1
|
Mizera A, Zięba S, Bielejewski M, Dubis AT, Łapiński A. Effect of hydrostatic pressure on charge carriers in a conducting pyrrole- co-poly(pyrrole-3-carboxylic) copolymer. Phys Chem Chem Phys 2024; 26:18962-18969. [PMID: 38952289 DOI: 10.1039/d4cp01087f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The charge carriers in conducting pyrrole-co-poly(pyrrole-3-carboxylic) were examined using high-pressure Raman spectroscopy. The molecular structure of the new copolymer was investigated using high-resolution 13C ssNMR, 1H-13C 2D NMR correlation spectroscopy, and density functional theory (DFT) calculations. Bands in Raman spectra that showed the presence of polarons and bipolarons were studied. It was observed that the quantity of polarons and bipolarons correlated with the hydrostatic pressure. At a pressure of 4 GPa, an anomaly in the correlation between pressure and the position of the Raman band was identified.
Collapse
Affiliation(s)
- Adam Mizera
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179, Poznań, Poland.
| | - Sylwia Zięba
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179, Poznań, Poland.
| | - Michał Bielejewski
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179, Poznań, Poland.
| | - Alina T Dubis
- Department of Chemistry, University of Bialystok, Ciołkowskiego 1K, 15-245, Białystok, Poland
| | - Andrzej Łapiński
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179, Poznań, Poland.
| |
Collapse
|
2
|
Vahdatiyekta P, Zniber M, Bobacka J, Huynh TP. A review on conjugated polymer-based electronic tongues. Anal Chim Acta 2022; 1221:340114. [DOI: 10.1016/j.aca.2022.340114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022]
|
3
|
Yao B, Ye Z, Lou X, Yan Q, Han Z, Dong Y, Qu S, Wang Z. Wireless Rehabilitation Training Sensor Arrays Made with Hot Screen-Imprinted Conductive Hydrogels with a Low Percolation Threshold. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12734-12747. [PMID: 35230075 DOI: 10.1021/acsami.2c01630] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, we propose a highly sensitive wireless rehabilitation training ball with a piezoresistive sensor array for patients with Parkinson's disease (PD). The piezoresistive material is a low percolation threshold conductive hydrogel which is formed with polypyrrole (PPy) nanofibers (NFs) as a conductive filler derived from a polydopamine (PDA) template. The proton acid doping effect and molecular template of PDA are essential for endowing PPy NFs with a high aspect ratio, leading to a low percolation threshold (∼0.78 vol %) and a low Young's 004Dodulus of 37.69 kPa and hence easy deformation. The piezoresistive sensor exhibited a static and dynamic stability of 10,000 s and 15,000 cycle times, respectively. This stability could be attributed to the increased hydrophilicity of conductive fillers, enhancing the interfacial strength between the conductive filler and the matrix. The interaction between the PDA-PPy NFs and the hydrogel matrix endows the hydrogel with toughness and ensures the stability of the device. Additionally, the microdome structure of the conductive hydrogel, produced by hot screen-imprinting, dramatically improves the sensitivity of the piezoresistive sensor (∼856.14 kPa-1). The microdome conductive hydrogel can distinguish a subtle pressure of 15.40 Pa compared to the control hydrogel without a microstructure. The highly sensitive piezoresistive sensor has the potential to monitor the hand-grip force, which is not well controlled by patients with PD. The rehabilitation training ball assembled with a sensor array on the surface and a wireless chip for communication inside is built and used to monitor the pressure in real time through the WeChat applet. Thus, this work has significantly broadened the application of hydrogel-based flexible piezoresistive sensors for human activity monitoring, which provides a promising strategy to realize next-generation electronics.
