1
|
Hait S, Basu S, Kundu S. Charge reversal mutations in mesophilic-thermophilic orthologous protein pairs and their role in enhancing coulombic interaction energy. J Biomol Struct Dyn 2023; 41:1745-1752. [PMID: 34996344 DOI: 10.1080/07391102.2021.2024258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Proteins from thermophilic organisms are a matter of immense interest for decades because of its application in fields like de-novo protein design, thermostable variants of biocatalysts etc. Previous studies have found several sequence and structural adaptations related to thermal stability, while charge reversal study remains ignored. Here we address whether charge reversal mutations naturally occur in mesophilic-thermophilic/hyperthermophilic orthologous proteins. Do they contribute to thermal stability? Our systematic study on 1550 mesophilic-thermophilic/hyperthermophilic orthologous protein pairs with remarkable structural and topological similarity, shows gain in coulombic interaction energy in thermophilic/hyperthermophilic proteins at short range associated with partially exposed and buried charge reversal mutations, which may enhance thermostability. Our findings call forth its application in future protein engineering studies. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suman Hait
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Sudipto Basu
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Sudip Kundu
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| |
Collapse
|
2
|
Fusco G, Biancaniello C, Vrettas MD, De Simone A. Thermal tuning of protein hydration in a hyperthermophilic enzyme. Front Mol Biosci 2022; 9:1037445. [PMID: 36518847 PMCID: PMC9742426 DOI: 10.3389/fmolb.2022.1037445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/14/2022] [Indexed: 10/24/2023] Open
Abstract
Water at the protein surface is an active biological molecule that plays a critical role in many functional processes. Using NMR-restrained MD simulations, we here addressed how protein hydration is tuned at high biological temperatures by analysing homologous acylphosphatase enzymes (AcP) possessing similar structure and dynamics under very different thermal conditions. We found that the hyperthermophilic Sso AcP at 80°C interacts with a lower number of structured waters in the first hydration shell than its human homologous mt AcP at 37°C. Overall, the structural and dynamical properties of waters at the surface of the two enzymes resulted similar in the first hydration shell, including solvent molecules residing in the active site. By contrast the dynamical content of water molecules in the second hydration shell was found to diverge, with higher mobility observed in Sso AcP at 80°C. Taken together the results delineate the subtle differences in the hydration properties of mt AcP and Sso AcP, and indicate that the concept of corresponding states with equivalent dynamics in homologous mesophilic and hyperthermophylic proteins should be extended to the first hydration shell.
Collapse
Affiliation(s)
- Giuliana Fusco
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Michail D. Vrettas
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Alfonso De Simone
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
3
|
Ralston CY, Kerfeld CA. Integrated Structural Studies for Elucidating Carotenoid-Protein Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1371:1-10. [PMID: 33963527 DOI: 10.1007/5584_2020_615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carotenoids are ancient pigment molecules that, when associated with proteins, have a tremendous range of functional properties. Unlike most protein prosthetic groups, there are no recognizable primary structure motifs that predict carotenoid binding, hence the structural details of their amino acid interactions in proteins must be worked out empirically. Here we describe our recent efforts to combine complementary biophysical methods to elucidate the precise details of protein-carotenoid interactions in the Orange Carotenoid Protein and its evolutionary antecedents, the Helical Carotenoid Proteins (HCPs), CTD-like carotenoid proteins (CCPs).
Collapse
Affiliation(s)
- Corie Y Ralston
- Molecular Biophysics and Integrated Bioimaging Division and the Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cheryl A Kerfeld
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA. .,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
4
|
Pinney MM, Mokhtari DA, Akiva E, Yabukarski F, Sanchez DM, Liang R, Doukov T, Martinez TJ, Babbitt PC, Herschlag D. Parallel molecular mechanisms for enzyme temperature adaptation. Science 2021; 371:371/6533/eaay2784. [PMID: 33674467 DOI: 10.1126/science.aay2784] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/23/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
The mechanisms that underly the adaptation of enzyme activities and stabilities to temperature are fundamental to our understanding of molecular evolution and how enzymes work. Here, we investigate the molecular and evolutionary mechanisms of enzyme temperature adaption, combining deep mechanistic studies with comprehensive sequence analyses of thousands of enzymes. We show that temperature adaptation in ketosteroid isomerase (KSI) arises primarily from one residue change with limited, local epistasis, and we establish the underlying physical mechanisms. This residue change occurs in diverse KSI backgrounds, suggesting parallel adaptation to temperature. We identify residues associated with organismal growth temperature across 1005 diverse bacterial enzyme families, suggesting widespread parallel adaptation to temperature. We assess the residue properties, molecular interactions, and interaction networks that appear to underly temperature adaptation.
