1
|
Larue L, Michely L, Grande D, Belbekhouche S. Design of Collagen and Gelatin-based Electrospun Fibers for Biomedical Purposes: An Overview. ACS Biomater Sci Eng 2024; 10:5537-5549. [PMID: 39092811 DOI: 10.1021/acsbiomaterials.4c00948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Collagen and gelatin are essential natural biopolymers commonly utilized in biomaterials and tissue engineering because of their excellent physicochemical and biocompatibility properties. They can be used either in combination with other biomacromolecules or particles or even exclusively for the enhancement of bone regeneration or for the development of biomimetic scaffolds. Collagen or gelatin derivatives can be transformed into nanofibrous materials with porous micro- or nanostructures and superior mechanical properties and biocompatibility using electrospinning technology. Specific attention was recently paid to electrospun mats of such biopolymers, due to their high ratio of surface area to volume, as well as their biocompatibility, biodegradability, and low immunogenicity. The fiber mats with submicro- and nanometer scale can replicate the extracellular matrix structure of human tissues and organs, making them highly suitable for use in tissue engineering due to their exceptional bioaffinity. The drawbacks may include rapid degradation and complete dissolution in aqueous media. The use of gelatin/collagen electrospun nanofibers in this form is thus greatly restricted for biomedicine. Therefore, the cross-linking of these fibers is necessary for controlling their aqueous solubility. This led to enhanced biological characteristics of the fibers, rendering them excellent options for various biomedical uses. The objective of this review is to highlight the key research related to the electrospinning of collagen and gelatin, as well as their applications in the biomedical field. The review features a detailed examination of the electrospinning fiber mats, showcasing their varying structures and performances resulting from diverse solvents, electrospinning processes, and cross-linking methods. Judiciously selected examples from literature will be presented to demonstrate major advantages of such biofibers. The current developments and difficulties in this area of research are also being addressed.
Collapse
Affiliation(s)
- Laura Larue
- Université Paris Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Laurent Michely
- Université Paris Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Daniel Grande
- Université Paris Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Sabrina Belbekhouche
- Université Paris Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| |
Collapse
|
2
|
Markel DC, Powell D, Wu B, Pawlitz P, Bou-Akl T, Chen L, Shi T, Ren W. Therapeutic Efficacy of an Erythromycin-Loaded Coaxial Nanofiber Coating in a Rat Model of S. aureus-Induced Periprosthetic Joint Infection. Int J Mol Sci 2024; 25:7926. [PMID: 39063169 PMCID: PMC11276967 DOI: 10.3390/ijms25147926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Implant surface nanofiber (NF) coatings represent an alternative way to prevent/treat periprosthetic joint infection (PJI) via local drug release. We developed and characterized a coaxial erythromycin (EM)-doped PLGA/PCL-PVA NF coating. The purpose of this study was to determine the efficacy of EM-NF coatings (EM0, no EM, EM100 (100 mg/mL), and EM1000 (1000 mg/mL) wt/wt) in a rat PJI model. A strong bond of the EM-NF coating to the surface of titanium (Ti) pins was confirmed by in vitro mechanical testing. Micro-computed tomography (mCT) analysis showed that both EM100 and EM1000 NF effectively reduced periprosthetic osteolysis compared to EM0 at 8 and 16 weeks after implantation. Histology showed that EM100 and EM1000 coatings effectively controlled infection and enhanced periprosthetic new bone formation. The bone implant contact (BIC) of EM100 (35.08%) was higher than negative controls and EM0 (3.43% and 0%, respectively). The bone area fraction occupancy (BAFO) of EM100 (0.63 mm2) was greater than controls and EM0 (0.390 mm2 and 0.0 mm2, respectively). The BAFO of EM100 was higher than that of EM1000 (0.3 mm2). These findings may provide a basis for a new implant surface fabrication strategy aimed at reducing the risks of defective osseointegration and PJI.
Collapse
Affiliation(s)
- David C. Markel
- The CORE Institute, 26750 Providence Pkwy #200, Novi, MI 48374, USA;
- Department of Biomedical Engineering, Wayne State University, 818 W. Hancock, Detroit, MI 48201, USA; (L.C.); (T.S.)
- Section of Orthopaedic Surgery, Ascension Providence Hospital Orthopaedic Research Laboratory, 16001 West Nine Mile Road, Southfield, MI 48075, USA; (D.P.); (B.W.); (P.P.); (W.R.)
| | - Dexter Powell
- Section of Orthopaedic Surgery, Ascension Providence Hospital Orthopaedic Research Laboratory, 16001 West Nine Mile Road, Southfield, MI 48075, USA; (D.P.); (B.W.); (P.P.); (W.R.)
| | - Bin Wu
- Section of Orthopaedic Surgery, Ascension Providence Hospital Orthopaedic Research Laboratory, 16001 West Nine Mile Road, Southfield, MI 48075, USA; (D.P.); (B.W.); (P.P.); (W.R.)
| | - Paula Pawlitz
- Section of Orthopaedic Surgery, Ascension Providence Hospital Orthopaedic Research Laboratory, 16001 West Nine Mile Road, Southfield, MI 48075, USA; (D.P.); (B.W.); (P.P.); (W.R.)
| | - Therese Bou-Akl
- Section of Orthopaedic Surgery, Ascension Providence Hospital Orthopaedic Research Laboratory, 16001 West Nine Mile Road, Southfield, MI 48075, USA; (D.P.); (B.W.); (P.P.); (W.R.)
| | - Liang Chen
- Department of Biomedical Engineering, Wayne State University, 818 W. Hancock, Detroit, MI 48201, USA; (L.C.); (T.S.)
| | - Tong Shi
- Department of Biomedical Engineering, Wayne State University, 818 W. Hancock, Detroit, MI 48201, USA; (L.C.); (T.S.)
| | - Weiping Ren
- Section of Orthopaedic Surgery, Ascension Providence Hospital Orthopaedic Research Laboratory, 16001 West Nine Mile Road, Southfield, MI 48075, USA; (D.P.); (B.W.); (P.P.); (W.R.)
