1
|
Ruffinatti FA, Genova T, Roato I, Perin M, Chinigò G, Pedraza R, Della Bella O, Motta F, Aimo Boot E, D’Angelo D, Gatti G, Scarpellino G, Munaron L, Mussano F. Osteoblast Response to Widely Ranged Texturing Conditions Obtained through High Power Laser Beams on Ti Surfaces. J Funct Biomater 2024; 15:303. [PMID: 39452601 PMCID: PMC11508658 DOI: 10.3390/jfb15100303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Titanium and titanium alloys are the prevailing dental implant materials owing to their favorable mechanical properties and biocompatibility, but how roughness dictates the biological response is still a matter of debate. In this study, laser texturing was used to generate eight paradigmatic roughened surfaces, with the aim of studying the early biological response elicited on MC3T3-E1 pre-osteoblasts. Prior to cell tests, the samples underwent SEM analysis, optical profilometry, protein adsorption assay, and optical contact angle measurement with water and diiodomethane to determine surface free energy. While all the specimens proved to be biocompatible, supporting similar cell viability at 1, 2, and 3 days, surface roughness could impact significantly on cell adhesion. Factorial analysis and linear regression showed, in a robust and unprecedented way, that an isotropic distribution of deep and closely spaced valleys provides the best condition for cell adhesion, to which both protein adsorption and surface free energy were highly correlated. Overall, here the authors provide, for the first time, a thorough investigation of the relationship between roughness parameters and osteoblast adhesion that may be applied to design and produce new tailored interfaces for implant materials.
Collapse
Affiliation(s)
- Federico Alessandro Ruffinatti
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy; (T.G.); (M.P.); (G.C.); (L.M.)
| | - Tullio Genova
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy; (T.G.); (M.P.); (G.C.); (L.M.)
| | - Ilaria Roato
- Bone and Dental Bioengineering Laboratory, CIR Dental School, Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Torino, Italy; (I.R.); (R.P.); (F.M.)
| | - Martina Perin
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy; (T.G.); (M.P.); (G.C.); (L.M.)
| | - Giorgia Chinigò
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy; (T.G.); (M.P.); (G.C.); (L.M.)
| | - Riccardo Pedraza
- Bone and Dental Bioengineering Laboratory, CIR Dental School, Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Torino, Italy; (I.R.); (R.P.); (F.M.)
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Olivio Della Bella
- Biomec s.r.l. Colico, Via Nazionale Nord, 21/A, 23823 Colico, Italy; (O.D.B.); (F.M.)
| | - Francesca Motta
- Biomec s.r.l. Colico, Via Nazionale Nord, 21/A, 23823 Colico, Italy; (O.D.B.); (F.M.)
| | - Elisa Aimo Boot
- Environment Park S.p.A. Plasma Nano-Tech, Via Livorno 60, 10144 Torino, Italy; (E.A.B.); (D.D.)
| | - Domenico D’Angelo
- Environment Park S.p.A. Plasma Nano-Tech, Via Livorno 60, 10144 Torino, Italy; (E.A.B.); (D.D.)
| | - Giorgio Gatti
- Department of Science and Technological Innovation, University of Eastern Piedmont A. Avogadro, Viale Michel 11, 15121 Alessandria, Italy;
| | - Giorgia Scarpellino
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Via Adolfo Ferrata 9, 27100 Pavia, Italy;
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy; (T.G.); (M.P.); (G.C.); (L.M.)
| | - Federico Mussano
- Bone and Dental Bioengineering Laboratory, CIR Dental School, Department of Surgical Sciences, University of Torino, Via Nizza 230, 10126 Torino, Italy; (I.R.); (R.P.); (F.M.)
| |
Collapse
|
2
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
3
|
Ueki T, Uto K, Yamamoto S, Tamate R, Kamiyama Y, Jia X, Noguchi H, Minami K, Ariga K, Wang H, Nakanishi J. Ionic Liquid Interface as a Cell Scaffold. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310105. [PMID: 38234135 DOI: 10.1002/adma.202310105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/07/2024] [Indexed: 01/19/2024]
Abstract
In sharp contrast to conventional solid/hydrogel platforms, water-immiscible liquids, such as perfluorocarbons and silicones, allow the adhesion of mammalian cells via protein nanolayers (PNLs) formed at the interface. However, fluorocarbons and silicones, which are typically used for liquid cell culture, possess only narrow ranges of physicochemical parameters and have not allowed for a wide variety of cell culturing environments. In this paper, it is proposed that water-immiscible ionic liquids (ILs) are a new family of liquid substrates with tunable physicochemical properties and high solvation capabilities. Tetraalkylphosphonium-based ILs are identified as non-cytotoxic ILs, whereon human mesenchymal stem cells are successfully cultured. By reducing the cation charge distribution, or ionicity, via alkyl chain elongation, the interface allows cell spreading with matured focal contacts. High-speed atomic force microscopy observations of the PNL formation process suggest that the cation charge distribution significantly altered the protein adsorption dynamics, which are associated with the degree of protein denaturation and the PNL mechanics. Moreover, by exploiting dissolution capability of ILs, an ion-gel cell scaffold is fabricated. This enables to further identify the significant contribution of bulk subphase mechanics to cellular mechanosensing in liquid-based culture scaffolds.
Collapse
Affiliation(s)
- Takeshi Ueki
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku Sapporo, 060-0810, Japan
| | - Koichiro Uto
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Shota Yamamoto
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Ryota Tamate
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yuji Kamiyama
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku Sapporo, 060-0810, Japan
| | - Xiaofang Jia
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Hidenori Noguchi
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku Sapporo, 060-0810, Japan
- Research Center for Energy and Environmental Materials (GREEN), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Kosuke Minami
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Chiba, 277-0882, Japan
| | - Hongxin Wang
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jun Nakanishi
- Research Center for Macromolecules & Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Tokyo, Shinjuku-ku, 169-8555, Japan
- Graduate School of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Tokyo, Katsushika-ku, 125-8585, Japan
| |
Collapse
|
4
|
Morris RJ, Bamford NC, Bromley KM, Erskine E, Stanley-Wall NR, MacPhee CE. Bacillus subtilis Matrix Protein TasA is Interfacially Active, but BslA Dominates Interfacial Film Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4164-4173. [PMID: 38351711 PMCID: PMC10905994 DOI: 10.1021/acs.langmuir.3c03163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/28/2024]
Abstract
Microbial growth often occurs within multicellular communities called biofilms, where cells are enveloped by a protective extracellular matrix. Bacillus subtilis serves as a model organism for biofilm research and produces two crucial secreted proteins, BslA and TasA, vital for biofilm matrix formation. BslA exhibits surface-active properties, spontaneously self-assembling at hydrophobic/hydrophilic interfaces to form an elastic protein film, which renders B. subtilis biofilm surfaces water-repellent. TasA is traditionally considered a fiber-forming protein with multiple matrix-related functions. In our current study, we investigate whether TasA also possesses interfacial properties and whether it has any impact on BslA's ability to form an interfacial protein film. Our research demonstrates that TasA indeed exhibits interfacial activity, partitioning to hydrophobic/hydrophilic interfaces, stabilizing emulsions, and forming an interfacial protein film. Interestingly, TasA undergoes interface-induced restructuring similar to BslA, showing an increase in β-strand secondary structure. Unlike BslA, TasA rapidly reaches the interface and forms nonelastic films that rapidly relax under pressure. Through mixed protein pendant drop experiments, we assess the influence of TasA on BslA film formation, revealing that TasA and other surface-active molecules can compete for interface space, potentially preventing BslA from forming a stable elastic film. This raises a critical question: how does BslA self-assemble to form the hydrophobic "raincoat" observed in biofilms in the presence of other potentially surface-active species? We propose a model wherein surface-active molecules, including TasA, initially compete with BslA for interface space. However, under lateral compression or pressure, BslA retains its position, expelling other molecules into the bulk. This resilience at the interface may result from structural rearrangements and lateral interactions between BslA subunits. This combined mechanism likely explains BslA's role in forming a stable film integral to B. subtilis biofilm hydrophobicity.
Collapse
Affiliation(s)
- Ryan J. Morris
- School
of Physics & Astronomy, University of
Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, U.K.
- National
Biofilms Innovation Centre, Southampton SO17 1GB, U.K.
| | - Natalie C. Bamford
- National
Biofilms Innovation Centre, Southampton SO17 1GB, U.K.
- Division
of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Keith M. Bromley
- School
of Physics & Astronomy, University of
Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, U.K.
| | - Elliot Erskine
- Division
of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Nicola R. Stanley-Wall
- Division
of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Cait E. MacPhee
- School
of Physics & Astronomy, University of
Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, U.K.
- National
Biofilms Innovation Centre, Southampton SO17 1GB, U.K.
| |
Collapse
|
5
|
King TE, Humphrey JR, Laughton CA, Thomas NR, Hirst JD. Optimizing Excipient Properties to Prevent Aggregation in Biopharmaceutical Formulations. J Chem Inf Model 2024; 64:265-275. [PMID: 38113509 PMCID: PMC10777730 DOI: 10.1021/acs.jcim.3c01898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Excipients are included within protein biotherapeutic solution formulations to improve colloidal and conformational stability but are generally not designed for the specific purpose of preventing aggregation and improving cryoprotection in solution. In this work, we have explored the relationship between the structure and antiaggregation activity of excipients by utilizing coarse-grained molecular dynamics modeling of protein-excipient interaction. We have studied human serum albumin as a model protein, and we report the interaction of 41 excipients (polysorbates, fatty alcohol ethoxylates, fatty acid ethoxylates, phospholipids, glucosides, amino acids, and others) in terms of the reduction of solvent accessible surface area of aggregation-prone regions, proposed as a mechanism of aggregation prevention. Polyoxyethylene sorbitan had the greatest degree of interaction with aggregation-prone regions, decreasing the solvent accessible surface area of APRs by 20.7 nm2 (40.1%). Physicochemical descriptors generated by Mordred are employed to probe the structure-property relationship using partial least-squares regression. A leave-one-out cross-validated model had a root-mean-square error of prediction of 4.1 nm2 and a mean relative error of prediction of 0.077. Generally, longer molecules with a large number of alcohol-terminated PEG units tended to interact more, with qualitatively different protein interactions, wrapping around the protein. Shorter or less ethoxylated compounds tend to form hemimicellar clusters at the protein surface. We propose that an improved design would feature many short chains of 5 to 10 PEG units in many distinct branches and at least some hydrophobic content in the form of medium-length or greater aliphatic chains (i.e., six or more carbon atoms). The combination of molecular dynamics simulation and quantitative modeling is an important first step in an all-purpose protein-independent model for the computer-aided design of stabilizing excipients.
