1
|
Araki T, Takagi R, Kurumaji T, Tokura Y, Mochizuki M, Seki S. Exotic Spin Excitations in a Polar Magnet VOSe_{2}O_{5}. PHYSICAL REVIEW LETTERS 2024; 133:136702. [PMID: 39392995 DOI: 10.1103/physrevlett.133.136702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 10/13/2024]
Abstract
Magnetic resonance dynamics has been studied for a polar magnet VOSe_{2}O_{5}, which hosts several nontrivial magnetic phases including Néel-type skyrmion lattice (SkL). In both cycloidal and SkL spin states, two excitation modes active to oscillating magnetic field B_{ν}⊥c and one mode active to B_{ν}∥c are identified. The subsequent micromagnetic simulations well reproduce the observed selection rules and relative resonance frequencies, which allows the unambiguous assignment of the spin oscillation manner for each mode. Interestingly, the IC-2 phase with a potential double-q character was found to host similar excitation modes as the SkL state. We also discovered the existence of the novel B' phase with four modes active to B_{ν}⊥c. The present results provide a fundamental basis for the comprehensive understanding of resonant spin dynamics in polar magnets, and highlight VOSe_{2}O_{5} as a unique material platform to host a rich variety of nontrivial spin excitations.
Collapse
|
2
|
Zhang X, Xia J, Tretiakov OA, Ezawa M, Zhao G, Zhou Y, Liu X, Mochizuki M. Chiral Skyrmions Interacting with Chiral Flowers. NANO LETTERS 2023; 23:11793-11801. [PMID: 38055779 PMCID: PMC10755743 DOI: 10.1021/acs.nanolett.3c03792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023]
Abstract
The chiral nature of active matter plays an important role in the dynamics of active matter interacting with chiral structures. Skyrmions are chiral objects, and their interactions with chiral nanostructures can lead to intriguing phenomena. Here, we explore the random-walk dynamics of a thermally activated chiral skyrmion interacting with a chiral flower-like obstacle in a ferromagnetic layer, which could create topology-dependent outcomes. It is a spontaneous mesoscopic order-from-disorder phenomenon driven by the thermal fluctuations and topological nature of skyrmions that exists only in ferromagnetic and ferrimagnetic systems. The interactions between the skyrmions and chiral flowers at finite temperatures can be utilized to control the skyrmion position and distribution without applying any external driving force or temperature gradient. The phenomenon that thermally activated skyrmions are dynamically coupled to chiral flowers may provide a new way to design topological sorting devices.
Collapse
Affiliation(s)
- Xichao Zhang
- Department
of Applied Physics, Waseda University, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Jing Xia
- Department
of Electrical and Computer Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Oleg A. Tretiakov
- School
of Physics, The University of New South
Wales, Sydney 2052, Australia
| | - Motohiko Ezawa
- Department
of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656, Japan
| | - Guoping Zhao
- College
of Physics and Electronic Engineering, Sichuan
Normal University, Chengdu 610068, China
| | - Yan Zhou
- School
of
Science and Engineering, The Chinese University
of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Xiaoxi Liu
- Department
of Electrical and Computer Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Masahito Mochizuki
- Department
of Applied Physics, Waseda University, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
3
|
Lee MK, Mochizuki M. Handwritten digit recognition by spin waves in a Skyrmion reservoir. Sci Rep 2023; 13:19423. [PMID: 37940652 PMCID: PMC10632384 DOI: 10.1038/s41598-023-46677-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023] Open
Abstract
By performing numerical simulations for the handwritten digit recognition task, we demonstrate that a magnetic skyrmion lattice confined in a thin-plate magnet possesses high capability of reservoir computing. We obtain a high recognition rate of more than 88%, higher by about 10% than a baseline taken as the echo state network model. We find that this excellent performance arises from enhanced nonlinearity in the transformation which maps the input data onto an information space with higher dimensions, carried by interferences of spin waves in the skyrmion lattice. Because the skyrmions require only application of static magnetic field instead of nanofabrication for their creation in contrast to other spintronics reservoirs, our result consolidates the high potential of skyrmions for application to reservoir computing devices.