- John D. Dingell VA Medical Center, 4646 John R St., Detroit, MI 48201, USA
| |
Collapse
|
3
|
Han Y, Jiang J, Li J, Zhao L, Xi Z. Influences of Polyphenols on the Properties of Crosslinked Acellular Fish Swim Bladders: Experiments and Molecular Dynamic Simulations. Polymers (Basel) 2024; 16:1111. [PMID: 38675029 PMCID: PMC11054729 DOI: 10.3390/polym16081111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Acellular fish swim bladders (AFSBs) are a promising biomaterial in tissue engineering, however, they may suffer from rapid degradation due to enzyme invasion. In this work, natural polyphenols, including epigallocatechin gallate (EGCG), proanthocyanidin (PC), tannic acid (TA) and protocatechuic acid (PCA), were utilized to improve the properties of AFSBs through crosslinking modifications. Fourier transform infrared (FTIR) results indicate that the triple helix of the collagen in AFSBs is well preserved after crosslinking. The differential scanning calorimetry (DSC), water contact angle (WCA) and in vitro degradation tests indicate that the polyphenol-crosslinked AFSBs exhibit improved thermal stability, enzymatic stability, hydrophilicity and mechanical properties. Among them, EGCG with multiple phenolic hydroxyl groups and low potential resistance is more favorable for the improvement of the mechanical properties and enzymatic stability of AFSBs, as well as their biocompatibility and integrity with the collagen triple helix. Moreover, the crosslinking mechanism was demonstrated to be due to the hydrogen bonds between polyphenols and AFSBs, and was affected by the molecular size, molecular weight and the hydroxyl groups activity of polyphenol molecules, as clarified by molecular dynamic (MD) simulations. The approach presented in this work paves a path for improving the properties of collagen materials.
Collapse
Affiliation(s)
- Yuqing Han
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.H.); (J.J.); (L.Z.)
| | - Jie Jiang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.H.); (J.J.); (L.Z.)
| | - Jinjin Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.H.); (J.J.); (L.Z.)
| | - Ling Zhao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.H.); (J.J.); (L.Z.)
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenhao Xi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.H.); (J.J.); (L.Z.)
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Aasarey R, Yadav K, Kashyap BK, Prabha S, Kumar P, Kumar A, Ruokolainen J, Kesari KK. Role of Immunological Cells in Hepatocellular Carcinoma Disease and Associated Pathways. ACS Pharmacol Transl Sci 2023; 6:1801-1816. [PMID: 38093838 PMCID: PMC10714437 DOI: 10.1021/acsptsci.3c00216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 03/28/2024]
Abstract
Hepatocellular carcinoma (HCC) remains one of the predominant causes of cancer-related mortality across the globe. It is attributed to obesity, excessive alcohol consumption, smoking, and infection by the hepatitis virus. Early diagnosis of HCC is essential, and local treatments such as surgical excision and percutaneous ablation are effective. Palliative systemic therapy, primarily with the tyrosine kinase inhibitor Sorafenib, is used in advanced cases. However, the prognosis for advanced HCC remains poor. This Review additionally describes the pathophysiological mechanisms of HCC, which include aberrant molecular signaling, genomic instability, persistent inflammation, and the paradoxical position of the immune system in promoting and suppressing HCC. The paper concludes by discussing the growing body of research on the relationship between mitochondria and HCC, suggesting that mitochondrial dysfunction may contribute to the progression of HCC. This Review focuses on immunological interactions between different mechanisms of HCC progression, including obesity, viral infection, and alcohol consumption.
Collapse
Affiliation(s)
- Ram Aasarey
- Department
of Laboratory Medicine, All India Institute
of Medical Science, New Delhi-11029, India
| | - Kajal Yadav
- Department
of Biotechnology, All India Institute of
Medical Science, New Delhi-11029, India
| | - Brijendra Kumar Kashyap
- Department
of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi-284128, Uttar Pradesh, India
| | - Sarit Prabha
- Department
of Biological Science and Engineering, Maulana
Azad National Institute of Technology, Bhopal-462003, Madhya Pradesh,India
| | - Pramod Kumar
- Indian
Council of Medical Research, National Institute
of Cancer Prevention and Research (NICPR), l-7, Sector-39, Noida-201301, National Capital Region, India
| | - Anil Kumar
- Department
of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Cheri-Manatu, Karmre, Kanke-835222, Ranchi, India
| | - Janne Ruokolainen
- Department
of Applied Physics, School of Science, Aalto
University, FI-00076 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, FI-00076 Espoo, Finland
- Research
and Development Cell, Lovely Professional
University, Phagwara-144411, Punjab, India
| |
Collapse
|
5
|
Dutt Y, Pandey RP, Dutt M, Gupta A, Vibhuti A, Vidic J, Raj VS, Chang CM, Priyadarshini A. Therapeutic applications of nanobiotechnology. J Nanobiotechnology 2023; 21:148. [PMID: 37149615 PMCID: PMC10163736 DOI: 10.1186/s12951-023-01909-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023] Open
Abstract
Nanobiotechnology, as a novel and more specialized branch of science, has provided a number of nanostructures such as nanoparticles, by utilizing the methods, techniques, and protocols of other branches of science. Due to the unique features and physiobiological characteristics, these nanostructures or nanocarriers have provided vast methods and therapeutic techniques, against microbial infections and cancers and for tissue regeneration, tissue engineering, and immunotherapies, and for gene therapies, through drug delivery systems. However, reduced carrying capacity, abrupt and non-targeted delivery, and solubility of therapeutic agents, can affect the therapeutic applications of these biotechnological products. In this article, we explored and discussed the prominent nanobiotechnological methods and products such as nanocarriers, highlighted the features and challenges associated with these products, and attempted to conclude if available nanostructures offer any scope of improvement or enhancement. We aimed to identify and emphasize the nanobiotechnological methods and products, with greater prospect and capacity for therapeutic improvements and enhancements. We found that novel nanocarriers and nanostructures, such as nanocomposites, micelles, hydrogels, microneedles, and artificial cells, can address the associated challenges and inherited drawbacks, with help of conjugations, sustained and stimuli-responsive release, ligand binding, and targeted delivery. We recommend that nanobiotechnology, despite having few challenges and drawbacks, offers immense opportunities that can be harnessed in delivering quality therapeutics with precision and prediction. We also recommend that, by exploring the branched domains more rigorously, bottlenecks and obstacles can also be addressed and resolved in return.