Collapse
Affiliation(s)
- Toby E. King
- Biodiscovery
Institute, School of Pharmacy, University Park, Nottingham NG7 2RD, U.K.
| | | | - Charles A. Laughton
- Biodiscovery
Institute, School of Pharmacy, University Park, Nottingham NG7 2RD, U.K.
| | - Neil R. Thomas
- Biodiscovery
Institute, School of Chemistry, University Park, Nottingham NG7 2RD, U.K.
| | | |
Collapse
|
6
|
Pham KG, Thompson BR, Wang T, Samaddar S, Qian KK, Liu Y, Wagner NJ. Interfacial Pressure and Viscoelasticity of Antibodies and Their Correlation to Long-Term Stability in Formulation. J Phys Chem B 2023; 127:9724-9733. [PMID: 37917554 DOI: 10.1021/acs.jpcb.3c05900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Monoclonal antibodies (mAbs) form viscoelastic gel-like layers at the air-water interface due to their amphiphilic nature, and this same protein characteristic can lead to undesired aggregation of proteins in therapeutic formulations. We hypothesize that the interfacial viscoelasticity and surface pressure of mAbs at the air-water interface will correlate with their long-term stability. To test this hypothesis, the interfacial viscoelastic rheology and surface pressure of five different antibodies with varying visible particle counts from a three-year stability study were measured. We find that both the surface pressures and interfacial elastic moduli correlate well with the long-time mAb solution stability within a class of mAbs with the interfacial elastic moduli being particularly sensitive to discriminate between stable and unstable mAbs across a range of formulations. Furthermore, X-ray reflectivity was used to gain insight into the interfacial structure of mAbs at the air-water interface, providing a possible molecular mechanism to explain the relationship between interfacial elastic moduli and the long-term stability.
Collapse
Affiliation(s)
- Kiet G Pham
- Department of Chemical & Biomolecular Engineering, Center for Neutron Science, University of Delaware, Delaware 19716, United States
| | - Benjamin R Thompson
- Department of Chemical & Biomolecular Engineering, Center for Neutron Science, University of Delaware, Delaware 19716, United States
| | - Tingting Wang
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - Shayak Samaddar
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - Ken K Qian
- Eli Lilly and Company, Indianapolis, Indiana 46225, United States
| | - Yun Liu
- Department of Chemical & Biomolecular Engineering, Center for Neutron Science, University of Delaware, Delaware 19716, United States
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Norman J Wagner
- Department of Chemical & Biomolecular Engineering, Center for Neutron Science, University of Delaware, Delaware 19716, United States
| |
Collapse
|
7
|
Jin M, Wu K, Wang M, Zhang Y, Yang C, Li Z. High-Resolution, Multiplex Antibody Patterning using Micropillar-Focused Droplet Printing, and Microcontact Printing. Adv Biol (Weinh) 2023; 7:e2300111. [PMID: 37178384 DOI: 10.1002/adbi.202300111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Antibody arrays have great implications in many biomedical settings. However, commonly used patterning methods have difficulties in generating antibody arrays with both high resolution and multiplexity, limiting their applications. Here, a convenient and versatile technique for the patterning of multiple antibodies with resolution down to 20 µm is reported using micropillar-focused droplet printing and microcontact printing. Droplets of antibody solutions are first printed and stably confined on the micropillars of a stamp, and then the antibodies absorbed on the micropillars are contact-printed to the target substrate, generating antibody patterns faithfully replicating the micropillar array. The effect of different parameters on the patterning results is investigated, including hydrophobicity of the stamps, override time of the droplet printing, incubation time, and the diameters of the capillary tips and micropillars. To demonstrate the utility of the method, multiplex arrays of anti-EpCAM and anti-CD68 antibodies is generated to capture breast cancer cells and macrophages, respectively, on the same substrate, and successful capturing of individual cell types and enrichment among the cells are achieved. It is envision that this method would serve as a versatile and useful protein patterning tool for biomedical applications.
Collapse
Affiliation(s)
- Meichi Jin
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Kai Wu
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Mengzhen Wang
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
- School of Dentistry, Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Yang Zhang
- School of Dentistry, Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Chengbin Yang
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Zida Li
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
8
|
Han F, Shen Q, Zheng W, Zuo J, Zhu X, Li J, Peng C, Li B, Chen Y. The Conformational Changes of Bovine Serum Albumin at the Air/Water Interface: HDX-MS and Interfacial Rheology Analysis. Foods 2023; 12:foods12081601. [PMID: 37107396 PMCID: PMC10137346 DOI: 10.3390/foods12081601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The characterization and dynamics of protein structures upon adsorption at the air/water interface are important for understanding the mechanism of the foamability of proteins. Hydrogen-deuterium exchange, coupled with mass spectrometry (HDX-MS), is an advantageous technique for providing conformational information for proteins. In this work, an air/water interface, HDX-MS, for the adsorbed proteins at the interface was developed. The model protein bovine serum albumin (BSA) was deuterium-labeled at the air/water interface in situ for different predetermined times (10 min and 4 h), and then the resulting mass shifts were analyzed by MS. The results indicated that peptides 54-63, 227-236, and 355-366 of BSA might be involved in the adsorption to the air/water interface. Moreover, the residues L55, H63, R232, A233, L234, K235, A236, R359, and V366 of these peptides might interact with the air/water interface through hydrophobic and electrostatic interactions. Meanwhile, the results showed that conformational changes of peptides 54-63, 227-236, and 355-366 could lead to structural changes in their surrounding peptides, 204-208 and 349-354, which could cause the reduction of the content of helical structures in the rearrangement process of interfacial proteins. Therefore, our air/water interface HDX-MS method could provide new and meaningful insights into the spatial conformational changes of proteins at the air/water interface, which could help us to further understand the mechanism of protein foaming properties.
Collapse
Affiliation(s)
- Fei Han
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Shen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingnan Zuo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyu Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingwen Li
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yijie Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| |
Collapse
|
9
|
Kopp MRG, Grigolato F, Zürcher D, Das TK, Chou D, Wuchner K, Arosio P. Surface-Induced Protein Aggregation and Particle Formation in Biologics: Current Understanding of Mechanisms, Detection and Mitigation Strategies. J Pharm Sci 2023; 112:377-385. [PMID: 36223809 DOI: 10.1016/j.xphs.2022.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 01/12/2023]
Abstract
Protein stability against aggregation is a major quality concern for the production of safe and effective biopharmaceuticals. Amongst the different drivers of protein aggregation, increasing evidence indicates that interactions between proteins and interfaces represent a major risk factor for the formation of protein aggregates in aqueous solutions. Potentially harmful surfaces relevant to biologics manufacturing and storage include air-water and silicone oil-water interfaces as well as materials from different processing units, storage containers, and delivery devices. The impact of some of these surfaces, for instance originating from impurities, can be difficult to predict and control. Moreover, aggregate formation may additionally be complicated by the simultaneous presence of interfacial, hydrodynamic and mechanical stresses, whose contributions may be difficult to deconvolute. As a consequence, it remains difficult to identify the key chemical and physical determinants and define appropriate analytical methods to monitor and predict protein instability at these interfaces. In this review, we first discuss the main mechanisms of surface-induced protein aggregation. We then review the types of contact materials identified as potentially harmful or detected as potential triggers of proteinaceous particle formation in formulations and discuss proposed mitigation strategies. Finally, we present current methods to probe surface-induced instabilities, which represent a starting point towards assays that can be implemented in early-stage screening and formulation development of biologics.
Collapse
Affiliation(s)
- Marie R G Kopp
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Fulvio Grigolato
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Dominik Zürcher
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | | | | | | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Sarker M, Watts S, Salentinig S, Lim S. Protein Cage-Stabilized Emulsions: Formulation and Characterization. Methods Mol Biol 2023; 2671:219-239. [PMID: 37308648 DOI: 10.1007/978-1-0716-3222-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The formulation of Pickering emulsions using protein cages is gaining interest for applications in molecular delivery. Despite the growing interest, methods to investigate the at the liquid-liquid interface are limited. This chapter describes standard methods to formulate and protocols to characterize protein cage-stabilized emulsions. The characterization methods are dynamic light scattering (DLS), intrinsic fluorescence spectroscopy (TF), circular dichroism (CD), and small angle X-ray scattering (SAXS). Combining these methods allows understanding of the protein cage nanostructure at the oil/water interface.