Collapse
Affiliation(s)
- Mu-Kun Lee
- Department of Applied Physics, Waseda University, Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| | - Masahito Mochizuki
- Department of Applied Physics, Waseda University, Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| |
Collapse
|
4
|
Xia J, Zhang X, Liu X, Zhou Y, Ezawa M. Universal Quantum Computation Based on Nanoscale Skyrmion Helicity Qubits in Frustrated Magnets. PHYSICAL REVIEW LETTERS 2023; 130:106701. [PMID: 36962022 DOI: 10.1103/physrevlett.130.106701] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/22/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
We propose a skyrmion-based universal quantum computer. Skyrmions have the helicity degree of freedom in frustrated magnets, where twofold degenerated Bloch-type skyrmions are energetically favored by the magnetic dipole-dipole interaction. We construct a qubit based on them. A skyrmion must become a quantum-mechanical object when its size is of the order of nanometers. It is shown that the universal quantum computation is possible based on nanoscale skyrmions in a magnetic bilayer system. The one-qubit quantum gates are materialized by controlling the electric field and the spin current. The two-qubit gate is materialized with the use of the Ising-type exchange coupling. The merit of the present mechanism is that external magnetic field is not necessary. Our results may open a possible way toward universal quantum computation based on nanoscale topological spin textures.
Collapse
Affiliation(s)
- Jing Xia
- Department of Electrical and Computer Engineering, Shinshu University, Wakasato 4-17-1, Nagano 380-8553, Japan
| | - Xichao Zhang
- Department of Electrical and Computer Engineering, Shinshu University, Wakasato 4-17-1, Nagano 380-8553, Japan
| | - Xiaoxi Liu
- Department of Electrical and Computer Engineering, Shinshu University, Wakasato 4-17-1, Nagano 380-8553, Japan
| | - Yan Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Motohiko Ezawa
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656, Japan
| |
Collapse
|
5
|
Ohara K, Zhang X, Chen Y, Kato S, Xia J, Ezawa M, Tretiakov OA, Hou Z, Zhou Y, Zhao G, Yang J, Liu X. Reversible Transformation between Isolated Skyrmions and Bimerons. NANO LETTERS 2022; 22:8559-8566. [PMID: 36259745 DOI: 10.1021/acs.nanolett.2c03106] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Skyrmions and bimerons are versatile topological spin textures that can be used as information bits for both classical and quantum computing. The transformation between isolated skyrmions and bimerons is an essential operation for computing architecture based on multiple different topological bits. Here we report the creation of isolated skyrmions and their subsequent transformation to bimerons by harnessing the electric current-induced Oersted field and temperature-induced perpendicular magnetic anisotropy variation. The transformation between skyrmions and bimerons is reversible, which is controlled by the current amplitude and scanning direction. Both skyrmions and bimerons can be created in the same system through the skyrmion-bimeron transformation and magnetization switching. Deformed skyrmion bubbles and chiral labyrinth domains are found as nontrivial intermediate transition states. Our results may provide a unique way for building advanced information-processing devices using different types of topological spin textures in the same system.
Collapse
Affiliation(s)
- Kentaro Ohara
- Department of Electrical and Computer Engineering, Shinshu University, 4-17-1 Wakasato, Nagano380-8553, Japan
| | - Xichao Zhang
- Department of Electrical and Computer Engineering, Shinshu University, 4-17-1 Wakasato, Nagano380-8553, Japan
| | - Yinling Chen
- Department of Electrical and Computer Engineering, Shinshu University, 4-17-1 Wakasato, Nagano380-8553, Japan
| | - Satoshi Kato
- Department of Electrical and Computer Engineering, Shinshu University, 4-17-1 Wakasato, Nagano380-8553, Japan
| | - Jing Xia
- Department of Electrical and Computer Engineering, Shinshu University, 4-17-1 Wakasato, Nagano380-8553, Japan
| | - Motohiko Ezawa
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo113-8656, Japan
| | - Oleg A Tretiakov
- School of Physics, The University of New South Wales, Sydney2052, Australia
| | - Zhipeng Hou
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou510006, China
| | - Yan Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen518172, Guangdong, China
| | - Guoping Zhao
- College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu610068, China
| | - Jinbo Yang
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing100871, China
| | - Xiaoxi Liu
- Department of Electrical and Computer Engineering, Shinshu University, 4-17-1 Wakasato, Nagano380-8553, Japan
| |
Collapse
|
6
|
Eto R, Pohle R, Mochizuki M. Low-Energy Excitations of Skyrmion Crystals in a Centrosymmetric Kondo-Lattice Magnet: Decoupled Spin-Charge Excitations and Nonreciprocity. PHYSICAL REVIEW LETTERS 2022; 129:017201. [PMID: 35841562 DOI: 10.1103/physrevlett.129.017201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/25/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
We theoretically study spin and charge excitations of skyrmion crystals stabilized by conduction-electron-mediated magnetic interactions via spin-charge coupling in a centrosymmetric Kondo-lattice model by large-scale spin-dynamics simulations combined with the kernel polynomial method. We reveal clear segregation of spin and charge excitation channels and nonreciprocal nature of the spin excitations governed by the Fermi-surface geometry, which are unique to the skyrmion crystals in centrosymmetric itinerant hosts and can be a source of novel physical phenomena.