Collapse
Affiliation(s)
- Yogesh Dutt
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India
| | - Ramendra Pati Pandey
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India.
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India.
| | - Mamta Dutt
- Mamta Dental Clinic, Opposite Sector 29, Main Badkhal Road, Faridabad, Haryana, 121002, India
| | - Archana Gupta
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India
| | - Arpana Vibhuti
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India
| | - Jasmina Vidic
- Université Paris-Saclay, Micalis Institute, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| | - V Samuel Raj
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India
| | - Chung-Ming Chang
- Master & Ph.D Program in Biotechnology Industry, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 33302, Taiwan (ROC).
| | - Anjali Priyadarshini
- Department of Microbiology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India.
- Department of Biotechnology, SRM University, 39, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat, Haryana, 131029, India.
| |
Collapse
|
6
|
Mejía Suaza ML, Leos Rivera JC, Rodríguez Padilla MC, Moncada Acevedo ME, Ossa Orozco CP, Zarate Triviño DG. Poly(vinyl alcohol)/Silk Fibroin/Ag-NPs Composite Nanofibers as a Substrate for MG-63 Cells' Growth. Polymers (Basel) 2023; 15:polym15081838. [PMID: 37111985 PMCID: PMC10144439 DOI: 10.3390/polym15081838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/29/2023] Open
Abstract
Nanofiber scaffolds of polyvinyl alcohol, silk fibroin from Bombyx mori cocoons, and silver nanoparticles were developed as a substrate for MG-63 growth. The fiber morphology, mechanical properties, thermal degradation, chemical composition, and water contact angle were investigated. In vitro tests were performed by the cell viability MTS test of MG-63 cells on electrospun PVA scaffolds, mineralization was analyzed by alizarin red, and the alkaline phosphatase (ALP) assay was evaluated. At higher PVA concentrations, Young's modulus (E) increased. The addition of fibroin and silver nanoparticles improved the thermal stability of PVA scaffolds. FTIR spectra indicated characteristic absorption peaks related to the chemical structures of PVA, fibroin, and Ag-NPs, demonstrating good interactions between them. The contact angle of the PVA scaffolds decreased with the incorporation of fibroin and showed hydrophilic characteristics. In all concentrations, MG-63 cells on PVA/fibroin/Ag-NPs scaffolds had higher cell viability than PVA pristine. On day ten of culture, PVA18/SF/Ag-NPs showed the highest mineralization, observed by the alizarin red test. PVA10/SF/Ag-NPs presented the highest alkaline phosphatase activity after an incubation time of 37 h. The achievements indicate the potential of the nanofibers of PVA18/SF/Ag-NPs as a possible substitute for bone tissue engineering (BTE).
Collapse
Affiliation(s)
- Monica L Mejía Suaza
- Advanced Materials and Energy (MATyER) Research Group, Faculty of Engineering, Metropolitan Technological Institute (ITM), Medellin 050012, Colombia
| | - Jennifer C Leos Rivera
- Laboratory of Immunology and Virology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon, Monterrey 64000, Mexico
| | - Maria C Rodríguez Padilla
- Laboratory of Immunology and Virology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon, Monterrey 64000, Mexico
| | - Maria E Moncada Acevedo
- Advanced Materials and Energy (MATyER) Research Group, Faculty of Engineering, Metropolitan Technological Institute (ITM), Medellin 050012, Colombia
| | - Claudia P Ossa Orozco
- Biomaterials Research Group, Faculty of Engineering, University of Antioquia, Medellin 050010, Colombia
| | - Diana G Zarate Triviño
- Laboratory of Immunology and Virology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon, Monterrey 64000, Mexico
| |
Collapse
|
7
|
Existing and Novel Biomaterials for Bone Tissue Engineering. Int J Mol Sci 2022; 24:ijms24010529. [PMID: 36613972 PMCID: PMC9820083 DOI: 10.3390/ijms24010529] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The treatment of bone defects remains one of the major challenges in modern clinical practice. Nowadays, with the increased incidence of bone disease in an aging population, the demand for materials to repair bone defects continues to grow. Recent advances in the development of biomaterials offer new possibilities for exploring modern bone tissue engineering strategies. Both natural and synthetic biomaterials have been used for tissue repair. A variety of porous structures that promote cell adhesion, differentiation, and proliferation enable better implant integration with increasingly better physical properties. The selection of a suitable biomaterial on which the patient's new tissue will grow is one of the key issues when designing a modern tissue scaffold and planning the entire treatment process. The purpose of this article is to present a comprehensive literature review of existing and novel biomaterials used in the surgical treatment of bone tissue defects. The materials described are divided into three groups-organic, inorganic, and synthetic polymers-taking into account current trends. This review highlights different types of existing and novel natural and synthetic materials used in bone tissue engineering and their advantages and disadvantages for bone defects regeneration.