Collapse
Affiliation(s)
- Margaux M Pinney
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA.
| | - Daniel A Mokhtari
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Eyal Akiva
- Department of Bioengineering and Therapeutic Sciences and Quantitative Biosciences Institute, University of California, San Francisco, CA 94158, USA
| | - Filip Yabukarski
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94110, USA
| | - David M Sanchez
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.,Department of Photon Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Ruibin Liang
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.,Department of Photon Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Tzanko Doukov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Todd J Martinez
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.,Department of Photon Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Patricia C Babbitt
- Department of Bioengineering and Therapeutic Sciences and Quantitative Biosciences Institute, University of California, San Francisco, CA 94158, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA. .,Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.,Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Hait S, Mallik S, Basu S, Kundu S. Finding the generalized molecular principles of protein thermal stability. Proteins 2019; 88:788-808. [PMID: 31872464 DOI: 10.1002/prot.25866] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/05/2019] [Accepted: 12/14/2019] [Indexed: 11/09/2022]
Abstract
Are there any generalized molecular principles of thermal adaptation? Here, integrating the concepts of structural bioinformatics, sequence analysis, and classical knot theory, we develop a robust computational framework that seeks for mechanisms of thermal adaptation by comparing orthologous mesophilic-thermophilic and mesophilic-hyperthermophilic proteins of remarkable structural and topological similarities, and still leads us to context-independent results. A comprehensive analysis of 4741 high-resolution, non-redundant X-ray crystallographic structures collected from 11 hyperthermophilic, 32 thermophilic and 53 mesophilic prokaryotes unravels at least five "nearly universal" signatures of thermal adaptation, irrespective of the enormous sequence, structure, and functional diversity of the proteins compared. A careful investigation further extracts a set of amino acid changes that can potentially enhance protein thermal stability, and remarkably, these mutations are overrepresented in protein crystallization experiments, in disorder-to-order transitions and in engineered thermostable variants of existing mesophilic proteins. These results could be helpful to find a precise, global picture of thermal adaptation.
Collapse
Affiliation(s)
- Suman Hait
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Saurav Mallik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sudipto Basu
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India.,Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-III), University of Calcutta, Kolkata, India
| | - Sudip Kundu
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India.,Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-III), University of Calcutta, Kolkata, India
| |
Collapse
|
6
|
Gupta S, Sutter M, Remesh SG, Dominguez-Martin MA, Bao H, Feng XA, Chan LJG, Petzold CJ, Kerfeld CA, Ralston CY. X-ray radiolytic labeling reveals the molecular basis of orange carotenoid protein photoprotection and its interactions with fluorescence recovery protein. J Biol Chem 2019; 294:8848-8860. [PMID: 30979724 DOI: 10.1074/jbc.ra119.007592] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/05/2019] [Indexed: 11/06/2022] Open
Abstract
In cyanobacterial photoprotection, the orange carotenoid protein (OCP) is photoactivated under excess light conditions and binds to the light-harvesting antenna, triggering the dissipation of captured light energy. In low light, the OCP relaxes to the native state, a process that is accelerated in the presence of fluorescence recovery protein (FRP). Despite the importance of the OCP in photoprotection, the precise mechanism of photoactivation by this protein is not well-understood. Using time-resolved X-ray-mediated in situ hydroxyl radical labeling, we probed real-time solvent accessibility (SA) changes at key OCP residues during photoactivation and relaxation. We observed a biphasic photoactivation process in which carotenoid migration preceded domain dissociation. We also observed a multiphasic relaxation process, with collapsed domain association preceding the final conformational rearrangement of the carotenoid. Using steady-state hydroxyl radical labeling, we identified sites of interaction between the FRP and OCP. In combination, the findings in this study provide molecular-level insights into the factors driving structural changes during OCP-mediated photoprotection in cyanobacteria, and furnish a basis for understanding the physiological relevance of the FRP-mediated relaxation process.