Collapse
Affiliation(s)
- Mridul Sarker
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Samuel Watts
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland.
| | - Sierin Lim
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
11
|
Separation of phosphorothioate oligonucleotide impurities by WAX HPLC under high organic content elution conditions. Anal Biochem 2022; 659:114956. [PMID: 36270331 DOI: 10.1016/j.ab.2022.114956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 12/14/2022]
Abstract
The separation of impurities in phosphorothioate diester (PS) oligonucleotides is complicated by (1) the presence of a very large number of diastereoisomers, e.g., 219 for a 20-mer oligonucleotide, (2) peak broadening due to the hydrophobic character of the sulfur atom, and (3) the chemical similarity of the impurities to the parent oligonucleotide and each other. Further difficulties arise due to the chemical nature of oligonucleotides, which display a complex mixture of ionic, hydrophobic, H-bonding, and other functionalities. To minimize hydrophobic interactions and peak broadening due to the PS modification, we have developed a novel method that combines a weak anion exchange (WAX) column with a mobile phase elution system designed to maximize separation by a single ionic/electrostatic interaction. We found that although chaotropes are helpful, the most significant beneficial effect of the hydrophilic WAX column is that high-organic, low-salt mobile phase is required for product elution. Separations are also benefitted by pH gradient effects on stationary phase electrostatic potential and analyte ionization. An extraordinary degree of separation is achieved by the new WAX method in comparison to SAX (strong anion exchange) chromatography. For the first time, the extent of deamination of PS oligonucleotides is directly determined by a chromatography-only method. The approach, representative results, and the mechanisms of separation are discussed.
Collapse
|
12
|
Bejarano JVP, Fajardo-Rojas F, Alvarez O, Burgos JC, Reyes LH, Pradilla D. Novel Biosurfactants: Rationally Designed Surface-Active Peptides and in silico Evaluation at the Decane-Water Interface. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Hashimoto K, Morisawa Y, Tortora M, Rossi B, Ozaki Y, Sato H. Attenuated Total Reflection Far-Ultraviolet (ATR-FUV) Spectroscopy is a Sensitive Tool for Investigation of Protein Adsorption. APPLIED SPECTROSCOPY 2022; 76:793-800. [PMID: 35081773 DOI: 10.1177/00037028211070835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Attenuated total reflection far-ultraviolet (ATR-FUV) spectra in the 145-250 nm region were studied for four kinds of proteins (two α-helix-rich proteins: bovine serum albumin (BSA) and lysozyme and two β-sheet rich proteins: concanavalin A and γ-globulin) in different solutions (pure water and phosphate buffered saline, or PBS) with different concentrations. All the spectra show a band at 191 nm due to the π-π* transition of amide bonds of the proteins. The wavelength of the band does not change with their second structures, suggesting that the corresponding electronic transition mode is localized and polarized in the direction that is not affected by the difference in the peptide folding. The intensity of the 191 nm band differs with the concentration of salt in the solution, suggesting that the band intensity reflects the adsorption density of a protein on the internal reflection element (IRE) made of a sapphire glass prism. According to the intensity changes of the band at 191 nm, it is revealed that the properties in adsorption are different from one protein to another. It is assumed that there are two types of forces on the protein adsorption: one is that among the molecules and the other is that between a molecule and a substrate. The origin of force includes localized electrostatic polarity and affinity to water. The ions in the solvent give a marked effect on these forces, resulting in the difference in the response to adsorption density against the salt concentration in the solvent.
Collapse
Affiliation(s)
- Kosuke Hashimoto
- School of Biological and Environmental Sciences, 98311Kwansei Gakuin University, Hyogo, Japan
| | - Yusuke Morisawa
- School of Science and Engineering, Kindai University, Osaka, Japan
| | - Mariagrazia Tortora
- Area Science Park, Trieste, Italy
- Elettra-Sincrotrone Trieste, Trieste, Italy
| | | | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, 98311Kwansei Gakuin University, Hyogo, Japan
- Toyota Physical and Chemical Research Institute, Aichi, Japan
| | - Hidetoshi Sato
- School of Biological and Environmental Sciences, 98311Kwansei Gakuin University, Hyogo, Japan
| |
Collapse
|
14
|
Gamage CLD, Weis DD, Walters BT. Identification of Agitation-induced Unfolding Events Causing Aggregation of Monoclonal Antibodies Using Hydrogen Exchange-Mass Spectrometry. J Pharm Sci 2022; 111:2210-2216. [DOI: 10.1016/j.xphs.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
|
15
|
Ma GJ, Yoon BK, Sut TN, Yoo KY, Lee SH, Jeon W, Jackman JA, Ariga K, Cho N. Lipid coating technology: A potential solution to address the problem of sticky containers and vanishing drugs. VIEW 2022. [DOI: 10.1002/viw.20200078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Gamaliel Junren Ma
- School of Materials Science and Engineering Nanyang Technological University Nanyang Singapore
| | - Bo Kyeong Yoon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University Suwon Republic of Korea
| | - Tun Naw Sut
- School of Materials Science and Engineering Nanyang Technological University Nanyang Singapore
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University Suwon Republic of Korea
| | - Ki Yeol Yoo
- LUCA Health and LUCA AICell, Inc. Anyang Republic of Korea
| | - Seung Hwa Lee
- LUCA Health and LUCA AICell, Inc. Anyang Republic of Korea
| | - Won‐Yong Jeon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University Suwon Republic of Korea
| | - Joshua A. Jackman
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University Suwon Republic of Korea
| | - Katsuhiko Ariga
- WPI‐MANA National Institute for Materials Science (NIMS) Tsukuba Ibaraki Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences The University of Tokyo Kashiwa Chiba Japan
| | - Nam‐Joon Cho
- School of Materials Science and Engineering Nanyang Technological University Nanyang Singapore
| |
Collapse
|
16
|
Chaudhary S, Kaur H, Kaur H, Rana B, Tomar D, Jena KC. Probing the Bovine Hemoglobin Adsorption Process and its Influence on Interfacial Water Structure at the Air-Water Interface. APPLIED SPECTROSCOPY 2021; 75:1497-1509. [PMID: 34346774 DOI: 10.1177/00037028211035157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
*These authors contributed equally to this work.The molecular-level insight of protein adsorption and its kinetics at interfaces is crucial because of its multifold role in diverse fundamental biological processes and applications. In the present study, the sum frequency generation (SFG) vibrational spectroscopy has been employed to demonstrate the adsorption process of bovine hemoglobin (BHb) protein molecules at the air-water interface at interfacial isoelectric point of the protein. It has been observed that surface coverage of BHb molecules significantly influences the arrangement of the protein molecules at the interface. The time-dependent SFG studies at two different frequencies in the fingerprint region elucidate the kinetics of protein denaturation process and its influence on the hydrogen-bonding network of interfacial water molecules at the air-water interface. The initial growth kinetics suggests the synchronized behavior of protein adsorption process with the structural changes in the interfacial water molecules. Interestingly, both the events carry similar characteristic time constants. However, the conformational changes in the protein structure due to the denaturation process stay for a long time, whereas the changes in water structure reconcile quickly. It is revealed that the protein denaturation process is followed by the advent of strongly hydrogen-bonded water molecules at the interface. In addition, we have also carried out the surface tension kinetics measurements to complement the findings of our SFG spectroscopic results.
Collapse
Affiliation(s)
- Shilpi Chaudhary
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, India
- Department of Applied Sciences, Punjab Engineering College (Deemed to be University), Chandigarh, India
| | - Harsharan Kaur
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Harpreet Kaur
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, India
| | - Bhawna Rana
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, India
| | - Deepak Tomar
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, India
| | - Kailash C Jena
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, India
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| |
Collapse
|
17
|
Pasquier C, Pezennec S, Bouchoux A, Cabane B, Lechevalier V, Le Floch-Fouéré C, Paboeuf G, Pasco M, Dollet B, Lee LT, Beaufils S. Protein Transport upon Advection at the Air/Water Interface: When Charge Matters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12278-12289. [PMID: 34636247 DOI: 10.1021/acs.langmuir.1c01591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The formation of dense protein interfacial layers at a free air-water interface is known to result from both diffusion and advection. Furthermore, protein interactions in concentrated phases are strongly dependent on their overall positive or negative net charge, which is controlled by the solution pH. As a consequence, an interesting question is whether the presence of an advection flow of water toward the interface during protein adsorption produces different kinetics and interfacial structure of the adsorbed layer, depending on the net charge of the involved proteins and, possibly, on the sign of this charge. Here we test a combination of the following parameters using ovalbumin and lysozyme as model proteins: positive or negative net charge and the presence or absence of advection flow. The formation and the organization of the interfacial layers are studied by neutron reflectivity and null-ellipsometry measurements. We show that the combined effect of a positive charge of lysozyme and ovalbumin and the presence of advection flow does induce the formation of interfacial multilayers. Conversely, negatively charged ovalbumin forms monolayers, whether advection flow is present or not. We show that an advection/diffusion model cannot correctly describe the adsorption kinetics of multilayers, even in the hypothesis of a concentration-dependent diffusion coefficient as in colloidal filtration, for instance. Still, it is clear that advection is a necessary condition for making multilayers through a mechanism that remains to be determined, which paves the way for future research.
Collapse
Affiliation(s)
- Coralie Pasquier
- INRAE, Institut Agro, STLO, F-35042 Rennes, France
- IPR Institute of Physics, UMR UR1 CNRS 6251, Rennes, 1 University, France
| | | | - Antoine Bouchoux
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | | | | | | | - Gilles Paboeuf
- IPR Institute of Physics, UMR UR1 CNRS 6251, Rennes, 1 University, France
- Université Rennes 1, CNRS, ScanMAT - UMS 2001, F-35042 Rennes, France
| | | | - Benjamin Dollet
- Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Lay-Theng Lee
- Laboratoire Léon Brillouin CEA - Saclay, Université Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Sylvie Beaufils
- IPR Institute of Physics, UMR UR1 CNRS 6251, Rennes, 1 University, France
- Université Rennes 1, CNRS, ScanMAT - UMS 2001, F-35042 Rennes, France
| |
Collapse
|
18
|
Kanthe A, Ilott A, Krause M, Zheng S, Li J, Bu W, Bera MK, Lin B, Maldarelli C, Tu RS. No ordinary proteins: Adsorption and molecular orientation of monoclonal antibodies. SCIENCE ADVANCES 2021; 7:eabg2873. [PMID: 34452912 PMCID: PMC8397265 DOI: 10.1126/sciadv.abg2873] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/07/2021] [Indexed: 06/12/2023]
Abstract
The interaction of monoclonal antibodies (mAbs) with air/water interfaces plays a crucial role in their overall stability in solution. We aim to understand this behavior using pendant bubble measurements to track the dynamic tension reduction and x-ray reflectivity to obtain the electron density profiles (EDPs) at the surface. Native immunoglobulin G mAb is a rigid molecule with a flat, "Y" shape, and simulated EDPs are obtained by rotating a homology construct at the surface. Comparing simulations with experimental EDPs, we obtain surface orientation probability maps showing mAbs transition from flat-on Y-shape configurations to side-on or end-on configurations with increasing concentration. The modeling also shows the presence of β sheets at the surface. Overall, the experiments and the homology modeling elucidate the orientational phase space during different stages of adsorption of mAbs at the air/water interface. These finding will help define new strategies for the manufacture and storage of antibody-based therapeutics.