Collapse
|
8
|
Pérez-Nava A, Espino-Saldaña AE, Pereida-Jaramillo E, Hernández-Vargas J, Martinez-Torres A, Vázquez-Lepe MO, Mota-Morales JD, Frontana Uribe BA, Betzabe González-Campos J. Surface collagen functionalization of electrospun poly(vinyl alcohol) scaffold for tissue engineering. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Alam MR, Shahid MA, Alimuzzaman S, Khan AN. Sources, extractions and applications of bio-maker collagen- A review. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Heng TT, Tey JY, Soon KS, Woo KK. Utilizing Fish Skin of Ikan Belida (Notopterus lopis) as a Source of Collagen: Production and Rheology Properties. Mar Drugs 2022; 20:md20080525. [PMID: 36005530 PMCID: PMC9410226 DOI: 10.3390/md20080525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Collagen hydrogels have been extensively applied in biomedical applications. However, their mechanical properties are insufficient for such applications. Our previous study showed improved mechanical properties when collagen was blended with alginate. The current study aims to analyze the physico-chemical properties of collagen-alginate (CA) films such as swelling, porosity, denaturation temperature (Td), and rheology properties. Collagen was prepared from discarded fish skin of Ikan Belida (Notopterus lopis) that was derived from fish ball manufacturing industries and cross-linked with alginate from brown seaweed (Sargasum polycystum) of a local species as a means to benefit the downstream production of marine industries. CA hydrogels were fabricated with ratios (v/v) of 1:1, 1:4, 3:7, 4:1, and 7:3 respectively. FTIR spectrums of CA film showed an Amide I shift of 1636.12 cm−1 to 1634.64 cm−1, indicating collagen-alginate interactions. SEM images of CA films show a porous structure that varied from pure collagen. DSC analysis shows Td was improved from 61.26 °C (collagen) to 83.11 °C (CA 3:7). CA 4:1 swelled nearly 800% after 48 h, correlated with the of hydrogels porosity. Most CA demonstrated visco-elastic solid characteristics with greater storage modulus (G′) than lost modulus (G″). Shear thinning and non-Newtonian behavior was observed in CA with 0.4% to 1.0% (w/v) CaCl2. CA hydrogels that were derived from discarded materials shows promising potential to serve as a wound dressing or ink for bio printing in the future.
Collapse
Affiliation(s)
- Tzen T. Heng
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang 43000, Selangor, Malaysia
| | - Jing Y. Tey
- Department of Mechanical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang 43000, Selangor, Malaysia
| | - Kean S. Soon
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang 43000, Selangor, Malaysia
| | - Kwan K. Woo
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang 43000, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
11
|
Ren W, Yu X, Chen L, Shi T, Bou-Akl T, Markel DC. Osteoblastic differentiation and bactericidal activity are enhanced by erythromycin released from PCL/PLGA-PVA coaxial nanofibers. J Biomater Appl 2022; 37:712-723. [PMID: 35624088 DOI: 10.1177/08853282221105676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Prosthesis with antibiotic-eluting nanofibrous (NF) coating represents coating alternative to prevent periprosthetic joint infection (PJI). In this study, four formulas of erythromycin (EM)-embedded both in core and sheath components of coaxial PCL/PLGA-PVA NF coatings were developed: EM 0 (no EM), EM 100 (100 μg/mL), EM500 (500 μg/mL) and EM1000 (1000 μg/mL). EM doping altered the physicochemical and structural properties of NFs to some extent, including the increase of NF porosity and surface wettability. A sustained EM release from EM-NFs for >4 weeks was observed. Eluents collected from EM-NFs showed strong zone of inhibition (ZOI) to Staphylococcus aureus growth and the sizes of ZOI positively related to the amount of EM released. EM-NFs were nontoxic to rat bone marrow stem cells (rBMSCs). Cell growth was significantly enhanced when comparing rBMSCs cultured on EM-NFs (EM0 and EM 100) to those cultured on NF-free control. Cell differentiation (ALP activity) was notably enhanced by EM100, compared to control and EM0. Eluents from EM-NFs on rBMSCs were also investigated. The presence of 10% EM-NF eluents inhibited the growth of rBMSCs, which was proportional to the amount of EM doped. The ALP activity was notably enhanced by eluents from EM-NFs with the highest activity in EM100 compared to control and EM0. Our data indicate that EM-doped PCL/PLGA-PVA coaxial NF coatings have a great potential to be applied as a new implant coating matrices. Further in vivo testing in animal models is currently planned that should represent the first step in predicting the clinical outcomes of EM-eluting NF coating approach.