Collapse
Affiliation(s)
- Bing Yao
- State Key Lab of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhihao Ye
- School of Computer Science and Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Xiang Lou
- State Key Lab of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - QiLong Yan
- State Key Lab of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - ZheYi Han
- State Key Lab of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - YaBo Dong
- School of Computer Science and Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Shaoxing Qu
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Zongrong Wang
- State Key Lab of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Trends of Chitosan Based Delivery Systems in Neuroregeneration and Functional Recovery in Spinal Cord Injuries. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides2020031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spinal cord injury (SCI) is one of the most complicated nervous system injuries with challenging treatment and recovery. Regenerative biomaterials such as chitosan are being reported for their wide use in filling the cavities, deliver curative drugs, and also provide adsorption sites for transplanted stem cells. Biomaterial scaffolds utilizing chitosan have shown certain therapeutic effects on spinal cord injury repair with some limitations. Chitosan-based delivery in stem cell transplantation is another strategy that has shown decent success. Stem cells can be directed to differentiate into neurons or glia in vitro. Stem cell-based therapy, biopolymer chitosan delivery strategies, and scaffold-based therapeutic strategies have been advancing as a combinatorial approach for spinal cord injury repair. In this review, we summarize the recent progress in the treatment strategies of SCI due to the use of bioactivity of chitosan-based drug delivery systems. An emphasis on the role of chitosan in neural regeneration has also been highlighted.
Collapse
|
5
|
Liu M, Sun X, Liao Z, Li Y, Qi X, Qian Y, Fenniri H, Zhao P, Shen J. Zinc oxide end-capped Fe 3O 4@mSiO 2 core-shell nanocarriers as targeted and responsive drug delivery system for chemo-/ions synergistic therapeutics. Drug Deliv 2019; 26:732-743. [PMID: 31340678 PMCID: PMC6713220 DOI: 10.1080/10717544.2019.1642419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 10/31/2022] Open
Abstract
Multifunctional core-shell nanocarriers based on zinc oxide (ZnO)-gated magnetic mesoporous silica nanoparticles (MMSN) were prepared for cancer treatment through magnetic targeting and pH-triggered controlled drug release. Under an external magnetic field, the MMSN could actively deliver chemotherapeutic agent, daunomycin (DNM), to the targeted sites. At neutral aqueous, the functionalized MMSN could stably accommodate the DNM molecules since the mesopores were capped by the ZnO gatekeepers. In contrast, at the acid intercellular environment, the gatekeepers would be removed to control the release of drugs due to the dissolution of ZnO. Meanwhile, ZnO quantum dots not only rapidly dissolve in an acidic condition of cancer cells but also enhance the anti-cancer effect of Zn2+. An in vitro controlled release proliferation indicated that the acid sensitive ZnO gatekeepers showed well response by the 'on-off' switch of the pores. Cellular experiments against cervical cancer cell (HeLa cells) further showed that functionalized MMSN significantly suppressed cancer cells growth through synergistic effects between the chemotherapy and Zn2+ ions with monitoring the treatment process. These results suggested that the ZnO-gated MMSN platform is a promising approach to serve as a pH-sensitive system for chemotherapies delivery and Zn2+ controlled release for further application in the treatment of various cancers by synergistic effects.
Collapse
Affiliation(s)
- Minchao Liu
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiangyu Sun
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhihui Liao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yahui Li
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Xiaoliang Qi
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yuna Qian
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Hicham Fenniri
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Ping Zhao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianliang Shen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
6
|
Feng C, He Z, Cai B, Peng J, Song J, Yu X, Sun Y, Yuan J, Zhao X, Zhang Y. Non-invasive Prenatal Diagnosis of Chromosomal Aneuploidies and Microdeletion Syndrome Using Fetal Nucleated Red Blood Cells Isolated by Nanostructure Microchips. Theranostics 2018; 8:1301-1311. [PMID: 29507621 PMCID: PMC5835937 DOI: 10.7150/thno.21979] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/08/2017] [Indexed: 11/15/2022] Open
Abstract
Detection of detached fetal nucleated red blood cells (fNRBCs) in the maternal peripheral blood may serve as a prospective testing method competing with the cell-free DNA, in non-invasive prenatal testing (NIPT). Methods: Herein, we introduce a facile and effective lab-on-a-chip method of fNRBCs detection using a capture-releasing material that is composed of biotin-doped polypyrrole nanoparticles. To enhance local topographic interactions between the nano-components and fNRBC, a specific antibody, CD147, coated on the nanostructured substrate led to the isolation of fNRBCs from maternal peripheral blood. Subsequently, an electrical system was employed to release the captured cells using 0.8 V for 15 s. The diagnostic application of fNRBCs for fetal chromosomal disorders (Trisomy 13/21/18/X syndrome, microdeletion syndrome) was demonstrated. Results: Cells captured by nanostructured microchips were identified as fNRBCs. Twelve cases of chromosomal aneuploidies and one case of 18q21 microdeletion syndrome were diagnosed using the fNRBCs released from the microchips. Conclusion: Our method offers effective and accurate analysis of fNRBCs for comprehensive NIPT to monitor fetal cell development.
