the analytical constraints required to analyze such small series of tumors, suggest that such a molecular signature could be found. In comparison with sporadic tumors, we highlight molecular similarities and specificities in tumors occurring after high-dose external radiation exposure, such as radiotherapy, and in post-Chernobyl tumors that occurred after internal 131I contamination. We discuss the relevance of signature extrapolation from series of tumors developing after high and low doses in the identification of tumors induced at very low doses of radiation.
Collapse
Affiliation(s)
- Catherine Ory
- CEA, DSV, IRCM, SREIT, Laboratoire de Cancérologie Expérimentale, BP6, Fontenay-aux-Roses, F-92265, France.
| | - Nicolas Ugolin
- CEA, DSV, IRCM, SREIT, Laboratoire de Cancérologie Expérimentale, BP6, Fontenay-aux-Roses, F-92265, France.
| | - Martin Schlumberger
- Institut Gustave Roussy, Department on Nuclear Medicine and Endocrine Oncology, Villejuif, and University Paris-Sud, F-94800, France.
| | | | - Sylvie Chevillard
- CEA, DSV, IRCM, SREIT, Laboratoire de Cancérologie Expérimentale, BP6, Fontenay-aux-Roses, F-92265, France.
| |
Collapse
|