Collapse
Affiliation(s)
- Weiping Ren
- Department of Orthopedic, 7432Ascension Providence Hospital, Southfield, MI, USA.,20036John D Dingle VA Medical Center, Detroit, MI, USA.,Biomedical Engineering, 2954Wayne State University, Detroit, MI, USA
| | - Xiaowei Yu
- Department of Orthopedics, 378725Shanghai 6th People's Hospital Jiaotong University, China
| | - Liang Chen
- Biomedical Engineering, 2954Wayne State University, Detroit, MI, USA
| | - Tong Shi
- Biomedical Engineering, 2954Wayne State University, Detroit, MI, USA
| | - Therese Bou-Akl
- Department of Orthopedic, 7432Ascension Providence Hospital, Southfield, MI, USA.,Biomedical Engineering, 2954Wayne State University, Detroit, MI, USA
| | - David C Markel
- Department of Orthopedic, 7432Ascension Providence Hospital, Southfield, MI, USA.,Biomedical Engineering, 2954Wayne State University, Detroit, MI, USA.,480289The Core Institute, Novi, MI, USA
| |
Collapse
|
12
|
Qin D, Wang N, You XG, Zhang AD, Chen XG, Liu Y. Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: ongoing research and perspectives. Biomater Sci 2021; 10:318-353. [PMID: 34783809 DOI: 10.1039/d1bm01294k] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone is a hard-connective tissue composed of matrix, cells and bioactive factors with a hierarchical structure, where the matrix is mainly composed of type I collagen and hydroxyapatite. Collagen fibers assembled by collagen are the template for mineralization and make an important contribution to bone formation and the bone remodeling process. Therefore, collagen has been widely clinically used for bone/cartilage defect regeneration. However, pure collagen implants, such as collagen scaffolds or sponges, have limitations in the bone/cartilage regeneration process due to their poor mechanical properties and osteoinductivity. Different forms of collagen-based composites prepared by incorporating natural/artificial polymers or bioactive inorganic substances are characterized by their interconnected porous structure and promoting cell adhesion, while they improve the mechanical strength, structural stability and osteogenic activities of the collagen matrix. In this review, various forms of collagen-based biocomposites, such as scaffolds, sponges, microspheres/nanoparticles, films and microfibers/nanofibers prepared by natural/synthetic polymers, bioactive ceramics and carbon-based materials compounded with collagen are reviewed. In addition, the application of collagen-based biocomposites as cytokine, cell or drug (genes, proteins, peptides and chemosynthetic) delivery platforms for proangiogenesis and bone/cartilage tissue regeneration is also discussed. Finally, the potential application, research and development direction of collagen-based biocomposites in future bone/cartilage tissue regeneration are discussed.
Collapse
Affiliation(s)
- Di Qin
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Na Wang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xin-Guo You
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - An-Di Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| |
Collapse
|
13
|
Mejia ML, Moncada ME, Ossa-Orozco CP. Poly (vinyl alcohol)/Silk Fibroin/Ag NPs composite nanofibers for bone tissue engineering. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1176-1180. [PMID: 34891497 DOI: 10.1109/embc46164.2021.9629992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this work, electrospinning was used for the preparation of composite nanofibrous scaffold, of polyvinyl alcohol (PVA), silk fibroin (SF) extract of Bombyx mori cocoons and silver nanoparticles (Ag NPs), as a substrate for bone tissue engineering. The PVA pristine was prepared at a concentration of 10% wt. The composite nanofibers scaffolds of PVA was prepared with silk fibroin and silver nanoparticles, in relation of PVA: SF (90:10) (v/v) respectively. The formation and presence of AgNPs was confirmed by ultraviolet-visible spectroscopy (Uv-vis). The diameter distribution of the nanofibers was narrow by SEM using Image J software. The chemical composition was determined by FTIR spectra. The wettability was determined using water contact angle. The results showed the average nanofiber diameter of PVA10 pristine was 108.18 nm and to PVA10/SF/Ag NPs was 106.62 nm, no significant changes were noted in the mean diameter, but there were changes in its morphology. The average nanofiber diameter increase with the concentration of PVA at PVA15/SF/Ag NPs was 189.12 nm to PVA18/SF/Ag NPs was 224,23 nm. FTIR spectra indicated characteristic absorption peaks related to the chemical structure of PVA, fibroin and Ag NPs, it demonstrated good interactions between them, caused by strong intermolecular hydrogen bonds. The contact angle of the scaffolds PVA 10%wt decrease with the incorporation of fibroin and show hydrophilic characteristics. The achievements indicate the potential of the nanofibers of PVA15/SF/Ag NPs as a possible substitute for bone tissue engineering.Clinical Relevance-This establishes a possible substrate of PVA/SF/Ag NPs that exhibit desired properties such as porosity and high surface area to volume ratio for bone tissue engineering.
Collapse
|
14
|
Yadav BKN, Patel GC. Fabrication and characterization of coblended methyl cellulose with polyvinyl alcohol electrospun nanofibers as a carrier for drug delivery system. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03659-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Liu J, Ma X, Shi W, Xing J, Ma C, Li S, Huang Y. Ultraviolet blocking and antioxidant polyvinyl alcohol films incorporated with baicalin extraction from Scutellaria baicalensis Georgi. JOURNAL OF POLYMER ENGINEERING 2021. [DOI: 10.1515/polyeng-2020-0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Baicalin, an active flavonoid ingredient of Scutellaria baicalensis Georgi, was extracted by heat reflux extraction and showed the same significance UV absorption property with standard baicalin. Active films were prepared from polyvinyl alcohol (PVA) containing baicalin extract by casting method. The effect of baicalin extracts on the UV-blocking, optical, antioxidant property, water vapor permeability, swelling and mechanical properties of the films were studied. UV–vis transmittance spectra showed that PVA films incorporated with baicalin extract blocked ultraviolet light range from 280–400 nm even with low concentration of baicalin (0.5 wt%) and maintain the high transparency in visible spectrum. The outstanding UV-blocking properties of PVA films incorporated with baicalin extract were also confirmed by Rhodamine B degradation. Baicalin conferred antioxidant properties to PVA films as determined by DPPH radical scavenging activity. Due to the interaction between hydroxy groups of baicalin and PVA molecule, water vapor permeability, swelling and elongation at break of the films were decreased accompanied with the increasing in tensile strength and Young’s modulus. FTIR reveal that the interaction between PVA molecules was significant changed by the introduction of baicalin. These results suggest that PVA film incorporated with baicalin extract can be used for the development of functional protective film.