Collapse
Affiliation(s)
- Ankit Kanthe
- Department of Chemical Engineering, The City College of New York, New York, NY 10031, USA
| | - Andrew Ilott
- Drug Product Development, Bristol Myers Squibb, New Brunswick, NJ 08901, USA
| | - Mary Krause
- Drug Product Development, Bristol Myers Squibb, New Brunswick, NJ 08901, USA
| | - Songyan Zheng
- Drug Product Development, Bristol Myers Squibb, New Brunswick, NJ 08901, USA
| | - Jinjiang Li
- Pharmaceutical Development, Wolfe Laboratories, Watertown, MA, 01801, USA
| | - Wei Bu
- NSF's ChemMatCARS, Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 606371, USA
| | - Mrinal K Bera
- NSF's ChemMatCARS, Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 606371, USA
| | - Binhua Lin
- NSF's ChemMatCARS, Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 606371, USA
| | - Charles Maldarelli
- Department of Chemical Engineering, The City College of New York, New York, NY 10031, USA.
- Levich Institute, The City College of New York, New York, NY 10031, USA
| | - Raymond S Tu
- Department of Chemical Engineering, The City College of New York, New York, NY 10031, USA.
| |
Collapse
|
19
|
Lautenbach V, Hosseinpour S, Peukert W. Isoelectric Point of Proteins at Hydrophobic Interfaces. Front Chem 2021; 9:712978. [PMID: 34395381 PMCID: PMC8360839 DOI: 10.3389/fchem.2021.712978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/19/2021] [Indexed: 12/02/2022] Open
Abstract
Structural and colloidal stability of proteins at different surfaces and interfaces is of great importance in many fields including medical, pharmaceutical, or material science. Due to their flexibility, proteins tend to respond to their environmental conditions and can undergo structural and conformational changes. For instance, alterations in physiological factors such as temperature, ions concentration, or pH as well as the adsorption to an interface can initiate protein aggregation. Therefore, at different surfaces and interfaces the characterization of the structural and colloidal stability of proteins, which is mainly influenced by their electrostatic and hydrophobic interactions, is of fundamental importance. In this study, we utilized sum frequency generation (SFG) spectroscopy to assess the role of solution pH on the polarity and magnitude of the electric field within the hydration shell of selected model proteins adsorbed to a hydrophobic surface. We used polystyrene (PS) as a model hydrophobic surface and determined the isoelectric point (IEP) of four structurally different model proteins. Comparing the measured IEP of proteins at the PS/solution or air/solution interface with that determined in the bulk solution via zeta potential measurement, we found significant similarities between the IEP of surface adsorbed proteins and those in the bulk aqueous phase. The pH dependence behavior of proteins was correlated to their amino acid composition and degree of hydrophobicity.
Collapse
Affiliation(s)
- Vanessa Lautenbach
- Institute of Particle Technology (LFG), Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Saman Hosseinpour
- Institute of Particle Technology (LFG), Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Wolfgang Peukert
- Institute of Particle Technology (LFG), Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
20
|
Yu M, Le Floch-Fouéré C, Pauchard L, Boissel F, Fu N, Chen XD, Saint-Jalmes A, Jeantet R, Lanotte L. Skin layer stratification in drying droplets of dairy colloids. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Yoon BK, Ma GJ, Park H, Ferhan AR, Cho NJ, Jackman JA. Solvent-induced conformational tuning of lysozyme protein adlayers on silica surfaces: A QCM-D and LSPR study. Int J Biol Macromol 2021; 182:1906-1914. [PMID: 34022315 DOI: 10.1016/j.ijbiomac.2021.05.113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 10/24/2022]
Abstract
There is broad interest in functionalizing solid surfaces with lysozyme, which is a widely studied antimicrobial protein. To date, most efforts have focused on developing more effective immobilization schemes to promote lysozyme attachment in fully aqueous conditions, while there remains an outstanding need to understand how tuning the solution-phase conformational stability of lysozyme proteins can modulate adsorption behavior and resulting adlayer properties. Inspired by the unique conformational behavior of lysozyme proteins in water-ethanol mixtures, we conducted quartz crystal microbalance-dissipation (QCM-D) and localized surface plasmon resonance (LSPR) measurements to systematically investigate the adsorption behavior of lysozyme proteins onto silica surfaces across a wide range of water-ethanol mixtures. Our findings revealed that lysozyme adsorption behavior strongly depended on the ethanol fraction in a non-monotonic fashion and this trend could be rationalized by taking into account how competing effects of water and ethanol solvation influence solution-phase protein size and conformational stability. Integrated analysis of the QCM-D and LSPR measurement trends enabled quantitative determination of the solvent mass within lysozyme adlayers, which tended to decrease at higher ethanol fractions and supported that the hydrodynamic properties of lysozyme adlayers are mainly influenced by the degree of protein conformational flexibility as opposed to solvation effects alone.
Collapse
Affiliation(s)
- Bo Kyeong Yoon
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gamaliel Junren Ma
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Hyeonjin Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Joshua A Jackman
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
22
|
Hydrophobicity, amphilicity, and flexibility: Relation between molecular protein properties and the macroscopic effects of surface activity. J Biotechnol 2021; 334:11-25. [PMID: 34015375 DOI: 10.1016/j.jbiotec.2021.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/16/2021] [Accepted: 05/05/2021] [Indexed: 11/24/2022]
Abstract
Their surface activity enables proteins to form and stabilize foam, which can be used for in situ product separation or foam fractionation. Thus, it would be highly desirable to predict the surface activity of proteins based on their molecular properties like hydrophobicity, amphilicity, or structure on primary, secondary, and tertiary level. Ionic strength and pH were adjusted to gain maximum surface activity. The surface activity decreased in the order α lactalbumin > β‑lactoglobulin > trypsinogen > papain. For the theoretical analysis, the database was extended by including 2 hydrophobins into the investigation, since they are known to exhibit an outstanding surface activity. No relation to the macroscopic behavior was found considering the hydrophobicity. I.e., the non-hydrophobins did not differ significantly from each other, and from the hydrophobins, one was significantly hydrophobic, and the other was significantly hydrophilic. Also, no relations were found considering the amphilicity of the secondary structure elements. However, taking into account the tertiary protein structure, it was found that for most of the proteins investigated, the presence of non-buried amphiphilic secondary structure elements in combination with a certain amount of flexibility correlates with the surface activity.
Collapse
|
23
|
Ab initio metadynamics calculations reveal complex interfacial effects in acetic acid deprotonation dynamics. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115624] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
24
|
Barberi J, Spriano S. Titanium and Protein Adsorption: An Overview of Mechanisms and Effects of Surface Features. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1590. [PMID: 33805137 PMCID: PMC8037091 DOI: 10.3390/ma14071590] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Titanium and its alloys, specially Ti6Al4V, are among the most employed materials in orthopedic and dental implants. Cells response and osseointegration of implant devices are strongly dependent on the body-biomaterial interface zone. This interface is mainly defined by proteins: They adsorb immediately after implantation from blood and biological fluids, forming a layer on implant surfaces. Therefore, it is of utmost importance to understand which features of biomaterials surfaces influence formation of the protein layer and how to guide it. In this paper, relevant literature of the last 15 years about protein adsorption on titanium-based materials is reviewed. How the surface characteristics affect protein adsorption is investigated, aiming to provide an as comprehensive a picture as possible of adsorption mechanisms and type of chemical bonding with the surface, as well as of the characterization techniques effectively applied to model and real implant surfaces. Surface free energy, charge, microroughness, and hydroxylation degree have been found to be the main surface parameters to affect the amount of adsorbed proteins. On the other hand, the conformation of adsorbed proteins is mainly dictated by the protein structure, surface topography at the nano-scale, and exposed functional groups. Protein adsorption on titanium surfaces still needs further clarification, in particular concerning adsorption from complex protein solutions. In addition, characterization techniques to investigate and compare the different aspects of protein adsorption on different surfaces (in terms of roughness and chemistry) shall be developed.