Collapse
Affiliation(s)
- Rintaro Eto
- Department of Applied Physics, Waseda University, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Rico Pohle
- Department of Applied Physics, Waseda University, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Department of Applied Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masahito Mochizuki
- Department of Applied Physics, Waseda University, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
7
|
Hirosawa T, Klinovaja J, Loss D, Díaz SA. Laser-Controlled Real- and Reciprocal-Space Topology in Multiferroic Insulators. PHYSICAL REVIEW LETTERS 2022; 128:037201. [PMID: 35119897 DOI: 10.1103/physrevlett.128.037201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/02/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Magnetic materials in which it is possible to control the topology of their magnetic order in real space or the topology of their magnetic excitations in reciprocal space are highly sought after as platforms for alternative data storage and computing architectures. Here we show that multiferroic insulators, owing to their magnetoelectric coupling, offer a natural and advantageous way to address these two different topologies using laser fields. We demonstrate that via a delicate balance between the energy injection from a high-frequency laser and dissipation, single skyrmions-archetypical topological magnetic textures-can be set into motion with a velocity and propagation direction that can be tuned by the laser field amplitude and polarization, respectively. Moreover, we uncover an ultrafast Floquet magnonic topological phase transition in a laser-driven skyrmion crystal and we propose a new diagnostic tool to reveal it using the magnonic thermal Hall conductivity.
Collapse
Affiliation(s)
- Tomoki Hirosawa
- Department of Physics, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Jelena Klinovaja
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Daniel Loss
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Sebastián A Díaz
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
- Faculty of Physics, University of Duisburg-Essen, 47057 Duisburg, Germany
| |
Collapse
|
8
|
Ohara K, Zhang X, Chen Y, Wei Z, Ma Y, Xia J, Zhou Y, Liu X. Confinement and Protection of Skyrmions by Patterns of Modified Magnetic Properties. NANO LETTERS 2021; 21:4320-4326. [PMID: 33950694 DOI: 10.1021/acs.nanolett.1c00865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Magnetic skyrmions are versatile topological excitations that can be used as nonvolatile information carriers. The confinement of skyrmions in channels is fundamental for any application based on the accumulation and transport of skyrmions. Here, we report a method that allows effective position control of skyrmions in designed channels by engineered energy barriers and wells, which is realized in a magnetic multilayer film by harnessing the boundaries of patterns with modified magnetic properties. We experimentally and computationally demonstrate that skyrmions can be attracted or repelled by the boundaries of areas with modified perpendicular magnetic anisotropy and Dzyaloshinskii-Moriya interaction. By fabricating square and stripe patterns with modified magnetic properties, we show the possibility of building reliable channels for confinement, accumulation, and transport of skyrmions, which effectively protect skyrmions from being destroyed at the device edges. Our results are useful for the design of spintronic applications using either static or dynamic skyrmions.
Collapse
Affiliation(s)
- Kentaro Ohara
- Department of Electrical and Computer Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Xichao Zhang
- Department of Electrical and Computer Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Yinling Chen
- Department of Electrical and Computer Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Zonhan Wei
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, China
| | - Yungui Ma
- State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jing Xia
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Yan Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Xiaoxi Liu
- Department of Electrical and Computer Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
9
|
Zhang X, Zhou Y, Mee Song K, Park TE, Xia J, Ezawa M, Liu X, Zhao W, Zhao G, Woo S. Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:143001. [PMID: 31689688 DOI: 10.1088/1361-648x/ab5488] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The field of magnetic skyrmions has been actively investigated across a wide range of topics during the last decades. In this topical review, we mainly review and discuss key results and findings in skyrmion research since the first experimental observation of magnetic skyrmions in 2009. We particularly focus on the theoretical, computational and experimental findings and advances that are directly relevant to the spintronic applications based on magnetic skyrmions, i.e. their writing, deleting, reading and processing driven by magnetic field, electric current and thermal energy. We then review several potential applications including information storage, logic computing gates and non-conventional devices such as neuromorphic computing devices. Finally, we discuss possible future research directions on magnetic skyrmions, which also cover rich topics on other topological textures such as antiskyrmions and bimerons in antiferromagnets and frustrated magnets.