Collapse
Affiliation(s)
- Jinshu Liu
- Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Key Laboratory of Polymer Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University , Xi’an 710129 , Shaanxi Province, China
- College of Textile Science and Engineering, Xi’an Polytechnic University , Xi’an 710048 , China
| | - Xiaoyan Ma
- Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Key Laboratory of Polymer Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University , Xi’an 710129 , Shaanxi Province, China
| | - Wenzhao Shi
- College of Textile Science and Engineering, Xi’an Polytechnic University , Xi’an 710048 , China
| | - Jianwei Xing
- College of Textile Science and Engineering, Xi’an Polytechnic University , Xi’an 710048 , China
| | - Chaoqun Ma
- College of Textile Science and Engineering, Xi’an Polytechnic University , Xi’an 710048 , China
| | - Susong Li
- College of Textile Science and Engineering, Xi’an Polytechnic University , Xi’an 710048 , China
| | - Yayi Huang
- College of Textile Science and Engineering, Xi’an Polytechnic University , Xi’an 710048 , China
| |
Collapse
|
16
|
Keshvardoostchokami M, Majidi SS, Huo P, Ramachandran R, Chen M, Liu B. Electrospun Nanofibers of Natural and Synthetic Polymers as Artificial Extracellular Matrix for Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E21. [PMID: 33374248 PMCID: PMC7823539 DOI: 10.3390/nano11010021] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023]
Abstract
Many types of polymer nanofibers have been introduced as artificial extracellular matrices. Their controllable properties, such as wettability, surface charge, transparency, elasticity, porosity and surface to volume proportion, have attracted much attention. Moreover, functionalizing polymers with other bioactive components could enable the engineering of microenvironments to host cells for regenerative medical applications. In the current brief review, we focus on the most recently cited electrospun nanofibrous polymeric scaffolds and divide them into five main categories: natural polymer-natural polymer composite, natural polymer-synthetic polymer composite, synthetic polymer-synthetic polymer composite, crosslinked polymers and reinforced polymers with inorganic materials. Then, we focus on their physiochemical, biological and mechanical features and discussed the capability and efficiency of the nanofibrous scaffolds to function as the extracellular matrix to support cellular function.
Collapse
Affiliation(s)
- Mina Keshvardoostchokami
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China; (M.K.); (P.H.); (R.R.)
| | - Sara Seidelin Majidi
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark; (S.S.M.); (M.C.)
- Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China; (M.K.); (P.H.); (R.R.)
| | - Rajan Ramachandran
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China; (M.K.); (P.H.); (R.R.)
| | - Menglin Chen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark; (S.S.M.); (M.C.)
- Department of Engineering, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China; (M.K.); (P.H.); (R.R.)
| |
Collapse
|
17
|
Bonilla-Represa V, Abalos-Labruzzi C, Herrera-Martinez M, Guerrero-Pérez MO. Nanomaterials in Dentistry: State of the Art and Future Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1770. [PMID: 32906829 PMCID: PMC7557393 DOI: 10.3390/nano10091770] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
Nanomaterials are commonly considered as those materials in which the shape and molecular composition at a nanometer scale can be controlled. Subsequently, they present extraordinary properties that are being useful for the development of new and improved applications in many fields, including medicine. In dentistry, several research efforts are being conducted, especially during the last decade, for the improvement of the properties of materials used in dentistry. The objective of the present article is to offer the audience a complete and comprehensive review of the main applications that have been developed in dentistry, by the use of these materials, during the last two decades. It was shown how these materials are improving the treatments in mainly all the important areas of dentistry, such as endodontics, periodontics, implants, tissue engineering and restorative dentistry. The scope of the present review is, subsequently, to revise the main applications regarding nano-shaped materials in dentistry, including nanorods, nanofibers, nanotubes, nanospheres/nanoparticles, and zeolites and other orders porous materials. The results of the bibliographic analysis show that the most explored nanomaterials in dentistry are graphene and carbon nanotubes, and their derivatives. A detailed analysis and a comparative study of their applications show that, although they are quite similar, graphene-based materials seem to be more promising for most of the applications of interest in dentistry. The bibliographic study also demonstrated the potential of zeolite-based materials, although the low number of studies on their applications shows that they have not been totally explored, as well as other porous nanomaterials that have found important applications in medicine, such as metal organic frameworks, have not been explored. Subsequently, it is expected that the research effort will concentrate on graphene and zeolite-based materials in the coming years. Thus, the present review paper presents a detailed bibliographic study, with more than 200 references, in order to briefly describe the main achievements that have been described in dentistry using nanomaterials, compare and analyze them in a critical way, with the aim of predicting the future challenges.
Collapse
Affiliation(s)
- Victoria Bonilla-Represa
- Departamento de Operatoria Dental y Endodoncia, Universidad de Sevilla, E-41009 Sevilla, Spain; (V.B.-R.); (M.H.-M.)
| | | | - Manuela Herrera-Martinez
- Departamento de Operatoria Dental y Endodoncia, Universidad de Sevilla, E-41009 Sevilla, Spain; (V.B.-R.); (M.H.-M.)
| | | |
Collapse
|
18
|
Huang CL, Lee KM, Liu ZX, Lai RY, Chen CK, Chen WC, Hsu JF. Antimicrobial Activity of Electrospun Polyvinyl Alcohol Nanofibers Filled with Poly[2-(tert-butylaminoethyl) Methacrylate]-Grafted Graphene Oxide Nanosheets. Polymers (Basel) 2020; 12:E1449. [PMID: 32605222 PMCID: PMC7408366 DOI: 10.3390/polym12071449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/04/2023] Open
Abstract
A novel cationic polymer, poly[2-(tert-butylaminoethyl) methacrylate] (PTA), effectively kills various strains of bacteria with low toxicity to tissue cells. Graphene-based materials demonstrate exceptional electron transport capability, antibacterial activity, favorable nontoxicity, and versatile applicability. PTA can be grafted onto the graphene oxide (GO) surface (GO-g-PTA) to enhance the antimicrobial efficiency of the latter against Staphylococcus aureus (S. aureus). In this study, GO-g-PTA powders were successfully synthesized via free radical polymerization (GO-g-PTA-F) and atom transfer radical polymerization (GO-g-PTA-A). The antimicrobial efficiencies of graphene nanosheets (GNSs), GO-g-PTA-F, and GO-g-PTA-A were then investigated. Addition of GNS, GO-g-PTA-F, and GO-g-PTA-A to the PVA nanofibers was carried out elucidate the effects of filler amount and physical treatment on the morphology, microstructure, crystallization behaviors, antimicrobial efficiency, and cytotoxicity of the composite fibers. Finally, the potential applications of electrospun PVA/GNS, PVA/GO-g-PTA-F, and PVA/GO-g-PTA-A composite nanofiber mats to chronic wound care were evaluated. The resulting PVA/GO-g-PTA-A composite nanofiber mats showed enhanced antimicrobial ability against S. aureus compared with the PVA/GNS and PVA/GO-g-PTA-F composite nanofiber mats at the same filler volume percentage.