Collapse
Affiliation(s)
- Chun Feng
- Department of Obstetrics and Gynechology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Zhaobo He
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, Hubei, China
| | - Bo Cai
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, Hubei, China
| | - Jianhong Peng
- Prenatal Diagnostic and Birth Health Clinical Research Center of Hubei Province, Wuhan, Hubei, 430071, China
| | - Jieping Song
- Department of Prenatal Diagnostic Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, 430070, China
| | - Xuechen Yu
- Department of Obstetrics and Gynechology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Yue Sun
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, Hubei, China
| | - Jing Yuan
- Department of Obstetrics and Gynechology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Xingzhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, Hubei, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynechology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| |
Collapse
|
7
|
Li T, Shen X, Geng Y, Chen Z, Li L, Li S, Yang H, Wu C, Zeng H, Liu Y. Folate-Functionalized Magnetic-Mesoporous Silica Nanoparticles for Drug/Gene Codelivery To Potentiate the Antitumor Efficacy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:13748-58. [PMID: 27191965 DOI: 10.1021/acsami.6b02963] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
An appropriate codelivery system for chemotherapeutic agents and nucleic acid drugs will provide a more efficacious approach for the treatment of cancer. Combining gene therapy with chemotherapeutics in a single delivery system is more effective than individual delivery systems carrying either gene or drug. In this work, we developed folate (FA) receptor targeted magnetic-mesoporous silica nanoparticles for the codelivery of VEGF shRNA and doxorubicin (DOX) (denoted as M-MSN(DOX)/PEI-FA/VEGF shRNA). Our data showed that M-MSN(DOX)/PEI-FA could strongly condense VEGF shRNA at weight ratios of 30:1, and possesses higher stability against DNase I digestion and sodium heparin. In vitro antitumor activity assays revealed that HeLa cell growth was significantly inhibited. The intracellular accumulation of DOX by confocal microscopy and fluorescence spectrophotometry showed that M-MSN(DOX)/PEI-FA were more easily taken up than nontargeted M-MSN(DOX). Quantitative PCR and ELISA data revealed that M-MSN/PEI-FA/VEGF shRNA induced a significant decrease in VEGF expression as compared to cells treated with either the control or other complexes. The invasion and migration phenotypes of the HUVECs were significantly decrease after coculture with MSN/PEI-FA/VEGF shRNA nanocomplexes-treated HeLa cells. The approach provides a potential strategy to treat cancer by a singular nanoparticle delivery system.
