1
|
Yang D, Chiang CH, Wititsuwannakul T, Brooks CL, Zimmerman PM, Narayan ARH. Engineering the Reaction Pathway of a Non-heme Iron Oxygenase Using Ancestral Sequence Reconstruction. J Am Chem Soc 2024; 146:34352-34363. [PMID: 39642058 PMCID: PMC11957380 DOI: 10.1021/jacs.4c08420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Non-heme iron (FeII), α-ketoglutarate (α-KG)-dependent oxygenases are a family of enzymes that catalyze an array of transformations that cascade forward after the formation of radical intermediates. Achieving control over the reaction pathway is highly valuable and a necessary step toward broadening the applications of these biocatalysts. Numerous approaches have been used to engineer the reaction pathway of FeII/α-KG-dependent enzymes, including site-directed mutagenesis, DNA shuffling, and site-saturation mutagenesis, among others. Herein, we showcase a novel ancestral sequence reconstruction (ASR)-guided strategy in which evolutionary information is used to pinpoint the residues critical for controlling different reaction pathways. Following this, a combinatorial site-directed mutagenesis approach was used to quickly evaluate the importance of each residue. These results were validated using a DNA shuffling strategy and through quantum mechanical/molecular mechanical (QM/MM) simulations. Using this approach, we identified a set of active site residues together with a key hydrogen bond between the substrate and an active site residue, which are crucial for dictating the dominant reaction pathway. Ultimately, we successfully converted both extant and ancestral enzymes that perform benzylic hydroxylation into variants that can catalyze an oxidative ring-expansion reaction, showcasing the potential of utilizing ASR to accelerate the reaction pathway engineering within enzyme families that share common structural and mechanistic features.
Collapse
Affiliation(s)
- Di Yang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States; Life Science Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chang-Hwa Chiang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States; Life Science Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Charles L. Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States; Life Science Institute and Enhanced Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul M. Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alison R. H. Narayan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States; Life Science Institute and Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Zhang M, Li Z, Jia Y, Wang F, Tian J, Zhang C, Han T, Xing R, Ye W, Wang C. Observing Mesoscopic Nucleic Acid Capacitance Effect and Mismatch Impact via Graphene Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105890. [PMID: 35072345 DOI: 10.1002/smll.202105890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/05/2021] [Indexed: 06/14/2023]
Abstract
This work reports a molecular-scale capacitance effect of the double helical nucleic acid duplex structure for the first time. By quantitatively conducting large sample measurements of the electrostatic field effect using a type of high-accuracy graphene transistor biosensor, an unusual charge-transport behavior is observed in which the end-immobilized nucleic acid duplexes can store a part of ionization electrons like molecular capacitors, other than electric conductors. To elucidate this discovery, a cascaded capacitive network model is proposed as a novel equivalent circuit of nucleic acid duplexes, expanding the point-charge approximation model, by which the partial charge-transport observation is reasonably attributed to an electron-redistribution behavior within the capacitive network. Furthermore, it is experimentally confirmed that base-pair mismatches hinder the charge transport in double helical duplexes, and lead to directly identifiable alterations in electrostatic field effects. The bioelectronic principle of mismatch impact is also self-consistently explained by the newly proposed capacitive network model. The mesoscopic nucleic acid capacitance effect may enable a new kind of label-free nucleic acid analysis tool based on electronic transistor devices. The in situ and real-time nucleic acid detections for virus biomarkers, somatic mutations, and genome editing off-target may thus be predictable.