Collapse
Affiliation(s)
- Chien-Lin Huang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (Z.-X.L.); (R.-Y.L.); (W.-C.C.)
| | - Kun-Mu Lee
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Zheng-Xian Liu
- Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (Z.-X.L.); (R.-Y.L.); (W.-C.C.)
| | - Ruo-Yu Lai
- Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (Z.-X.L.); (R.-Y.L.); (W.-C.C.)
| | - Chih-Kuang Chen
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Wen-Cheng Chen
- Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; (Z.-X.L.); (R.-Y.L.); (W.-C.C.)
| | - Jen-Fu Hsu
- Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
19
|
Ju H, Liu X, Zhang G, Liu D, Yang Y. Comparison of the Structural Characteristics of Native Collagen Fibrils Derived from Bovine Tendons using Two Different Methods: Modified Acid-Solubilized and Pepsin-Aided Extraction. MATERIALS 2020; 13:ma13020358. [PMID: 31940943 PMCID: PMC7013963 DOI: 10.3390/ma13020358] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/30/2019] [Accepted: 01/08/2020] [Indexed: 01/15/2023]
Abstract
Native collagen fibrils (CF) were successfully extracted from bovine tendons using two different methods: modified acid-solubilized extraction for A-CF and pepsin-aided method for P-CF. The yields of A-CF and P-CF were up to 64.91% (±1.07% SD) and 56.78% (±1.22% SD) (dry weight basis), respectively. The analyses of both amino acid composition and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) confirmed that A-CF and P-CF were type I collagen fibrils. Both A-CF and P-CF retained the intact crystallinity and integrity of type I collagen’s natural structure by FTIR spectra, circular dichroism spectroscopy (CD) and X-ray diffraction detection. The aggregation structures of A-CF and P-CF were displayed by UV–Vis. However, A-CF showed more intact aggregation structure than P-CF. Microstructure and D-periodicities of A-CF and P-CF were observed (SEM and TEM). The diameters of A-CF and P-CF are about 386 and 282 nm, respectively. Although both A-CF and P-CF were theoretically concordant with the Schmitt hypothesis, A-CF was of evener thickness and higher integrity in terms of aggregation structure than P-CF. Modified acid-solubilized method provides a potential non-enzyme alternative to extract native collagen fibrils with uniform thickness and integral aggregation structure.
Collapse
Affiliation(s)
- Haiyan Ju
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan 430073, China; (H.J.); (X.L.); (G.Z.)
| | - Xiuying Liu
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan 430073, China; (H.J.); (X.L.); (G.Z.)
| | - Gang Zhang
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan 430073, China; (H.J.); (X.L.); (G.Z.)
| | - Dezheng Liu
- Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, Hubei University of Arts and Science, Xiangyang 441053, China
- Correspondence: (D.L.); (Y.Y.)
| | - Yongsheng Yang
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan 430073, China; (H.J.); (X.L.); (G.Z.)
- Correspondence: (D.L.); (Y.Y.)
| |
Collapse
|
20
|
Su W, Hu Y, Zeng M, Li M, Lin S, Zhou Y, Xie J. Design and evaluation of nano-hydroxyapatite/poly(vinyl alcohol) hydrogels coated with poly(lactic-co-glycolic acid)/nano-hydroxyapatite/poly(vinyl alcohol) scaffolds for cartilage repair. J Orthop Surg Res 2019; 14:446. [PMID: 31847866 PMCID: PMC6916227 DOI: 10.1186/s13018-019-1450-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/31/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Poly(vinyl alcohol) (PVA) hydrogels have been widely used in synthetic cartilage materials. However, limitations of PVA hydrogels such as poor biomechanics and limited cell ingrowth remain challenges in this field. METHODS This work aimed to design novel nano-hydroxyapatite (nano-HA)/poly(vinyl alcohol) (PVA) hydrogels coated with a poly(lactic-co-glycolic acid) (PLGA)/nano-HA/PVA scaffold to counter the limitations of PVA hydrogels. The core, comprising nano-HA/PVA hydrogel, had the primary role of bearing the mechanical load. The peripheral structure, composed of PLGA/nano-HA/PVA, was designed to favor interaction with surrounding cartilage. RESULTS The double-layer HA/PVA hydrogel coated with PLGA/HA/PVA scaffold was successfully prepared using a two-step molding method, and the mechanical properties and biocompatibility were characterized. The mechanical properties of the novel PLGA/HA/PVA scaffold modified HA/PVA hydrogel were similar to those of native cartilage and showed greater sensitivity to compressive stress than to tensile stress. Rabbit chondrocytes were seeded in the composites to assess the biocompatibility and practicability in vitro. The results showed that the peripheral component comprising 30 wt% PLGA/5 wt% HA/15 wt% PVA was most conducive to rabbit chondrocyte adhesion and proliferation. CONCLUSIONS The study indicated that the double-layer HA/PVA hydrogel coated with PLGA/HA/PVA scaffold has the potential for cartilage repair.