Collapse
Affiliation(s)
- Tingting Li
- Department of Biophysics, School of Life Science and Technology, ‡Center for Information in Medicine, University of Electronic Science and Technology of China , Chengdu 610054, Sichuan, People's Republic of China
| | - Xue Shen
- Department of Biophysics, School of Life Science and Technology, ‡Center for Information in Medicine, University of Electronic Science and Technology of China , Chengdu 610054, Sichuan, People's Republic of China
| | - Yue Geng
- Department of Biophysics, School of Life Science and Technology, ‡Center for Information in Medicine, University of Electronic Science and Technology of China , Chengdu 610054, Sichuan, People's Republic of China
| | - Zhongyuan Chen
- Department of Biophysics, School of Life Science and Technology, ‡Center for Information in Medicine, University of Electronic Science and Technology of China , Chengdu 610054, Sichuan, People's Republic of China
| | - Li Li
- Department of Biophysics, School of Life Science and Technology, ‡Center for Information in Medicine, University of Electronic Science and Technology of China , Chengdu 610054, Sichuan, People's Republic of China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology, ‡Center for Information in Medicine, University of Electronic Science and Technology of China , Chengdu 610054, Sichuan, People's Republic of China
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, ‡Center for Information in Medicine, University of Electronic Science and Technology of China , Chengdu 610054, Sichuan, People's Republic of China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, ‡Center for Information in Medicine, University of Electronic Science and Technology of China , Chengdu 610054, Sichuan, People's Republic of China
| | - Hongjuan Zeng
- Department of Biophysics, School of Life Science and Technology, ‡Center for Information in Medicine, University of Electronic Science and Technology of China , Chengdu 610054, Sichuan, People's Republic of China
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, ‡Center for Information in Medicine, University of Electronic Science and Technology of China , Chengdu 610054, Sichuan, People's Republic of China
| |
Collapse
|
8
|
Zang L, Qiu J, Yang C, Sakai E. Preparation and Characterization of Bayberry-Like Polypyrrole Composites Using Functionalized Mesoporous Silica as In SituDopant. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2014.977896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Yin F, Yang C, Wang Q, Zeng S, Hu R, Lin G, Tian J, Hu S, Lan RF, Yoon HS, Lu F, Wang K, Yong KT. A Light-Driven Therapy of Pancreatic Adenocarcinoma Using Gold Nanorods-Based Nanocarriers for Co-Delivery of Doxorubicin and siRNA. Theranostics 2015; 5:818-33. [PMID: 26000055 PMCID: PMC4440440 DOI: 10.7150/thno.11335] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/14/2015] [Indexed: 01/05/2023] Open
Abstract
In this work, we report the engineering of polyelectrolyte polymers coated Gold nanorods (AuNRs)-based nanocarriers that are capable of co-delivering small interfering RNA (siRNA) and an anticancer drug doxorubicin (DOX) to Panc-1 cancer cells for combination of both chemo- and siRNA-mediated mutant K-Ras gene silencing therapy. Superior anticancer efficacy was observed through synergistic combination of promoted siRNA and DOX release upon irradiating the nanoplex formulation with 665 nm light. Our antitumor study shows that the synergistic effect of AuNRs nanoplex formulation with 665 nm light treatment is able to inhibit the in vivo tumor volume growth rate by 90%. The antitumor effect is contributed from the inactivation of K-Ras gene and thereby causing a profound synthesis (S) phase arrest in treated Panc-1 cells. Our study shows that the percentage of Panc-1 cells treated by nanoplex formulation with S phase is determined to be 35% and it is 17% much higher than that of Panc-1 cells without any treatments. The developed nanotherapy formulation here, that combines chemotherapy, RNA silencing and NIR window light-mediated therapy, will be seen to be the next natural step to be taken in the clinical research for improving the therapeutic outcomes of the pancreatic adenocarcinoma treatment.