Collapse
Affiliation(s)
- Mingfeng Zhang
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China
| | - Zhibo Li
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China
| | - Yuan Jia
- Industrialization Center of Micro & Nano ICs and Devices Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, 518118, China
| | - Fuquan Wang
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China
| | - Jinpeng Tian
- Industrialization Center of Micro & Nano ICs and Devices Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, 518118, China
| | - Cuiping Zhang
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China
| | - Tingting Han
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China
- Department of Intelligence Science and Technology, College of Artificial Intelligence, Tianjin Normal University, Tianjin, 300387, China
| | - Ruiqing Xing
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China
- Department of Intelligence Science and Technology, College of Artificial Intelligence, Tianjin Normal University, Tianjin, 300387, China
| | - Weixiang Ye
- Department of Physics, School of Science, Hainan University, Haikou, 570228, China
- Key Laboratory of Engineering Modeling and Statistical Computation of Hainan Province, School of Science, Hainan University, Haikou, 570228, China
| | - Cheng Wang
- Tianjin Key Laboratory of Wireless Mobile Communications and Power Transmission, College of Electronic and Communication Engineering, Tianjin Normal University, Tianjin, 300387, China
- Department of Intelligence Science and Technology, College of Artificial Intelligence, Tianjin Normal University, Tianjin, 300387, China
| |
Collapse
|
3
|
Chen X. Theoretical electrical conductivity of hydrogen-bonded benzamide-derived molecules and single DNA bases. J Biol Phys 2013; 39:607-24. [PMID: 23996406 DOI: 10.1007/s10867-013-9321-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022] Open
Abstract
A benzamide molecule is used as a "reader" molecule to form hydrogen bonds with five single DNA bases, i.e., four normal single DNA bases A,T,C,G and one for 5methylC. The whole molecule is then attached to the gold surface so that a meta-molecule junction is formed. We calculate the transmission function and conductance for the five metal-molecule systems, with the implementation of density functional theory-based non-equilibrium Green function method. Our results show that each DNA base exhibits a unique conductance and most of them are on the pS level. The distinguishable conductance of each DNA base provides a way for the fast sequencing of DNA. We also investigate the dependence of conductivity of such a metal-molecule system on the hydrogen bond length between the "reader" molecule and DNA base, which shows that conductance follows an exponential decay as the hydrogen bond length increases, i.e., the conductivity is highly sensitive to the change in hydrogen bond length.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Physics, Center for Biological Physics Arizona State University, Tempe, AZ 85287-1504, USA.
| |
Collapse
|
4
|
Bagci VMK, Kaun CC. Recognizing nucleotides by cross-tunneling currents for DNA sequencing. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:011917. [PMID: 21867223 DOI: 10.1103/physreve.84.011917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 03/23/2011] [Indexed: 05/31/2023]
Abstract
Using first-principles calculations, we study electron transport through nucleotides inside a rectangular nanogap formed by two pairs of gold electrodes which are perpendicular and parallel to the nucleobase plane. We propose that this setup will enhance the nucleotide selectivity of tunneling signals to a great extent. Information from three electrical probing processes offers full nucleotide recognition, which survives the noise from neighboring nucleotides and configuration fluctuations.
Collapse
Affiliation(s)
- V M K Bagci
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | |
Collapse
|
5
|
Chang S, He J, Lin L, Zhang P, Liang F, Young M, Huang S, Lindsay S. Tunnel conductance of Watson-Crick nucleoside-base pairs from telegraph noise. NANOTECHNOLOGY 2009; 20:185102. [PMID: 19420603 PMCID: PMC2694950 DOI: 10.1088/0957-4484/20/18/185102] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The use of tunneling signals to sequence DNA is presently hampered by the small tunnel conductance of a junction spanning an entire DNA molecule. The design of a readout system that uses a shorter tunneling path requires knowledge of the absolute conductance across base pairs. We have exploited the stochastic switching of hydrogen-bonded DNA base-nucleoside pairs trapped in a tunnel junction to determine the conductance of individual molecular pairs. This conductance is found to be sensitive to the geometry of the junction, but a subset of the data appears to come from unstrained molecular pairs. The conductances determined from these pairs are within a factor of two of the predictions of density functional calculations. The experimental data reproduces the counterintuitive theoretical prediction that guanine-deoxycytidine pairs (3 H-bonds) have a smaller conductance than adenine-thymine pairs (2 H-bonds). A bimodal distribution of switching lifetimes shows that both H-bonds and molecule-metal contacts break.
Collapse
Affiliation(s)
- Shuai Chang
- Biodesign Institute, Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | | | | | | | |
Collapse
|