Collapse
Affiliation(s)
- Xichao Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mochizuki M. Dynamical magnetoelectric phenomena of skyrmions in multiferroics. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2019-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Magnetic skyrmions, nanoscopic spin vortices carrying a quantized topological number in chiral-lattice magnets, are recently attracting great research interest. Although magnetic skyrmions had been observed only in metallic chiral-lattice magnets such as B20 alloys in the early stage of the research, their realization was discovered in 2012 also in an insulating chiral-lattice magnet
Cu
2
OSeO
3
$\textrm{Cu}_2\textrm{OSeO}_3$
. A characteristic of the insulating skyrmions is that they can host multiferroicity, that is, the noncollinear magnetization alignment of skyrmion induces electric polarizations in insulators with a help of the relativistic spin-orbit interaction. It was experimentally confirmed that the skyrmion phase in
Cu
2
OSeO
3
$\textrm{Cu}_2\textrm{OSeO}_3$
is indeed accompanied by the spin-induced ferroelectricity. The resulting strong magnetoelectric coupling between magnetizations and electric polarizations can provide us with a means to manipulate and activate magnetic skyrmions by application of electric fields. This is in sharp contrast to skyrmions in metallic systems, which are driven through injection of electric currents. The magnetoelectric phenomena specific to the skyrmion-based multiferroics are attracting intensive research interest, and, in particular, those in dynamical regime are widely recognized as an issue of vital importance because their understanding is crucial both for fundamental science and for technical applications. In this article, we review recent studies on multiferroic properties and dynamical magnetoelectric phenomena of magnetic skyrmions in insulating chiral-lattice magnet
Cu
2
OSeO
3
$\textrm{Cu}_2\textrm{OSeO}_3$
. It is argued that the multiferroic skyrmions show unique resonant excitation modes of coupled magnetizations and polarizations, so-called electromagnon excitations, which can be activated both magnetically with a microwave magnetic field and electrically with a microwave electric field. The interference between these two activation processes gives rise to peculiar phenomena in the gigahertz regime. As its representative example, we discuss a recent theoretical prediction of unprecedentedly large nonreciprocal directional dichroism of microwaves in the skyrmion phase of
Cu
2
OSeO
3
$\textrm{Cu}_2\textrm{OSeO}_3$
. This phenomenon can be regarded as a one-way window effect on microwaves, that is, the extent of microwave absorption changes significantly when its incident direction is reversed. This dramatic effect was indeed observed by subsequent experiments. These studies demonstrated that the multiferroic skyrmions can be a promising building block for microwave devices.
Collapse
Affiliation(s)
- Masahito Mochizuki
- Department of Applied Physics , Waseda University , 3-4-1 Okubo, Shinjuku-ku , Tokyo , 169-8050 , Japan
| |
Collapse
|
11
|
Qian F, Bannenberg LJ, Wilhelm H, Chaboussant G, Debeer-Schmitt LM, Schmidt MP, Aqeel A, Palstra TTM, Brück E, Lefering AJE, Pappas C, Mostovoy M, Leonov AO. New magnetic phase of the chiral skyrmion material Cu 2OSeO 3. SCIENCE ADVANCES 2018; 4:eaat7323. [PMID: 30255145 PMCID: PMC6155131 DOI: 10.1126/sciadv.aat7323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
The lack of inversion symmetry in the crystal lattice of magnetic materials gives rise to complex noncollinear spin orders through interactions of a relativistic nature, resulting in interesting physical phenomena, such as emergent electromagnetism. Studies of cubic chiral magnets revealed a universal magnetic phase diagram composed of helical spiral, conical spiral, and skyrmion crystal phases. We report a remarkable deviation from this universal behavior. By combining neutron diffraction with magnetization measurements, we observe a new multidomain state in Cu2OSeO3. Just below the upper critical field at which the conical spiral state disappears, the spiral wave vector rotates away from the magnetic field direction. This transition gives rise to large magnetic fluctuations. We clarify the physical origin of the new state and discuss its multiferroic properties.