Collapse
Affiliation(s)
- Feng Yin
- 1. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Chengbin Yang
- 1. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Qianqian Wang
- 3. Laboratory of Chemical Genetics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Shuwen Zeng
- 1. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- 6. CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore, 637553
| | - Rui Hu
- 1. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Guimiao Lin
- 5. The key lab of Biomedical Engineering and Research Institute of Uropoiesis and Reproduction, School of Medical Sciences, Shenzhen University, Shenzhen, 518060, China
| | - Jinglin Tian
- 5. The key lab of Biomedical Engineering and Research Institute of Uropoiesis and Reproduction, School of Medical Sciences, Shenzhen University, Shenzhen, 518060, China
| | - Siyi Hu
- 7. School of Science, Changchun University of Science and Technology, Changchun, 130022, China
| | - Rong Feng Lan
- 8. Institute of Research and Continuing Education, Hong Kong Baptist University (Shenzhen), Shenzhen 518057, China
| | - Ho Sup Yoon
- 2. Division of Structural Biology & Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
- 9. Department of Genetic Engineering, College of Life Sciences, Kyung Hee University, Yongin-si Gyeonggi-do, 446-701, Republic of Korea
| | - Fei Lu
- 3. Laboratory of Chemical Genetics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Kuan Wang
- 4. Nanomedicine Program and Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Ken-Tye Yong
- 1. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
10
|
Jeong ED, Whang JY, Lee JW. Conducting Cell Scaffold-Poly(3′-aminomethyl-2,2′:5′,2′′-terthiophene). B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Euh-Duck Jeong
- Division of High Technology Materials Research; Korea Basic Science Institute; Busan 618-230 Korea
| | - Jae Young Whang
- Research Institute for Green Energy Convergence Technology (RIGET); Gyeongsang National University; Jinju 660-701 Korea
| | - Joo-Woon Lee
- Chemistry - School of Liberal Arts and Sciences; Korea National University of Transportation; Chungju 380-702 Korea
| |
Collapse
|
11
|
Jeon S, Hong W, Lee ES, Cho Y. High-purity isolation and recovery of circulating tumor cells using conducting polymer-deposited microfluidic device. Theranostics 2014; 4:1123-32. [PMID: 25250093 PMCID: PMC4165776 DOI: 10.7150/thno.9627] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 07/10/2014] [Indexed: 01/01/2023] Open
Abstract
We have developed a conductive nano-roughened microfluidic device and demonstrated its use as an electrically modulated capture and release system for studying rare circulating tumor cells (CTCs). The microchannel surfaces were covalently decorated with epithelial cancer-specific anti-EpCAM antibody by electrochemical deposition of biotin-doped polypyrrole (Ppy), followed by the assembly of streptavidin and biotinylated antibody. Our method utilizes the unique topographical features and excellent electrical activity of Ppy for i) surface-induced preferential recognition and release of CTCs, and ii) selective elimination of non-specifically immobilized white blood cells (WBCs), which are capable of high-purity isolation of CTCs. In addition, the direct incorporation of biotin molecules offers good flexibility, because it allows the modification of channel surfaces with diverse antibodies, in addition to anti-EpCAM, for enhanced detection of multiple types of CTCs. By engineering a series of electrical, chemical, and topographical cues, this simple yet efficient device provides a significant advantage to CTC detection technology as compared with other conventional methods.
Collapse
Affiliation(s)
| | | | | | - Youngnam Cho
- New Experimental Therapeutic Branch, National Cancer Center, 111 Jungbalsan-ro, Ilsamdong-gu, Goyang, Gyeonggi-do 410-769, South Korea
| |
Collapse
|
12
|
Gao W, Li J, Cirillo J, Borgens R, Cho Y. Action at a distance: functional drug delivery using electromagnetic-field-responsive polypyrrole nanowires. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:7778-88. [PMID: 24961510 PMCID: PMC4096212 DOI: 10.1021/la500033b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 05/21/2014] [Indexed: 05/31/2023]
Abstract
In this work, we introduce a free-standing, vertically aligned conductive polypyrrole (Ppy) architecture that can serve as a high-capacity drug reservoir. This novel geometric organization of Ppy provides a new platform for improving the drug-loading efficiency. Most importantly, we present the first formal evidence that an impregnated drug (dexamethasone, DEX) can be released on demand by a focal, pulsatile electromagnetic field (EMF). This remotely controlled, on-off switchable polymer system provides a framework for implantable constructs that can be placed in critical areas of the body without any physical contact (such as percutaneous electrodes) with the Ppy, contributing to a low "foreign body" footprint. We demonstrate this possibility by using a BV-2 microglia culture model in which reactive oxygen species (ROS) and inducible nitric oxide synthase (iNOS) expression was attenuated in response to DEX released from EMF-stimulated Ppy.