Collapse
Affiliation(s)
- Jacopo Barberi
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy;
| | | |
Collapse
|
25
|
Krycki MM, Lin SY, Loglio G, Michailov AV, Miller R, Noskov BA. Impact of denaturing agents on surface properties of myoglobin solutions. Colloids Surf B Biointerfaces 2021; 202:111657. [PMID: 33684687 DOI: 10.1016/j.colsurfb.2021.111657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 01/05/2023]
Abstract
The addition of denaturants strongly influences the surface properties of aqueous myoglobin solutions. The effect differs from the results for mixed solutions of the denaturants and other globular proteins, for example, bovine serum albumin (BSA), lysozyme and β-lactoglobulin (BLG), although the surface properties of the solutions of the pure proteins are similar. The kinetic dependencies of the dynamic surface elasticity of myoglobin solutions with guanidine hydrochloride (GuHCl) reveal at least two adsorption steps at denaturant concentrations higher than 1 M: a very fast increase of the dynamic surface elasticity to approximately 30 mN/m at the beginning of adsorption, and a slower growth to abnormally high values of 250-300 mN/m. At the same time, the surface elasticity of BSA/GuHCl, BLG/GuHCl and lysozyme/GuHCl solutions is a non-monotonic function of the surface age, and does not exceed 50 mN/m close to equilibrium. The high surface elasticity of myoglobin/GuHCl solutions may be associated with protein aggregation in the surface layer. The formation of aggregates is confirmed by ellipsometry and Brewster angle microscopy. The addition of ionic surfactants to protein solutions leads to the formation of myoglobin/surfactant complexes, and the kinetic dependencies of the dynamic surface elasticity display local maxima indicating multistep adsorption kinetics, unlike the corresponding results for solutions of other globular proteins mixed with ionic surfactants. Ellipsometry and infrared reflection-absorption spectroscopy allow tracing the adsorption of the complexes and their displacement from the interface at high surfactant concentrations.
Collapse
Affiliation(s)
- Michael M Krycki
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. 26, St.-Petersburg, 198504, Russia; University of Opole, Opole, Poland
| | - Shi-Yow Lin
- National Taiwan University of Science and Technology, Chemical Engineering Department, Taipei, Taiwan
| | - Giuseppe Loglio
- Institute of Condensed Matter Chemistry and Technologies for Energy, Genoa, Italy
| | - Alexander V Michailov
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. 26, St.-Petersburg, 198504, Russia
| | | | - Boris A Noskov
- Department of Colloid Chemistry, St. Petersburg State University, Universitetsky pr. 26, St.-Petersburg, 198504, Russia.
| |
Collapse
|
26
|
Guckeisen T, Hosseinpour S, Peukert W. Effect of pH and urea on the proteins secondary structure at the water/air interface and in solution. J Colloid Interface Sci 2021; 590:38-49. [PMID: 33524719 DOI: 10.1016/j.jcis.2021.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 01/09/2023]
Abstract
HYPOTHESIS The secondary structure of proteins affects their functionality and performance in physiological environments or industrial applications. Change of the solution pH or the presence of protein denaturants are the main chemical means that can alter the secondary structure of proteins or lead to protein denaturation. Since proteins in the bulk solution and those residing at the solution/air interface experience different local environments, their response to chemical denaturation can be different. EXPERIMENTS We utilize circular dichroism and chiral/achiral sum frequency generation spectroscopy to study the secondary structure of selected proteins as a function of the solution pH or in the presence of 8 M urea in the bulk solution and at the solution/air interface, respectively. FINDINGS The liquid/air interface can enhance or decrease protein conformation stability. The change in the secondary structure of the surface adsorbed proteins in alkaline solutions occurs at pH values lower than those denaturing the studied proteins in the bulk solution. In contrast, while 8 M urea completely denatures the studied proteins in the bulk solution, the liquid/air interface prevents the urea-induced denaturation of the surface adsorbed proteins by limiting the access of urea to the hydrophobic side chains of proteins protruding to air.
Collapse
Affiliation(s)
- Tobias Guckeisen
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität-Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany.
| | - Saman Hosseinpour
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität-Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany.
| | - Wolfgang Peukert
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität-Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany.
| |
Collapse
|
27
|
Ishihara K, Suzuki K, Inoue Y, Fukazawa K. Effects of molecular architecture of photoreactive phospholipid polymer on adsorption and reaction on substrate surface under aqueous condition. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:419-437. [PMID: 33075239 DOI: 10.1080/09205063.2020.1839340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Water-soluble photoreactive polymers with both phosphorylcholine and benzophenone groups were synthesized for the reaction between the polymers and the substrate in aqueous medium. To control the polymer architecture, the living radical polymerization method was applied to the copolymerization of 2-methacryloyloxyethyl phosphorylcholine and benzophenone methacrylates. These polymers possess various architectures, such as linear polymers, polymers with hydrophobic terminals, and 4-armed star-like polymers, that could promote their adsorption on the substrate surfaces. Additionally, two types of benzophenone groups were examined. Due to the bulky phosphorylcholine group, tetra(ethylene oxide) group as a spacer between polymer main chain and benzophenone group was considered. These polymers could adsorb on the surface in an aqueous medium, followed by reaction on the surface via photoirradiation depending on the chemical structure of the benzophenone group. The thickness of the polymer layer depended on the polymer architecture, i.e. a polymer with a hydrophobic terminal could form a thick layer. After modification, the contact angle by air in the aqueous medium decreased, compared to that on the base substrate. This was due to the hydrophilic nature based on the phosphorylcholine groups at the surface. The amount of proteins adsorbed on the surface also decreased because of the surface modification. These findings indicated that these water-soluble photoreactive polymers could be applied for the safer and effective surface modification of substrates via conventional photoirradiation without using an organic solvent.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan.,Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kohei Suzuki
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yuuki Inoue
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Ma GJ, Ferhan AR, Jackman JA, Cho NJ. Elucidating How Different Amphipathic Stabilizers Affect BSA Protein Conformational Properties and Adsorption Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10606-10614. [PMID: 32787011 DOI: 10.1021/acs.langmuir.0c02048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Natural proteins such as bovine serum albumin (BSA) are readily extracted from biological fluids and widely used in various applications such as drug delivery and surface coatings. It is standard practice to dope BSA proteins with an amphipathic stabilizer, most commonly fatty acids, during purification steps to maintain BSA conformational properties. There have been extensive studies investigating how fatty acids and related amphiphiles affect solution-phase BSA conformational properties, while it is far less understood how amphipathic stabilizers might influence noncovalent BSA adsorption onto solid supports, which is practically relevant to form surface coatings. Herein, we systematically investigated the binding interactions between BSA proteins and different molar ratios of caprylic acid (CA), monocaprylin (MC), and methyl caprylate (ME) amphiphiles-all of which have 8-carbon-long, saturated hydrocarbon chains with distinct headgroups-and resulting effects on BSA adsorption behavior on silica surfaces. Our findings revealed that anionic CA had the greatest binding affinity to BSA, which translated into greater solution-phase conformational stability and reduced adsorption-related conformational changes along with relatively low packing densities in fabricated BSA adlayers. On the other hand, nonionic MC had moderate binding affinity to BSA and could stabilize BSA conformational properties in the solution and adsorbed states while also enabling BSA adlayers to form with higher packing densities. We discuss physicochemical factors that contribute to these performance differences, and our findings demonstrate how rational selection of amphiphile type and amount can enable control over BSA adlayer properties, which could lead to improved BSA protein-based surface coatings.
Collapse
Affiliation(s)
- Gamaliel Junren Ma
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Joshua A Jackman
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| |
Collapse
|
29
|
Tan JYB, Yoon BK, Ma GJ, Sut TN, Cho NJ, Jackman JA. Unraveling How Ethanol-Induced Conformational Changes Affect BSA Protein Adsorption onto Silica Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9215-9224. [PMID: 32654494 DOI: 10.1021/acs.langmuir.0c01478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protein adsorption at solid-liquid interfaces is highly relevant to a wide range of applications such as biosensors, drug delivery, and pharmaceuticals. Understanding how protein conformation in bulk solution impacts adsorption behavior is fundamentally important and could also lead to the development of improved protein-based coatings. To date, relevant studies have been conducted in aqueous solutions, while it remains largely unknown how organic solvents and more specifically solvent-induced conformational changes might influence protein adsorption. Herein, using the quartz crystal microbalance-dissipation (QCM-D) and localized surface plasmon resonance (LSPR) techniques, we systematically investigated the real-time adsorption behavior of bovine serum albumin (BSA) protein onto silica surfaces in different water-ethanol mixtures ranging from 0 to 60% (v/v) ethanol. The results showed that there was greater protein adsorption at higher ethanol fractions in the 10-30% range, while more complex adsorption profiles were observed in the 40-60% range. The combination of QCM-D and LSPR measurements led us to further identify specific cases in water-ethanol mixtures where washing steps caused densification of the adsorbed protein layer as opposed to typical desorption of weakly adsorbed molecules in aqueous conditions. We discuss mechanistic factors that drive these overall adsorption trends by taking into account how ethanol fraction affects BSA conformation in bulk solution. Together, our findings demonstrate that BSA proteins can adsorb onto silica surfaces across a wide range of water-ethanol mixture conditions, while specific adsorption profiles depended on the ethanol fraction in a manner closely linked to solution-phase conformational properties.
Collapse
Affiliation(s)
- Jia Ying Brenda Tan
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Bo Kyeong Yoon
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gamaliel Junren Ma
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Tun Naw Sut
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Joshua A Jackman
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
30
|
Kanthe AD, Krause M, Zheng S, Ilott A, Li J, Bu W, Bera MK, Lin B, Maldarelli C, Tu RS. Armoring the Interface with Surfactants to Prevent the Adsorption of Monoclonal Antibodies. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9977-9988. [PMID: 32013386 DOI: 10.1021/acsami.9b21979] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The pharmaceutical industry uses surface-active agents (excipients) in protein drug formulations to prevent the aggregation, denaturation, and unwanted immunological response of therapeutic drugs in solution as well as at the air/water interface. However, the mechanism of adsorption, desorption, and aggregation of proteins at the interface in the presence of excipients remains poorly understood. The objective of this work is to explore the molecular-scale competitive adsorption process between surfactant-based excipients and two monoclonal antibody (mAb) proteins, mAb-1 and mAb-2. We use pendant bubble tensiometry to measure the ensemble average adsorption dynamics of mAbs with and without the excipient. The surface tension measurements allow us to quantify the rate at which the molecules "race" to the interface in single-component and mixed systems. These results define the phase space, where coadsorption of both mAbs and excipients occurs onto the air/water interface. In parallel, we use X-ray reflectivity (XR) measurements to understand the molecular-scale dynamics of competitive adsorption, revealing the surface-adsorbed amounts of the antibody and excipient. XR has revealed that at a sufficiently high surface concentration of the excipient, mAb adsorption to the surface and subsurface domains was inhibited. In addition, despite the fact that both mAbs adsorb via a similar mechanistic pathway and with similar dynamics, a key finding is that the competition for the interface directly correlates with the surface activity of the two mAbs, resulting in a fivefold difference in the concentration of the excipient needed to displace the antibody.