Collapse
Affiliation(s)
- Fengjiao Qian
- Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629JB Delft, Netherlands
| | - Lars J. Bannenberg
- Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629JB Delft, Netherlands
| | - Heribert Wilhelm
- Diamond Light Source Ltd., Chilton, Didcot, Oxfordshire OX11 0DE, UK
| | | | | | - Marcus P. Schmidt
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer-Straße 40, 01187 Dresden, Germany
| | - Aisha Aqeel
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Thomas T. M. Palstra
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Ekkes Brück
- Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629JB Delft, Netherlands
| | - Anton J. E. Lefering
- Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629JB Delft, Netherlands
| | - Catherine Pappas
- Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629JB Delft, Netherlands
| | - Maxim Mostovoy
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Andrey O. Leonov
- Department of Chemistry, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima 739-8526, Japan
- Chiral Research Center, Hiroshima University, 1-3-1, Kagamiyma, Higashi Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
12
|
Weiler M, Aqeel A, Mostovoy M, Leonov A, Geprägs S, Gross R, Huebl H, Palstra TTM, Goennenwein STB. Helimagnon Resonances in an Intrinsic Chiral Magnonic Crystal. PHYSICAL REVIEW LETTERS 2017; 119:237204. [PMID: 29286698 DOI: 10.1103/physrevlett.119.237204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Indexed: 06/07/2023]
Abstract
We experimentally study magnetic resonances in the helical and conical magnetic phases of the chiral magnetic insulator Cu_{2}OSeO_{3} at the temperature T=5 K. Using a broadband microwave spectroscopy technique based on vector network analysis, we identify three distinct sets of helimagnon resonances in the frequency range 2 GHz≤f≤20 GHz with low magnetic damping α≤0.003. The extracted resonance frequencies are in accordance with calculations of the helimagnon band structure found in an intrinsic chiral magnonic crystal. The periodic modulation of the equilibrium spin direction that leads to the formation of the magnonic crystal is a direct consequence of the chiral magnetic ordering caused by the Dzyaloshinskii-Moriya interaction. The mode coupling in the magnonic crystal allows excitation of helimagnons with wave vectors that are multiples of the spiral wave vector.
Collapse
Affiliation(s)
- Mathias Weiler
- Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany
- Physik-Department, Technische Universität München, 85748 Garching, Germany
| | - Aisha Aqeel
- Zernike Institute for Advanced Materials, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Maxim Mostovoy
- Zernike Institute for Advanced Materials, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Andrey Leonov
- Zernike Institute for Advanced Materials, University of Groningen, 9700 AB Groningen, The Netherlands
- Center for Chiral Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Stephan Geprägs
- Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany
| | - Rudolf Gross
- Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany
- Physik-Department, Technische Universität München, 85748 Garching, Germany
- Nanosystems Initiative Munich, 80799 Munich, Germany
| | - Hans Huebl
- Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany
- Physik-Department, Technische Universität München, 85748 Garching, Germany
- Nanosystems Initiative Munich, 80799 Munich, Germany
| | - Thomas T M Palstra
- Zernike Institute for Advanced Materials, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Sebastian T B Goennenwein
- Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany
- Physik-Department, Technische Universität München, 85748 Garching, Germany
- Nanosystems Initiative Munich, 80799 Munich, Germany
- Institut für Festkörper- und Materialphysik, Technische Universität Dresden, 01062 Dresden, Germany
- Center for Transport and Devices of Emergent Materials, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
13
|
Bordács S, Butykai A, Szigeti BG, White JS, Cubitt R, Leonov AO, Widmann S, Ehlers D, von Nidda HAK, Tsurkan V, Loidl A, Kézsmárki I. Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet. Sci Rep 2017; 7:7584. [PMID: 28790441 PMCID: PMC5548730 DOI: 10.1038/s41598-017-07996-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/04/2017] [Indexed: 11/09/2022] Open
Abstract
The skyrmion lattice state (SkL), a crystal built of mesoscopic spin vortices, gains its stability via thermal fluctuations in all bulk skyrmion host materials known to date. Therefore, its existence is limited to a narrow temperature region below the paramagnetic state. This stability range can drastically increase in systems with restricted geometries, such as thin films, interfaces and nanowires. Thermal quenching can also promote the SkL as a metastable state over extended temperature ranges. Here, we demonstrate more generally that a proper choice of material parameters alone guarantees the thermodynamic stability of the SkL over the full temperature range below the paramagnetic state down to zero kelvin. We found that GaV4Se8, a polar magnet with easy-plane anisotropy, hosts a robust Néel-type SkL even in its ground state. Our supporting theory confirms that polar magnets with weak uniaxial anisotropy are ideal candidates to realize SkLs with wide stability ranges.