Collapse
Affiliation(s)
- Wen Gao
- Center for Paralysis
Research, Department of Basic Medical Sciences, College of Veterinary
Medicine and Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jianming Li
- Center for Paralysis
Research, Department of Basic Medical Sciences, College of Veterinary
Medicine and Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - John Cirillo
- Center for Paralysis
Research, Department of Basic Medical Sciences, College of Veterinary
Medicine and Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Richard Borgens
- Center for Paralysis
Research, Department of Basic Medical Sciences, College of Veterinary
Medicine and Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Youngnam Cho
- Center for Paralysis
Research, Department of Basic Medical Sciences, College of Veterinary
Medicine and Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- New Experimental
Therapeutic Branch, National Cancer Center, 111 Jungbalsan-ro, Ilsandong-gu,
Goyang, Gyeonggi-do 410-769, South Korea
| |
Collapse
|
13
|
A nanowire-based label-free immunosensor: Direct incorporation of a PSA antibody in electropolymerized polypyrrole. Biosens Bioelectron 2014; 57:157-61. [DOI: 10.1016/j.bios.2014.02.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/07/2014] [Accepted: 02/07/2014] [Indexed: 11/21/2022]
|
14
|
Jeon S, Moon JM, Lee ES, Kim YH, Cho Y. An Electroactive Biotin-Doped Polypyrrole Substrate That Immobilizes and Releases EpCAM-Positive Cancer Cells. Angew Chem Int Ed Engl 2014; 53:4597-602. [DOI: 10.1002/anie.201309998] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/14/2014] [Indexed: 11/08/2022]
|
15
|
Jeon S, Moon JM, Lee ES, Kim YH, Cho Y. An Electroactive Biotin-Doped Polypyrrole Substrate That Immobilizes and Releases EpCAM-Positive Cancer Cells. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309998] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Shen J, Kim HC, Su H, Wang F, Wolfram J, Kirui D, Mai J, Mu C, Ji LN, Mao ZW, Shen H. Cyclodextrin and polyethylenimine functionalized mesoporous silica nanoparticles for delivery of siRNA cancer therapeutics. Am J Cancer Res 2014; 4:487-97. [PMID: 24672582 PMCID: PMC3966054 DOI: 10.7150/thno.8263] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/20/2014] [Indexed: 12/26/2022] Open
Abstract
Effective delivery holds the key to successful in vivo application of therapeutic small interfering RNA (siRNA). In this work, we have developed a universal siRNA carrier consisting of a mesoporous silica nanoparticle (MSNP) functionalized with cyclodextrin-grafted polyethylenimine (CP). CP provides positive charge for loading of siRNA through electrostatic interaction and enables effective endosomal escape of siRNA. Using intravital microscopy we were able to monitor tumor enrichment of CP-MSNP/siRNA particles in live mice bearing orthotopic MDA-MB-231 xenograft tumors. CP-MSNP delivery of siRNA targeting the M2 isoform of the glycolytic enzyme pyruvate kinase (PKM2) resulted in effective knockdown of gene expression in vitro and in vivo. Suppression of PKM2 led to inhibition of tumor cell growth, invasion, and migration.
Collapse
|
17
|
|
18
|
Guanggui C, Jianning D, Zhongqiang Z, Zhiyong L, Huasheng P. Study on the preparation and multiproperties of the polypyrrole films doped with different ions. SURF INTERFACE ANAL 2012. [DOI: 10.1002/sia.4899] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Zhang Zhongqiang
- Center of Micro/Nano Science and Technology; Jiangsu University; Zhenjiang; 212013; China
| | - Ling Zhiyong
- Center of Micro/Nano Science and Technology; Jiangsu University; Zhenjiang; 212013; China
| | - Pu Huasheng
- Center of Micro/Nano Science and Technology; Jiangsu University; Zhenjiang; 212013; China
| |
Collapse
|
19
|
Pan L, Cirillo J, Borgens RB. Neuronal responses to an asymmetrical alternating current field can mimic those produced by an imposed direct current field in vitro. J Neurosci Res 2012; 90:1522-32. [PMID: 22504892 DOI: 10.1002/jnr.23048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 11/12/2022]
Abstract
The remarkable polarity-dependent growth and anatomical organization of neurons in vitro produced by imposed direct current (DC) voltage gradients (electrical fields; Ef) can be mimicked by another type of electrical cue. This is a properly structured asymmetrical alternating current (AC) electrical field (A-ACEf). Here we provide details on the construction of an AC signal generator in which all components of an AC waveform can be individually controlled. We show that 1) conventional symmetrical AC voltage gradients will not induce growth, guidance, or architectural changes in sympathetic neurons. We also provide the first qualitative and quantitative data showing that an asymmetric AC application can indeed mimic the DC response in chick sympathetic neurons and their growing neurites. This shift in orientation and neuronal anatomy requires dieback of some neurites and the extension of others to produce a preferred orientation perpendicular to the gradient of voltage. Our new results may lead to a noninvasive means to modify nerve growth and organization by magnetic inductive coupling at distance. These data also indicate the possibility of a means to mimic DC-dependent release of drugs or other biologically active molecules from electrically sensitive that can be loaded with these chemical cargos.