Collapse
Affiliation(s)
- Ankit D Kanthe
- Department of Chemical Engineering , The City College of New York , New York , New York 10031 United States
| | - Mary Krause
- Drug Product Science and Technology , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 United States
| | - Songyan Zheng
- Drug Product Science and Technology , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 United States
| | - Andrew Ilott
- Drug Product Science and Technology , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 United States
| | - Jinjiang Li
- Drug Product Science and Technology , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 United States
| | - Wei Bu
- ChemMatCARS, Center for Advanced Radiation Sources , University of Chicago , Chicago , Illinois 60637 United States
| | - Mrinal K Bera
- ChemMatCARS, Center for Advanced Radiation Sources , University of Chicago , Chicago , Illinois 60637 United States
| | - Binhua Lin
- ChemMatCARS, Center for Advanced Radiation Sources , University of Chicago , Chicago , Illinois 60637 United States
| | - Charles Maldarelli
- Department of Chemical Engineering , The City College of New York , New York , New York 10031 United States
- Levich Institute , The City College of New York , New York , New York 10031 United States
| | - Raymond S Tu
- Department of Chemical Engineering , The City College of New York , New York , New York 10031 United States
| |
Collapse
|
31
|
Li Y, Shrestha M, Luo M, Sit I, Song M, Grassian VH, Xiong W. Salting Up of Proteins at the Air/Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13815-13820. [PMID: 31584824 DOI: 10.1021/acs.langmuir.9b01901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vibrational sum frequency generation (VSFG) spectroscopy and surface pressure measurements are used to investigate the adsorption of a globular protein, bovine serum albumin (BSA), at the air/water interface with and without the presence of salts. We find at low (2 to 5 ppm) protein concentrations, which is relevant to environmental conditions, both VSFG and surface pressure measurements of BSA behave drastically different from at higher concentrations. Instead of emerging to the surface immediately, as observed at 1000 ppm, protein adsorption kinetics is on the order of tens of minutes at lower concentrations. Most importantly, salts strongly enhance the presence of BSA at the interface. This "salting up" effect differs from the well-known "salting out" effect as it occurs at protein concentrations well-below where "salting out" occurs. The dependence on salt concentration suggests this effect relates to a large extent electrostatic interactions and volume exclusion. Additionally, results from other proteins and the pH dependence of the kinetics indicate that salting up depends on the flexibility of proteins. This initial report demonstrates "salting up" as a new type of salt-driven interfacial phenomenon, which is worthy of continued investigation given the importance of salts in biological and environmental aqueous systems.
Collapse
|
32
|
Cheung DL. The air-water interface stabilizes α-helical conformations of the insulin B-chain. J Chem Phys 2019. [DOI: 10.1063/1.5100253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- David L. Cheung
- School of Chemistry, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
33
|
Abstract
Dextran aldehyde (dexOx), resulting from the periodate oxidative cleavage of 1,2-diol moiety inside dextran, is a polymer that is very useful in many areas, including as a macromolecular carrier for drug delivery and other biomedical applications. In particular, it has been widely used for chemical engineering of enzymes, with the aim of designing better biocatalysts that possess improved catalytic properties, making them more stable and/or active for different catalytic reactions. This polymer possesses a very flexible hydrophilic structure, which becomes inert after chemical reduction; therefore, dexOx comes to be highly versatile in a biocatalyst design. This paper presents an overview of the multiple applications of dexOx in applied biocatalysis, e.g., to modulate the adsorption of biomolecules on carrier surfaces in affinity chromatography and biosensors design, to serve as a spacer arm between a ligand and the support in biomacromolecule immobilization procedures or to generate artificial microenvironments around the enzyme molecules or to stabilize multimeric enzymes by intersubunit crosslinking, among many other applications.
Collapse
|
34
|
Nanev CN, Saridakis E, Govada L, Kassen SC, Solomon HV, Chayen NE. Hydrophobic Interface-Assisted Protein Crystallization: Theory and Experiment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12931-12940. [PMID: 30860355 DOI: 10.1021/acsami.8b20995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Macromolecular crystallization is crucial to a large number of scientific fields, including structural biology; drug design, formulation, and delivery; manufacture of biomaterials; and preparation of foodstuffs. The purpose of this study is to facilitate control of crystallization, by investigating hydrophobic interface-assisted protein crystallization both theoretically and experimentally. The application of hydrophobic liquids as nucleation promoters or suppressors has rarely been investigated, and provides an underused avenue to explore in protein crystallization. Theoretically, crystal nucleation is regarded as a two-step process, the first step being a local increase in protein concentration due to its adsorption on the hydrophobic surface. Subsequently, the protein is ordered in a crystal lattice. The energetic aspect of crystal nucleation on water/hydrophobic substance interfaces is approached by calculating the balance between the cohesive energy maintaining integrity of the two-dimensional crystal nucleus and the sum of destructive energies tending to tear up the crystal. This is achieved by comparing the number of bonds shared by the units forming the crystal and the number of unshared (dangling) bonds on the crystal surface pointing toward the solution. The same approach is extended to three-dimensional protein crystal nucleation at water/hydrophobic liquid interfaces. Experimentally, we studied protein crystallization over oils and other hydrophobic liquids (paraffin oil, FC-70 Fluorinert fluorinated oil, and three chlorinated hydrocarbons). Crystallizations of α-lactalbumin and lysozyme are compared, and additional information is acquired by studying α-crustacyanin, trypsin, an insulin analogue, and protein Lpg2936. Depending on the protein type, concentration, and the interface aging time, the proteins exhibit different crystallization propensities depending on the hydrophobic liquid used. Some hydrophobic liquids provoke an increase in the effective supersaturation, which translates to enhancement of crystal nucleation at their interface with the crystallization solution, leading to the formation of crystals.
Collapse
Affiliation(s)
- Christo N Nanev
- Rostislaw Kaischew Institute of Physical Chemistry , Bulgarian Academy of Sciences , Acad. G. Bonchev Str. Bl. 11 , Sofia 1113 , Bulgaria
| | - Emmanuel Saridakis
- Structural and Supramolecular Chemistry Laboratory, Institute of Nanoscience and Nanotechnology , National Centre for Scientific Research "Demokritos" , Athens 15310 , Greece
| | - Lata Govada
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine , Imperial College London , London SW7 2AZ , U.K
| | - Sean C Kassen
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine , Imperial College London , London SW7 2AZ , U.K
| | - Hodaya V Solomon
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine , Imperial College London , London SW7 2AZ , U.K
| | - Naomi E Chayen
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine , Imperial College London , London SW7 2AZ , U.K
| |
Collapse
|
35
|
Bhagia S, Wyman CE, Kumar R. Impacts of cellulase deactivation at the moving air-liquid interface on cellulose conversions at low enzyme loadings. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:96. [PMID: 31044009 PMCID: PMC6477705 DOI: 10.1186/s13068-019-1439-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/13/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND We recently confirmed that the deactivation of T. reesei cellulases at the air-liquid interface reduces microcrystalline cellulose conversion at low enzyme loadings in shaken flasks. It is one of the main causes for lowering of cellulose conversions at low enzyme loadings. However, supplementing cellulases with small quantities of surface-active additives in shaken flasks can increase cellulose conversions at low enzyme loadings. It was also shown that cellulose conversions at low enzyme loadings can be increased in unshaken flasks if the reactions are carried for a longer time. This study further explores these recent findings to better understand the impact of air-liquid interfacial phenomena on enzymatic hydrolysis of cellulose contained in Avicel, Sigmacell, α-cellulose, cotton linters, and filter paper. The impacts of solids and enzyme loadings, supplementation with nonionic surfactant Tween 20 and xylanases, and application of different types of mixing and reactor designs on cellulose hydrolysis were also evaluated. RESULTS Avicel cellulose conversions at high solid loading were more than doubled by minimizing loss of cellulases to the air-liquid interface. Maximum cellulose conversions were high for surface-active supplemented shaken flasks or unshaken flasks because of low cellulase deactivation at the air-liquid interface. The nonionic surfactant Tween 20 was unable to completely prevent cellulase deactivation in shaken flasks and only reduced cellulose conversions at unreasonably high concentrations. CONCLUSIONS High dynamic interfacial areas created through baffles in reactor vessels, low volumes in high-capacity vessels, or high shaking speeds severely limited cellulose conversions at low enzyme loadings. Precipitation of cellulases due to aggregation at the air-liquid interface caused their continuous deactivation in shaken flasks and severely limited solubilization of cellulose.