Collapse
Affiliation(s)
- S Bordács
- Department of Physics, Budapest University of Technology and Economics and MTA-BME Lendület Magneto-optical Spectroscopy Research Group, 1111, Budapest, Hungary
| | - A Butykai
- Department of Physics, Budapest University of Technology and Economics and MTA-BME Lendület Magneto-optical Spectroscopy Research Group, 1111, Budapest, Hungary
| | - B G Szigeti
- Department of Physics, Budapest University of Technology and Economics and MTA-BME Lendület Magneto-optical Spectroscopy Research Group, 1111, Budapest, Hungary
| | - J S White
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232, Villigen, Switzerland
| | - R Cubitt
- Institut Laue-Langevin, 6 rue Jules Horowitz, 38042, Grenoble, France
| | - A O Leonov
- Center for Chiral Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.,Department of Chemistry, Faculty of Science, Hiroshima University Kagamiyama, Higashi Hiroshima, Hiroshima, 739-8526, Japan
| | - S Widmann
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135, Augsburg, Germany
| | - D Ehlers
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135, Augsburg, Germany
| | - H-A Krug von Nidda
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135, Augsburg, Germany
| | - V Tsurkan
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135, Augsburg, Germany.,Institute of Applied Physics, Academy of Sciences of Moldova, MD, 2028, Chisinau, Republic of Moldova
| | - A Loidl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135, Augsburg, Germany
| | - I Kézsmárki
- Department of Physics, Budapest University of Technology and Economics and MTA-BME Lendület Magneto-optical Spectroscopy Research Group, 1111, Budapest, Hungary. .,Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135, Augsburg, Germany.
| |
Collapse
|
14
|
Chizhikov VA, Dmitrienko VE. Antiferromagnetic spin cantings as a driving force of ferroelectricity in multiferroic Cu 2OSeO 3. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:155601. [PMID: 28221162 DOI: 10.1088/1361-648x/aa61e7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ferroelectric properties of cubic chiral magnet Cu2OSeO3 can emerge due to the spin noncollinearity induced by antiferromagnetic cantings. The cantings are the result of the Dzyaloshinskii-Moriya interaction and in many ways similar to the ferromagnetic cantings in weak ferromagnets. An expression for the local electric polarization is derived, including terms with gradients of magnetization [Formula: see text]. When averaged over the crystal the electric polarization has a non-vanishing part associated with the anisotropy of the crystal point group 23. In the framework of the microscopic theory, it is shown that both scalar and vector products of spins, [Formula: see text] and [Formula: see text], can give contributions of the same order of magnitude into the electric polarization.
Collapse
|
15
|
Milde P, Neuber E, Bauer A, Pfleiderer C, Berger H, Eng LM. Heuristic Description of Magnetoelectricity of Cu2OSeO3. NANO LETTERS 2016; 16:5612-5618. [PMID: 27562791 DOI: 10.1021/acs.nanolett.6b02167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
CuO2SeO3 is an insulating material that hosts topologically nontrivial spin whirls, so-called skyrmions, and exhibits magnetoelectric coupling allowing to manipulate these skyrmions by means of electric fields. We report magnetic force microscopy imaging of the real-space spin structure on the surface of a bulk single crystal of CuO2SeO3. Based on measurements of the electric polarization using Kelvin-probe force microscopy, we develop a heuristic description of the magnetoelectric properties in CuO2SeO3. The model successfully describes the dependency of the electric polarization on the magnetization in all magnetically modulated phases.
Collapse
Affiliation(s)
- Peter Milde
- Institute of Applied Physics, Technische Universität Dresden , D-01062 Dresden, Germany
| | - Erik Neuber
- Institute of Applied Physics, Technische Universität Dresden , D-01062 Dresden, Germany
| | - Andreas Bauer
- Physik-Department, Technische Universität München , D-85748 Garching, Germany
| | | | - Helmuth Berger
- Institut de Physique de la Matière Complexe, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Lukas M Eng
- Institute of Applied Physics, Technische Universität Dresden , D-01062 Dresden, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden , D-01062 Dresden, Germany
| |
Collapse
|