Collapse
Affiliation(s)
- Linjie Pan
- Center for Paralysis Research, Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
20
|
Cho Y, Borgens RB. Polymer and nano-technology applications for repair and reconstruction of the central nervous system. Exp Neurol 2011; 233:126-44. [PMID: 21985867 DOI: 10.1016/j.expneurol.2011.09.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 09/16/2011] [Accepted: 09/26/2011] [Indexed: 01/17/2023]
Abstract
The hydrophilic polymer PEG and its related derivatives, have served as therapeutic agents to reconstruct the phospholipid bilayers of damaged cell membranes by erasing defects in the plasmalemma. The special attributes of hydrophilic polymers when in contact with cell membranes have been used for several decades since these well-known properties have been exploited in the manufacture of monoclonal antibodies. However, while traditional therapeutic efforts to combat traumatic injuries of the central nervous system (CNS) have not been successful, nanotechnology-based drug delivery has become a new emerging strategy with the additional promise of targeted membrane repair. As such, this potential use of nanotechnology provides new avenues for nanomedicine that uses nanoparticles themselves as the therapeutic agent in addition to their other functionalities. Here we will specifically address new advances in experimental treatment of Spinal Cord and Traumatic Brain injury (SCI and TBI respectively). We focus on the concept of repair of the neurolemma and axolemma in the acute stage of injury, with less emphasis on the worthwhile, and voluminous, issues concerning regenerative medicine/nanomedicine. It is not that the two are mutually exclusive - they are not. However, the survival of the neuron and the tissues of white matter are critical to any further success in what will likely be a multi-component therapy for TBI and SCI. This review includes a brief explanation of the characteristics of traumatic spinal cord injury SCI, the biological basis of the injuries, and the treatment opportunities of current polymer-based therapies. In particular, we update our own progress in such applications for CNS injuries with various suggestions and discussion, primarily nanocarrier-based drug delivery systems. The application of nanoparticles as drug-delivery vehicles to the CNS may likely be advantageous over existing molecular-based therapies. As a "proof-of-concept", we will discuss the recent investigations that have preferentially facilitated repair and functional recovery from breaches in neural membranes via rapid sealing and reassembly of the compromised site with silica or chitosan nanoparticles.