Collapse
Affiliation(s)
- Samarthya Bhagia
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, 1084 Columbia Avenue, Riverside, CA 92507 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA
| | - Charles E. Wyman
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California Riverside, 900 University Ave, Riverside, CA 92521 USA
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, 1084 Columbia Avenue, Riverside, CA 92507 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
| | - Rajeev Kumar
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California Riverside, 1084 Columbia Avenue, Riverside, CA 92507 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, PO Box 2008 MS6341, Oak Ridge, TN 37831 USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN USA
| |
Collapse
|
36
|
Lutz H, Jaeger V, Weidner T, de Groot BL. Interpretation of Interfacial Protein Spectra with Enhanced Molecular Simulation Ensembles. J Chem Theory Comput 2018; 15:698-707. [DOI: 10.1021/acs.jctc.8b00840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Helmut Lutz
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Vance Jaeger
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| | - Tobias Weidner
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Bert L. de Groot
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen 37077, Germany
| |
Collapse
|
37
|
Rasoulianboroujeni M, Kiaie N, Tabatabaei FS, Yadegari A, Fahimipour F, Khoshroo K, Tayebi L. Dual Porosity Protein-based Scaffolds with Enhanced Cell Infiltration and Proliferation. Sci Rep 2018; 8:14889. [PMID: 30291271 PMCID: PMC6173780 DOI: 10.1038/s41598-018-33245-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/20/2018] [Indexed: 11/09/2022] Open
Abstract
3D dual porosity protein-based scaffolds have been developed using the combination of foaming and freeze-drying. The suggested approach leads to the production of large, highly porous scaffolds with negligible shrinkage and deformation compared to the conventional freeze-drying method. Scanning electron microscopy, standard histological processing and mercury intrusion porosimetry confirmed the formation of a dual network in the form of big primary pores (243 ± 14 µm) embracing smaller secondary pores (42 ± 3 µm) opened onto their surface, resembling a vascular network. High interconnectivity of the pores, confirmed by micro-CT, is shown to improve diffusion kinetics and support a relatively uniform distribution of isolated human dental pulp stem cells within the scaffold compared to conventional scaffolds. Dual network scaffolds indicate more than three times as high cell proliferation capability as conventional scaffolds in 14 days.
Collapse
Affiliation(s)
- Morteza Rasoulianboroujeni
- Marquette University School of Dentistry, Milwaukee, WI, USA.
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
| | - Nasim Kiaie
- Department of Tissue Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Fahimeh Sadat Tabatabaei
- Marquette University School of Dentistry, Milwaukee, WI, USA
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Yadegari
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | | | - Kimia Khoshroo
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA.
| |
Collapse
|
38
|
Juste-Dolz A, Avella-Oliver M, Puchades R, Maquieira A. Indirect Microcontact Printing to Create Functional Patterns of Physisorbed Antibodies. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3163. [PMID: 30235856 PMCID: PMC6164925 DOI: 10.3390/s18093163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022]
Abstract
Microcontact printing (µCP) is a practical and versatile approach to create nanostructured patterns of biomolecular probes, but it involves conformational changes on the patterned bioreceptors that often lead to a loss on the biological activity of the resulting structures. Herein we introduce indirect µCP to create functional patterns of bioreceptors on solid substrates. This is a simple strategy that relies on physisorbing biomolecular probes of interest in the nanostructured gaps that result after patterning backfilling agents by standard µCP. This study presents the approach, assesses bovine serum albumin as backfilling agent for indirect µCP on different materials, reports the limitations of standard µCP on the functionality of patterned antibodies, and demonstrates the capabilities of indirect µCP to solve this issue. Bioreceptors were herein structured as diffractive gratings and used to measure biorecognition events in label-free conditions. Besides, as a preliminary approach towards sensing biomarkers, this work also reports the implementation of indirect µCP in an immunoassay to detect human immunoglobulin E.
Collapse
Affiliation(s)
- Augusto Juste-Dolz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain.
| | - Miquel Avella-Oliver
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain.
| | - Rosa Puchades
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain.
- Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Angel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022 Valencia, Spain.
- Departamento de Química, Universitat Politècnica de València, 46022 Valencia, Spain.
| |
Collapse
|
39
|
Abstract
Surfaces and interfaces are ubiquitous in nature and are involved in many biological processes. Due to this, natural organisms have evolved a number of methods to control interfacial and surface properties. Many of these methods involve the use of specialised protein biosurfactants, which due to the competing demands of high surface activity, biocompatibility, and low solution aggregation may take structures that differ from the traditional head–tail structure of small molecule surfactants. As well as their biological functions, these proteins have also attracted interest for industrial applications, in areas including food technology, surface modification, and drug delivery. To understand the biological functions and technological applications of protein biosurfactants, it is necessary to have a molecular level description of their behaviour, in particular at surfaces and interfaces, for which molecular simulation is well suited to investigate. In this review, we will give an overview of simulation studies of a number of examples of protein biosurfactants (hydrophobins, surfactin, and ranaspumin). We will also outline some of the key challenges and future directions for molecular simulation in the investigation of protein biosurfactants and how this can help guide future developments.
Collapse
|
40
|
The missing piece in the puzzle: Prediction of aggregation via the protein-protein interaction parameter A∗2. Eur J Pharm Biopharm 2018; 128:200-209. [DOI: 10.1016/j.ejpb.2018.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/01/2018] [Accepted: 04/22/2018] [Indexed: 01/15/2023]
|
41
|
Cheung DL. Adsorption and conformations of lysozyme and α-lactalbumin at a water-octane interface. J Chem Phys 2018; 147:195101. [PMID: 29166117 DOI: 10.1063/1.4994561] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
As proteins contain both hydrophobic and hydrophilic amino acids, they will readily adsorb onto interfaces between water and hydrophobic fluids such as oil. This adsorption normally causes changes in the protein structure, which can result in loss of protein function and irreversible adsorption, leading to the formation of protein interfacial films. While this can be advantageous in some applications (e.g., food technology), in most cases it limits our ability to exploit protein functionality at interfaces. To understand and control protein interfacial adsorption and function, it is necessary to understand the microscopic conformation of proteins at liquid interfaces. In this paper, molecular dynamics simulations are used to investigate the adsorption and conformation of two similar proteins, lysozyme and α-lactalbumin, at a water-octane interface. While they both adsorb onto the interface, α-lactalbumin does so in a specific orientation, mediated by two amphipathic helices, while lysozyme adsorbs in a non-specific manner. Using replica exchange simulations, both proteins are found to possess a number of distinct interfacial conformations, with compact states similar to the solution conformation being most common for both proteins. Decomposing the different contributions to the protein energy at oil-water interfaces suggests that conformational change for α-lactalbumin, unlike lysozyme, is driven by favourable protein-oil interactions. Revealing these differences between the factors that govern the conformational change at interfaces in otherwise similar proteins can give insight into the control of protein interfacial adsorption, aggregation, and function.
Collapse
Affiliation(s)
- David L Cheung
- School of Chemistry, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
42
|
Noble AJ, Dandey VP, Wei H, Brasch J, Chase J, Acharya P, Tan YZ, Zhang Z, Kim LY, Scapin G, Rapp M, Eng ET, Rice WJ, Cheng A, Negro CJ, Shapiro L, Kwong PD, Jeruzalmi D, des Georges A, Potter CS, Carragher B. Routine single particle CryoEM sample and grid characterization by tomography. eLife 2018; 7:e34257. [PMID: 29809143 PMCID: PMC5999397 DOI: 10.7554/elife.34257] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/17/2018] [Indexed: 12/11/2022] Open
Abstract
Single particle cryo-electron microscopy (cryoEM) is often performed under the assumption that particles are not adsorbed to the air-water interfaces and in thin, vitreous ice. In this study, we performed fiducial-less tomography on over 50 different cryoEM grid/sample preparations to determine the particle distribution within the ice and the overall geometry of the ice in grid holes. Surprisingly, by studying particles in holes in 3D from over 1000 tomograms, we have determined that the vast majority of particles (approximately 90%) are adsorbed to an air-water interface. The implications of this observation are wide-ranging, with potential ramifications regarding protein denaturation, conformational change, and preferred orientation. We also show that fiducial-less cryo-electron tomography on single particle grids may be used to determine ice thickness, optimal single particle collection areas and strategies, particle heterogeneity, and de novo models for template picking and single particle alignment.
Collapse
Affiliation(s)
- Alex J Noble
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - Venkata P Dandey
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - Hui Wei
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - Julia Brasch
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUnited States
| | - Jillian Chase
- Department of Chemistry and BiochemistryCity College of New YorkNew YorkUnited States
- Program in BiochemistryThe Graduate Center of the City University of New YorkNew YorkUnited States
| | - Priyamvada Acharya
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
- Vaccine Research CenterNational Institute of Allergy and Infectious Diseases, National Institutes of HealthMarylandUnited States
| | - Yong Zi Tan
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUnited States
| | - Zhening Zhang
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - Laura Y Kim
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - Giovanna Scapin
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
- Department of Structural Chemistry and Chemical BiotechnologyMerck & Co., IncNew JerseyUnited States
| | - Micah Rapp
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUnited States
| | - Edward T Eng
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - William J Rice
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - Anchi Cheng
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - Carl J Negro
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUnited States
| | - Peter D Kwong
- Vaccine Research CenterNational Institute of Allergy and Infectious Diseases, National Institutes of HealthMarylandUnited States
| | - David Jeruzalmi
- Department of Chemistry and BiochemistryCity College of New YorkNew YorkUnited States
- Program in BiochemistryThe Graduate Center of the City University of New YorkNew YorkUnited States
- Program in BiologyThe Graduate Center of the City University of New YorkNew YorkUnited States
- Program in ChemistryThe Graduate Center of the City University of New YorkNew YorkUnited States
| | - Amedee des Georges
- Department of Chemistry and BiochemistryCity College of New YorkNew YorkUnited States
- Program in BiochemistryThe Graduate Center of the City University of New YorkNew YorkUnited States
- Program in ChemistryThe Graduate Center of the City University of New YorkNew YorkUnited States
- Advanced Science Research CenterThe Graduate Center of the City University of New YorkNew YorkUnited States
| | - Clinton S Potter
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUnited States
| | - Bridget Carragher
- National Resource for Automated Molecular MicroscopySimons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUnited States
| |
Collapse
|
43
|
Campbell RA, Tummino A, Varga I, Milyaeva OY, Krycki MM, Lin SY, Laux V, Haertlein M, Forsyth VT, Noskov BA. Adsorption of Denaturated Lysozyme at the Air-Water Interface: Structure and Morphology. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5020-5029. [PMID: 29629770 DOI: 10.1021/acs.langmuir.8b00545] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The application of protein deuteration and high flux neutron reflectometry has allowed a comparison of the adsorption properties of lysozyme at the air-water interface from dilute solutions in the absence and presence of high concentrations of two strong denaturants: urea and guanidine hydrochloride (GuHCl). The surface excess and adsorption layer thickness were resolved and complemented by images of the mesoscopic lateral morphology from Brewster angle microscopy. It was revealed that the thickness of the adsorption layer in the absence of added denaturants is less than the short axial length of the lysozyme molecule, which indicates deformation of the globules at the interface. Two-dimensional elongated aggregates in the surface layer merge over time to form an extensive network at the approach to steady state. Addition of denaturants in the bulk results in an acceleration of adsorption and an increase of the adsorption layer thickness. These results are attributed to incomplete collapse of the globules in the bulk from the effects of the denaturants as a result of interactions between remote amino acid residues. Both effects may be connected to an increase of the effective total volume of macromolecules due to the changes of their tertiary structure, that is, the formation of molten globules under the influence of urea and the partial unfolding of globules under the influence of GuHCl. In the former case, the increase of globule hydrophobicity leads to cooperative aggregation in the surface layer during adsorption. Unlike in the case of solutions without denaturants, the surface aggregates are short and wormlike, their size does not change with time, and they do not merge to form an extensive network at the approach to steady state. To the best of our knowledge, these are the first observations of cooperative aggregation in lysozyme adsorption layers.
