1
|
Synthesis and Photophysics Characterization of Boronic Styril and Distyryl BODIPYs for Water-Based Dye-Sensitized Solar Cells. Biomimetics (Basel) 2022; 7:biomimetics7030110. [PMID: 35997430 PMCID: PMC9397057 DOI: 10.3390/biomimetics7030110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
In this study, two boronic acid BODIPYs are obtained through a microwave-assisted Knoevenagel reaction. The aim is to use them for the first time as dyes in a photosensitized solar cell (DSSC) to mimic chlorophyll photosynthesis, harvesting solar light and converting it into electricity. The microwave-assisted Knoevenagel reaction is a straightforward approach to extending the molecular conjugation of the dye and is applied for the first time to synthesize BODIPY’s boronic acid derivatives. These derivatives have proved to be very useful for covalent deposition on titania. This work studies the photo-physical and electrochemical properties. Moreover, the photovoltaic performances of these two new dyes as sensitizers for DSSC are discussed. Experimental data show that both dyes exhibit photosensitizing activities in acetonitrile and water. In particular, in all the experiments, distyryl BODIPY was more efficient than styryl BODIPY. In this study, demonstrating the use of a natural component as a water-based electrolyte for boronic BODIPY sensitizers, we open new possibilities for the development of water-based solar cells.
Collapse
|
2
|
Cadmen N, Bustamante J, Rivera R, Torres FJ, Ontaneda J. Dopamine Adsorption on Rutile TiO 2(110): Geometry, Thermodynamics, and Core-Level Shifts from First Principles. ACS OMEGA 2022; 7:4185-4193. [PMID: 35155912 PMCID: PMC8830060 DOI: 10.1021/acsomega.1c05784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The modification of the rutile TiO2(110) surface with dopamine represents the best example of the functionalization of TiO2-based nanoparticles with catecholamines, which is of great interest for sunlight harvesting and drug delivery. However, there is little information on the dopamine-TiO2(110) adsorption complex in terms of thermodynamic properties and structural parameters such as bond coordination and orientation of the terminal ethyl-amino group. Here, we report a density functional theory (DFT) investigation of dopamine adsorption on the TiO2(110) surface using the optB86b-vdW functional with a Hubbard-type correction to the Ti 3d orbitals, where U eff = 3 eV. Guided by available X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) data, our simulations identify enolate species with bidentate coordination at a submonolayer coverage, which are bonded to two neighboring 5-fold-coordinated Ti atoms at the TiO2(110) surface through both deprotonated oxygen atoms of the dopamine, i.e., in a bridging fashion. The process is highly exothermic, involving an adsorption energy of -2.90 eV. Calculated structural parameters suggest that the molecule sits approximately upright on the surface with the amino group interacting with the π-like orbitals of the aromatic ring, leading to a gauche-like configuration. The resulting NH···π hydrogen bond in this configuration can be broken by overcoming an energy barrier of 0.22 eV; in this way, the amino group rotation leads to an anti-like conformation, making this terminal group able to bind to other biomolecules. This mechanism is endothermic by 0.07 eV. Comparison of existing spectroscopic data with DFT modeling shows that our computational setup can reproduce most experimentally determined parameters such as tilt angles from NEXAFS and chemical shifts in XPS, which allows us to identify the preferred mode of adsorption of dopamine on the TiO2(110) surface.
Collapse
Affiliation(s)
- Noemi Cadmen
- Departamento
de Química, Universidad Técnica
Particular de Loja, San Cayetano
Alto, Loja 1101608, Ecuador
| | - Joana Bustamante
- Departamento
de Química, Universidad Técnica
Particular de Loja, San Cayetano
Alto, Loja 1101608, Ecuador
| | - Richard Rivera
- Departamento
de Química, Universidad Técnica
Particular de Loja, San Cayetano
Alto, Loja 1101608, Ecuador
| | - F. Javier Torres
- Grupo
de Química Computacional y Teórica (QCT-UR), Facultad
de Ciencias Naturales, Universidad del Rosario, Bogotá 111221, Colombia
- Grupo
de Química Computacional y Teórica (QCT-USFQ), Departamento
de Ingeniería Química, Universidad
San Francisco de Quito (USFQ), Quito 170901, Ecuador
| | - Jorge Ontaneda
- Departamento
de Química, Universidad Técnica
Particular de Loja, San Cayetano
Alto, Loja 1101608, Ecuador
| |
Collapse
|
3
|
Zárate Hernández LA, Camacho-Mendoza RL, González-Montiel S, Cruz-Borbolla J. The chemical reactivity and QSPR of organic compounds applied to dye-sensitized solar cells using DFT. J Mol Graph Model 2021; 104:107852. [PMID: 33556645 DOI: 10.1016/j.jmgm.2021.107852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 11/19/2022]
Abstract
The structural and electronic properties were calculated for seventy organic compounds used as dye sensitizers in solar cells, applying the B3LYP exchange-correlation energy functional with the 6-311G∗∗ basis set. Moreover, the present study proposes two new quantitative structure-property relationship (QSPR) models that enable the prediction of the power conversion efficiency (PCE) and maximum absorption wavelength (λmax) of these systems, the two QSPR models were validated using the coefficient of determination (R2) of 0.62 for both models with the leave-one-out cross-validation correlation coefficient (Q2LOO) of 0.55 and 0.57, respectively. Furthermore, applicability domain analysis was conducted in order to identify the related compounds via the extrapolation of the model.