Collapse
Affiliation(s)
- Sayan Gupta
- From the Molecular Biophysics and Integrated Bioimaging Division
| | - Markus Sutter
- From the Molecular Biophysics and Integrated Bioimaging Division.,the MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824.,the Environmental Genomics and Systems Biology Division, and
| | - Soumya G Remesh
- From the Molecular Biophysics and Integrated Bioimaging Division
| | - Maria Agustina Dominguez-Martin
- the MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Han Bao
- the MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Xinyu A Feng
- From the Molecular Biophysics and Integrated Bioimaging Division
| | - Leanne-Jade G Chan
- the Biological Systems and Engineering Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720 and
| | - Christopher J Petzold
- the Biological Systems and Engineering Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720 and
| | - Cheryl A Kerfeld
- From the Molecular Biophysics and Integrated Bioimaging Division, .,the MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824.,the Environmental Genomics and Systems Biology Division, and
| | - Corie Y Ralston
- From the Molecular Biophysics and Integrated Bioimaging Division,
| |
Collapse
|
7
|
Physical and molecular bases of protein thermal stability and cold adaptation. Curr Opin Struct Biol 2016; 42:117-128. [PMID: 28040640 DOI: 10.1016/j.sbi.2016.12.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/15/2016] [Accepted: 12/11/2016] [Indexed: 11/20/2022]
Abstract
The molecular bases of thermal and cold stability and adaptation, which allow proteins to remain folded and functional in the temperature ranges in which their host organisms live and grow, are still only partially elucidated. Indeed, both experimental and computational studies fail to yield a fully precise and global physical picture, essentially because all effects are context-dependent and thus quite intricate to unravel. We present a snapshot of the current state of knowledge of this highly complex and challenging issue, whose resolution would enable large-scale rational protein design.
Collapse
|
8
|
Rahaman O, Kalimeri M, Melchionna S, Hénin J, Sterpone F. Role of Internal Water on Protein Thermal Stability: The Case of Homologous G Domains. J Phys Chem B 2014; 119:8939-49. [PMID: 25317828 DOI: 10.1021/jp507571u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this work, we address the question of whether the enhanced stability of thermophilic proteins has a direct connection with internal hydration. Our model systems are two homologous G domains of different stability: the mesophilic G domain of the elongation factor thermal unstable protein from E. coli and the hyperthermophilic G domain of the EF-1α protein from S. solfataricus. Using molecular dynamics simulation at the microsecond time scale, we show that both proteins host water molecules in internal cavities and that these molecules exchange with the external solution in the nanosecond time scale. The hydration free energy of these sites evaluated via extensive calculations is found to be favorable for both systems, with the hyperthermophilic protein offering a slightly more favorable environment to host water molecules. We estimate that, under ambient conditions, the free energy gain due to internal hydration is about 1.3 kcal/mol in favor of the hyperthermophilic variant. However, we also find that, at the high working temperature of the hyperthermophile, the cavities are rather dehydrated, meaning that under extreme conditions other molecular factors secure the stability of the protein. Interestingly, we detect a clear correlation between the hydration of internal cavities and the protein conformational landscape. The emerging picture is that internal hydration is an effective observable to probe the conformational landscape of proteins. In the specific context of our investigation, the analysis confirms that the hyperthermophilic G domain is characterized by multiple states and it has a more flexible structure than its mesophilic homologue.
Collapse
Affiliation(s)
- Obaidur Rahaman
- †Laboratoire de Biochimie Théorique, IBPC, CNRS, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Maria Kalimeri
- †Laboratoire de Biochimie Théorique, IBPC, CNRS, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Simone Melchionna
- ‡CNR-IPCF, Consiglio Nazionale delle Ricerche, Physics Dept., Univ. La Sapienza, P.le A. Moro 2, 00185, Rome, Italy
| | - Jérôme Hénin
- †Laboratoire de Biochimie Théorique, IBPC, CNRS, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Fabio Sterpone
- †Laboratoire de Biochimie Théorique, IBPC, CNRS, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
9
|
Ye Y, Shangguan Y, Song Y, Zheng Q. Influence of charge density on rheological properties and dehydration dynamics of weakly charged poly(N-isopropylacrylamide) during phase transition. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.03.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Sterpone F, Melchionna S. Thermophilic proteins: insight and perspective from in silico experiments. Chem Soc Rev 2011; 41:1665-76. [PMID: 21975514 DOI: 10.1039/c1cs15199a] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proteins from thermophilic and hyperthermophilic organisms are stable and function at high temperatures (50-100 °C). The importance of understanding the microscopic mechanisms underlying this thermal resistance is twofold: it is key for acquiring general clues on how proteins maintain their fold stable and for targeting those medical and industrial applications that aim at designing enzymes that can work under harsh conditions. In this tutorial review we first provide the general background of protein thermostability by specifically focusing on the structural and thermodynamic peculiarities; next, we discuss how computational studies based on Molecular Dynamics simulations can broaden and refine our knowledge on such special class of proteins.
Collapse
Affiliation(s)
- Fabio Sterpone
- Laboratoire de Biochimie Théorique, CNRS, UPR9080, Univ Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France.
| | | |
Collapse
|