Collapse
Affiliation(s)
- Richard A Campbell
- Institut Laue-Langevin , 71 avenue des Martyrs, CS 20156 , 38042 Grenoble Cedex 9, France
| | - Andrea Tummino
- Institut Laue-Langevin , 71 avenue des Martyrs, CS 20156 , 38042 Grenoble Cedex 9, France
- Institute of Chemistry , Eötvös Lorand University , P.O. Box 32, Budapest 112 , Hungary
| | - Imre Varga
- Institute of Chemistry , Eötvös Lorand University , P.O. Box 32, Budapest 112 , Hungary
- Department of Chemistry , University J. Selyeho , P.O. Box 54, 945 01 Komárno , Slovakia
| | - Olga Yu Milyaeva
- Department of Colloid Chemistry , St. Petersburg State University , Universitetsky pr. 26 , 198504 St. Petersburg , Russia
| | - Michael M Krycki
- Department of Colloid Chemistry , St. Petersburg State University , Universitetsky pr. 26 , 198504 St. Petersburg , Russia
| | - Shi-Yow Lin
- Chemical Engineering Department , National Taiwan University of Science and Technology , 43 Keelung Road, Section 4 , Taipei 106 , Taiwan
| | - Valerie Laux
- Institut Laue-Langevin , 71 avenue des Martyrs, CS 20156 , 38042 Grenoble Cedex 9, France
| | - Michael Haertlein
- Institut Laue-Langevin , 71 avenue des Martyrs, CS 20156 , 38042 Grenoble Cedex 9, France
| | - V Trevor Forsyth
- Institut Laue-Langevin , 71 avenue des Martyrs, CS 20156 , 38042 Grenoble Cedex 9, France
- Faculty of Natural Sciences , Keele University , Staffordshire ST5 5BG , U.K
| | - Boris A Noskov
- Department of Colloid Chemistry , St. Petersburg State University , Universitetsky pr. 26 , 198504 St. Petersburg , Russia
| |
Collapse
|
44
|
Fekete N, Béland AV, Campbell K, Clark SL, Hoesli CA. Bags versus flasks: a comparison of cell culture systems for the production of dendritic cell-based immunotherapies. Transfusion 2018; 58:1800-1813. [PMID: 29672857 DOI: 10.1111/trf.14621] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/17/2018] [Accepted: 02/18/2018] [Indexed: 12/14/2022]
Abstract
In recent years, cell-based therapies targeting the immune system have emerged as promising strategies for cancer treatment. This review summarizes manufacturing challenges related to production of antigen presenting cells as a patient-tailored cancer therapy. Understanding cell-material interactions is essential because in vitro cell culture manipulations to obtain mature antigen-producing cells can significantly alter their in vivo performance. Traditional antigen-producing cell culture protocols often rely on cell adhesion to surface-treated hydrophilic polystyrene flasks. More recent commercial and investigational cancer immunotherapy products were manufactured using suspension cell culture in closed hydrophobic fluoropolymer bags. The shift to closed cell culture systems can decrease risks of contamination by individual operators, as well as facilitate scale-up and automation. Selecting closed cell culture bags over traditional open culture systems entails different handling procedures and processing controls, which can affect product quality. Changes in culture vessels also entail changes in vessel materials and geometry, which may alter the cell microenvironment and resulting cell fate decisions. Strategically designed culture systems will pave the way for the generation of more sophisticated and highly potent cell-based cancer vaccines. As an increasing number of cell-based therapies enter the clinic, the selection of appropriate cell culture vessels and materials becomes a critical consideration that can impact the therapeutic efficacy of the product, and hence clinical outcomes and patient quality of life.
Collapse
Affiliation(s)
- Natalie Fekete
- Department of Chemical Engineering, McGill University, Montreal, Canada.,Saint-Gobain Ceramics & Plastics, Inc., Northboro R&D Center, Northborough, Massachusetts
| | - Ariane V Béland
- Department of Chemical Engineering, McGill University, Montreal, Canada
| | - Katie Campbell
- Saint-Gobain Ceramics & Plastics, Inc., Northboro R&D Center, Northborough, Massachusetts
| | - Sarah L Clark
- Saint-Gobain Ceramics & Plastics, Inc., Northboro R&D Center, Northborough, Massachusetts
| | - Corinne A Hoesli
- Department of Chemical Engineering, McGill University, Montreal, Canada
| |
Collapse
|
45
|
Yano YF, Arakawa E, Voegeli W, Kamezawa C, Matsushita T. Initial Conformation of Adsorbed Proteins at an Air–Water Interface. J Phys Chem B 2018; 122:4662-4666. [DOI: 10.1021/acs.jpcb.8b01039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yohko F. Yano
- Department of Physics, Kindai University, 3-4-1 Kowakae, Higashiosaka City, Osaka 577-8502, Japan
| | - Etsuo Arakawa
- Department of Physics, Tokyo Gakugei University, 4-1-1 Nukuikita-machi, Koganei, Tokyo 184-8501, Japan
| | - Wolfgang Voegeli
- Department of Physics, Tokyo Gakugei University, 4-1-1 Nukuikita-machi, Koganei, Tokyo 184-8501, Japan
| | - Chika Kamezawa
- Department of Physics, Tokyo Gakugei University, 4-1-1 Nukuikita-machi, Koganei, Tokyo 184-8501, Japan
| | - Tadashi Matsushita
- Photon Factory, Institute of Materials Structure Science, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
46
|
Berton-Carabin CC, Sagis L, Schroën K. Formation, Structure, and Functionality of Interfacial Layers in Food Emulsions. Annu Rev Food Sci Technol 2018; 9:551-587. [DOI: 10.1146/annurev-food-030117-012405] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Leonard Sagis
- Physics and Physical Chemistry of Foods, Wageningen University, 6708 WG Wageningen, The Netherlands
| | - Karin Schroën
- Food Process Engineering Group, Wageningen University, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
47
|
Lee MCG, Sun B. Quantitation of nonspecific protein adsorption at solid–liquid interfaces for single-cell proteomics. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein nonspecific adsorption that occurred at the solid–liquid interface has been subjected to intense physical and chemical characterizations due to its crucial role in a wide range of applications, including food and pharmaceutical industries, medical implants, biosensing, and so on. Protein-adsorption caused sample loss has largely hindered the studies of single-cell proteomics; the prevention of such loss requires the understanding of protein–surface adsorption at the proteome level, in which the competitive adsorption of thousands and millions of proteins with vast dynamic range occurs. To this end, we feel the necessity to review current methodologies on their potentials to characterize — more specifically to quantify — the proteome-wide adsorption. We hope this effort can help advancing single-cell proteomics and trace proteomics.
Collapse
Affiliation(s)
| | - Bingyun Sun
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
48
|
Notorious but not understood: How liquid-air interfacial stress triggers protein aggregation. Int J Pharm 2018; 537:202-212. [DOI: 10.1016/j.ijpharm.2017.12.043] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 11/23/2022]
|
49
|
Peroxidase chemically attached on polymeric micelle and its reaction with phenolic compounds. Enzyme Microb Technol 2018; 109:43-50. [DOI: 10.1016/j.enzmictec.2017.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/18/2017] [Accepted: 09/22/2017] [Indexed: 11/20/2022]
|
50
|
Hegemann D, Hocquard N, Heuberger M. Nanoconfined water can orient and cause long-range dipolar interactions with biomolecules. Sci Rep 2017; 7:17852. [PMID: 29259309 PMCID: PMC5736754 DOI: 10.1038/s41598-017-18258-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/08/2017] [Indexed: 11/25/2022] Open
Abstract
Surface properties are generally determined by the top most surface layer also defining how molecules adsorb onto it. By exploring effects due to interactions with deeper subsurface layers, however, long-range interaction forces were found to also significantly contribute to molecular adsorption, in which hydration of the subsurface region is the key factor. Water molecules confined to a subsurface amphiphilic gradient are confirmed to cause these long-range dipolar interactions by preferential orientation, thus significantly changing the way how a protein interacts with the surface. These findings imply future exploitation of an additional factor to modulate adsorption processes.
Collapse
Affiliation(s)
- Dirk Hegemann
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Fibers, Lerchenfeldstrasse 5, 9014, St.Gallen, Switzerland.
| | - Nicolas Hocquard
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Fibers, Lerchenfeldstrasse 5, 9014, St.Gallen, Switzerland
| | - Manfred Heuberger
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Fibers, Lerchenfeldstrasse 5, 9014, St.Gallen, Switzerland.
| |
Collapse
|