Collapse
Affiliation(s)
- Youngnam Cho
- Center for Paralysis Research, School of Veterinary Medicine, Purdue University, W. Lafayette, IN 47907, USA
| | | |
Collapse
|
21
|
Lin Q, Xu Z, Lan X, Ni Y, Lu C. The reactivity of nano silica with calcium hydroxide. J Biomed Mater Res B Appl Biomater 2011; 99:239-46. [DOI: 10.1002/jbm.b.31891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/28/2011] [Accepted: 05/08/2011] [Indexed: 11/08/2022]
|
22
|
Cho Y, Borgens RB. Biotin-doped porous polypyrrole films for electrically controlled nanoparticle release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:6316-6322. [PMID: 21500819 DOI: 10.1021/la200160q] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A novel method for the preparation of biotin-doped porous conductive surfaces has been suggested for a variety of applications, especially for an electrically controlled release system. Well-ordered and three-dimensional porous conductive structures have been obtained by the electrochemical deposition of the aqueous biotin-pyrrole monomer mixture into particle arrays, followed by subsequent removal of the colloidal particles. Advantageously, direct incorporation of biotin molecules enhances the versatility by modifying surfaces through site-directed conjugate formation, thus facilitating further reactions. In addition, the porosity of the surfaces provides a significant impact on enhanced immobilization and efficient release of streptavidin-tagged gold nanoparticles. Biotinylated porous polypyrrole (Ppy) films were characterized by several techniques: (1) scanning electron microscopy (SEM) to evaluate surface topography, (2) X-ray photoelectron spectroscopy (XPS) to assess the potential-dependent chemical composition of the films, (3) four-point probe evaluation to measure the conductivity, cyclic voltammetry to observe surface eletroactivity, and contact angle measurement to evaluate the surface wettability, and (4) fluorescence microscopy to image and quantify the adsorption and release of gold nanoparticles. Overall, our results demonstrate that these biotinylated porous Ppy films, combined with electrical stimulation, permit a programmable release of gold nanoparticles by altering the chemical strength of the Ppy-biotin interaction.
Collapse
Affiliation(s)
- Youngnam Cho
- Center for Paralysis Research, Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States.
| | | |
Collapse
|
23
|
Kang G, Borgens RB, Cho Y. Well-ordered porous conductive polypyrrole as a new platform for neural interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:6179-6184. [PMID: 21500821 DOI: 10.1021/la104194m] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We present the preparation of electrically conductive, porous polypyrrole surfaces and demonstrate their use as an interactive substrate for neuronal growth. Nerve growth factor (NGF)-loaded porous conducting polymers were initially prepared by electrochemical deposition of a mixture of pyrrole monomers and NGF into two- or three-dimensional particle arrays followed by subsequent removal of a sacrificial template. Morphological observation by scanning electron microscopy (SEM) revealed these to possess high regularity and porosity with well-defined topographical features. A four-point probe study demonstrated remarkable electrical activities despite the presence of voids. In addition, we investigated the effects of these surfaces on cellular behaviors using PC 12 cells in the presence and absence of electrical stimulation. Our results suggest that the surface topography as well as an applied electrical field can play a crucial role in determining further cell responses. Indeed, surface-induced preferential regulation leads to enhanced cellular viability and neurite extension. Establishing the underlying cellular mechanisms in response to various external stimuli is essential in that one can elicit positive neuronal guidance and modulate their activities by engineering a series of electrical, chemical, and topographical cues.
Collapse
Affiliation(s)
- Grace Kang
- Center for Paralysis Research, Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, United States
| | | | | |
Collapse
|
24
|
Yao L, Pandit A, Yao S, McCaig CD. Electric field-guided neuron migration: a novel approach in neurogenesis. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:143-53. [PMID: 21275787 DOI: 10.1089/ten.teb.2010.0561] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Effective directional neuron migration is crucial in development of the central nervous system and for neurogenesis. Endogenous electrical signals are present in many developing systems and crucial cellular behaviors such as neuronal cell division, cell migration, and cell differentiation are all under the influence of such endogenous electrical cues. Preclinical in vivo studies have used electric fields (EFs) to attempt to enhance regrowth of damaged spinal cord axons with some success. Recent evidence shows that small EFs not only guide axonal growth, but also direct the earlier events of neuronal migration and neuronal cell division. This raises the possibility that applied or endogenous EFs, perhaps in combination, may direct transplanted neural stem cells, or regenerating neurons, to the desired site after brain injury or neuron degeneration. The high complexity of both structure and function of the nervous system, however, poses significant challenges to techniques for applying EFs to promote neurogenesis. The evolution of functional biomaterials and nanotechnology may provide promising solutions for the application of EFs in guiding neuron migration and neurogenesis within the central nervous system.
Collapse
Affiliation(s)
- Li Yao
- Network of Excellence for Functional Biomaterials, National Center for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | | | | | | |
Collapse
|