1
|
Glazov A, Muratikov K. Laser Thermal Wave Diagnostics of the Thermal Resistance of Soldered and Bonded Joints in Semiconductor Structures. SENSORS (BASEL, SWITZERLAND) 2023; 23:3590. [PMID: 37050650 PMCID: PMC10098517 DOI: 10.3390/s23073590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
This paper is a review of recent applications of a laser photothermal mirage technique for sensing and measuring the thermal resistance of joint layers in modern electronic devices. A straightforward theoretical model of the interfacial thermal resistance based on the formation of a thin intermediate layer between jointed solids is described. It was experimentally shown that thermal properties of solder layers cannot be evaluated simply on the base of averaging the thermal properties of solder components. The review presents the laser thermal wave methodology for measuring thermal parameters of soldered and adhesively bonded joints. The developed theoretical model makes it possible to carry out a quantitative estimation of local thermal conductivities of joints and their thermal resistances by fitting theoretical results with experimental data obtained by the laser beam deflection method. The joints made with lead-containing and lead-free solders were studied. The anomalous distribution of thermal properties in the solder layer is explained by the diffusion of various atoms detected by energy dispersive X-ray spectroscopy. The laser beam deflection method made it possible to reveal a strong influence of the surface pretreatment quality on the interfacial thermal resistance.
Collapse
|
2
|
Aryana K, Gaskins JT, Nag J, Stewart DA, Bai Z, Mukhopadhyay S, Read JC, Olson DH, Hoglund ER, Howe JM, Giri A, Grobis MK, Hopkins PE. Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices. Nat Commun 2021; 12:774. [PMID: 33536411 PMCID: PMC7858634 DOI: 10.1038/s41467-020-20661-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/15/2020] [Indexed: 01/30/2023] Open
Abstract
Phase change memory (PCM) is a rapidly growing technology that not only offers advancements in storage-class memories but also enables in-memory data processing to overcome the von Neumann bottleneck. In PCMs, data storage is driven by thermal excitation. However, there is limited research regarding PCM thermal properties at length scales close to the memory cell dimensions. Our work presents a new paradigm to manage thermal transport in memory cells by manipulating the interfacial thermal resistance between the phase change unit and the electrodes without incorporating additional insulating layers. Experimental measurements show a substantial change in interfacial thermal resistance as GST transitions from cubic to hexagonal crystal structure, resulting in a factor of 4 reduction in the effective thermal conductivity. Simulations reveal that interfacial resistance between PCM and its adjacent layer can reduce the reset current for 20 and 120 nm diameter devices by up to ~ 40% and ~ 50%, respectively. These thermal insights present a new opportunity to reduce power and operating currents in PCMs.
Collapse
Affiliation(s)
- Kiumars Aryana
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - John T Gaskins
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Joyeeta Nag
- Western Digital Corporation, San Jose, CA, 95119, USA
| | | | - Zhaoqiang Bai
- Western Digital Corporation, San Jose, CA, 95119, USA
| | - Saikat Mukhopadhyay
- NRC Research Associate at Naval Research Laboratory, Washington, DC, 20375, USA
| | - John C Read
- Western Digital Corporation, San Jose, CA, 95119, USA
| | - David H Olson
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Eric R Hoglund
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - James M Howe
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Ashutosh Giri
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA
| | | | - Patrick E Hopkins
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA.
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA.
- Department of Physics, University of Virginia, Charlottesville, VA, 22904, USA.
| |
Collapse
|