Collapse
Affiliation(s)
- Luis A Zárate Hernández
- Área Académica de Química, Centro de Investigaciones Químicas, Universidad Autónoma Del Estado de Hidalgo, Km. 14.5 Carretera Pachuca-Tulancingo, Ciudad Del Conocimiento, C.P. 42184, Mineral de la Reforma, Hidalgo, Mexico
| | - Rosa L Camacho-Mendoza
- Área Académica de Química, Centro de Investigaciones Químicas, Universidad Autónoma Del Estado de Hidalgo, Km. 14.5 Carretera Pachuca-Tulancingo, Ciudad Del Conocimiento, C.P. 42184, Mineral de la Reforma, Hidalgo, Mexico
| | - Simplicio González-Montiel
- Área Académica de Química, Centro de Investigaciones Químicas, Universidad Autónoma Del Estado de Hidalgo, Km. 14.5 Carretera Pachuca-Tulancingo, Ciudad Del Conocimiento, C.P. 42184, Mineral de la Reforma, Hidalgo, Mexico
| | - Julián Cruz-Borbolla
- Área Académica de Química, Centro de Investigaciones Químicas, Universidad Autónoma Del Estado de Hidalgo, Km. 14.5 Carretera Pachuca-Tulancingo, Ciudad Del Conocimiento, C.P. 42184, Mineral de la Reforma, Hidalgo, Mexico.
| |
Collapse
|
4
|
Quevedo W, Ontaneda J, Large A, Seymour JM, Bennett RA, Grau-Crespo R, Held G. Adsorption of Aspartic Acid on Ni{100}: A Combined Experimental and Theoretical Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9399-9411. [PMID: 32706259 PMCID: PMC7458468 DOI: 10.1021/acs.langmuir.0c01175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Understanding the interaction of amino acids with metal surfaces is essential for the rational design of chiral modifiers able to confer enantioselectivity to metal catalysts. Here, we present an investigation of the adsorption of aspartic acid (Asp) on the Ni{100} surface, using a combination of synchrotron X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure, and density functional theory simulations. Based on the combined analysis of the experimental and simulated data, we can identify the dominant mode of adsorption as a pentadentate configuration with three O atoms at the bridge sites of the surfaces, and the remaining oxygen atom and the amino nitrogen are located on atop sites. From temperature-programmed XPS measurements, it was found that Asp starts decomposing above 400 K, which is significantly higher than typical decomposition temperatures of smaller organic molecules on Ni surfaces. Our results offer valuable insights into understanding the role of Asp as a chiral modifier of nickel catalyst surfaces in enantioselective hydrogenation reactions.
Collapse
Affiliation(s)
- Wilson Quevedo
- Diamond
Light Source Harwell Science and Innovation Campus, Didcot OX11 0QX, U.K.
| | - Jorge Ontaneda
- Departamento
de Química, Universidad Técnica
Particular de Loja, San
Cayetano Alto, Loja 1101608, Ecuador
| | - Alexander Large
- Department
of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Jake M. Seymour
- Department
of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Roger A. Bennett
- Department
of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Ricardo Grau-Crespo
- Department
of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Georg Held
- Diamond
Light Source Harwell Science and Innovation Campus, Didcot OX11 0QX, U.K.
| |
Collapse
|
5
|
Bacteriorhodopsin-sensitized preferentially oriented one-dimensional TiO2 nanorod polymorphs as efficient photoanodes for high-performance bio-sensitized solar cells. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0905-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Ramasamy S, Gopi P, Raju S, Kathavarayan S. Comparative analysis of fluorene and carbazole fused triphenylamine sensitizer donor units with new anchoring mode in dye-sensitized solar cells. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2017.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Akimov AV, Asahi R, Jinnouchi R, Prezhdo OV. What Makes the Photocatalytic CO2 Reduction on N-Doped Ta2O5 Efficient: Insights from Nonadiabatic Molecular Dynamics. J Am Chem Soc 2015; 137:11517-25. [DOI: 10.1021/jacs.5b07454] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexey V. Akimov
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Ryoji Asahi
- Toyota Central Research and Development Laboratories, Inc., 41-1 Yokomichi, Nagakute-shi, Aichi 480-1192, Japan
| | - Ryosuke Jinnouchi
- Toyota Central Research and Development Laboratories, Inc., 41-1 Yokomichi, Nagakute-shi, Aichi 480-1192, Japan
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|