Collapse
Affiliation(s)
- Weiping Su
- Department of Orthopedics, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Min Zeng
- Department of Orthopedics, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Mingqing Li
- Department of Orthopedics, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Shaoru Lin
- Department of Orthopedics, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yangying Zhou
- Department of Oncology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Jie Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
21
|
Influence of PLLA/PCL/HA Scaffold Fiber Orientation on Mechanical Properties and Osteoblast Behavior. MATERIALS 2019; 12:ma12233879. [PMID: 31771297 PMCID: PMC6926818 DOI: 10.3390/ma12233879] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 01/25/2023]
Abstract
Scaffolds based on aligned and non-aligned poly (L-lactic acid) (PLLA)/polycaprolactone (PCL) fibers obtained by electrospinning, associated to electrosprayed hydroxyapatite (HA) for tissue engineering applications were developed and their performance was compared in terms of their morphology and biological and mechanical behaviors. The morphological results assessed by scanning electron microscopy showed a mesh of PLLA/PCL fibers (random and perfectly aligned) associated with aggregates of nanophased HA. Fourier transform infrared spectrometry confirmed the homogeneity in the blends and the presence of nanoHA in the scaffold. As a result of fiber alignment a 15-fold increase in Young's Modulus and an 8-fold increase in tensile strength were observed when compared to non-aligned fibers. In PLLA/PCL/HA scaffolds, the introduction of nanoHA caused a remarkable improvement of the mechanical strength of this material acting as a reinforcement, enhancing the response of these constructs to tensile stress. In vitro testing was evaluated using osteoblast (MC3T3-E1) cells. The results showed that both fibrous scaffolds were able to support osteoblast cell adhesion and proliferation and that fiber alignment induced increased cellular metabolic activity. In addition, the adhesion and proliferation of Staphylococcus aureus were evaluated and a lower number of colony forming units (CFUs) was obtained in the scaffolds with aligned fibers.
Collapse
|
22
|
Chahal S, Kumar A, Hussian FSJ. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1308-1355. [DOI: 10.1080/09205063.2019.1630699] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sugandha Chahal
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| | - Anuj Kumar
- Natural Resources Institute Finland (Luke), Espoo, Finland
| | | |
Collapse
|
23
|
Chen L, Mazeh H, Guardia A, Song W, Begeman P, Markel DC, Ren W. Sustained release of strontium (Sr2+) from polycaprolactone/poly (D,L-lactide-co-glycolide)-polyvinyl alcohol coaxial nanofibers enhances osteoblastic differentiation. J Biomater Appl 2019; 34:533-545. [DOI: 10.1177/0885328219858736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Liang Chen
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Hanan Mazeh
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Angelica Guardia
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Wei Song
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Paul Begeman
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - David C Markel
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
- Department of Orthopedics, Providence Hospital and Medical Center, Southfield, MI, USA
- The Core Institute, Novi, MI, USA
| | - Weiping Ren
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
- Department of Orthopedics, Providence Hospital and Medical Center, Southfield, MI, USA
- John D. Dingle VA Medical Center, Detroit, MI, USA
| |
Collapse
|
24
|
Li TT, Zhong Y, Yan M, Zhou W, Xu W, Huang SY, Sun F, Lou CW, Lin JH. Synergistic Effect and Characterization of Graphene/Carbon Nanotubes/Polyvinyl Alcohol/Sodium Alginate Nanofibrous Membranes Formed Using Continuous Needleless Dynamic Linear Electrospinning. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E714. [PMID: 31071951 PMCID: PMC6567264 DOI: 10.3390/nano9050714] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/27/2019] [Accepted: 05/04/2019] [Indexed: 01/23/2023]
Abstract
In this study, a self-made continuous needleless dynamic linear electrospinning technique is employed to fabricate large-scale graphene (Gr)/carbon nanotubes (CNT)/polyvinyl alcohol (PVA)/sodium alginate (SA) nanofibrous membranes. The synergistic effect of Gr and CNT fillers in the PVA/SA membrane is explored in depth by changing the volume ratio (v/v) of Gr and CNT as 10:0, 8:2, 6:4, 4:6, 2:8, and 0:10. Microstructure, functional group, conductivity, and hydrophilicity of PVA/SA/Gr/CNT membranes was characterized. Results show that the linear electrode needleless electrospinning technique can be spun into 200-nm diameter fibers. The PVA/SA/Gr/CNT fibrous membrane has good hydrophilicity and thermal stability. A Gr/CN ratio of 6:4 possessed the optimal synergistic effect, which showed the lowest surface resistivity of 2.53 × 103 Ω/m2. This study will provide a reference for the large-scale preparation of nanofibrous membrane used as a artificial nerve conduit in the future.
Collapse
Affiliation(s)
- Ting-Ting Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tianjin Polytechnic University, Tianjin 300387, China.
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou 350108, China.
| | - Yanqin Zhong
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Mengxue Yan
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Wei Zhou
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Wenting Xu
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Shih-Yu Huang
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou 350108, China.
- Department of Chemical Engineering and Materials, Ocean College, Minjiang University, Fuzhou 350108, China.
| | - Fei Sun
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Ching-Wen Lou
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou 350108, China.
- Department of Chemical Engineering and Materials, Ocean College, Minjiang University, Fuzhou 350108, China.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
- College of Textile and Clothing, Qingdao University, Shandong 266071, China.
| | - Jia-Horng Lin
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tianjin Polytechnic University, Tianjin 300387, China.
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou 350108, China.
- College of Textile and Clothing, Qingdao University, Shandong 266071, China.
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan.
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
- Department of Fashion Design, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
25
|
Kazem-Arki M, Kabiri M, Rad I, Roodbari NH, Hosseinpoor H, Mirzaei S, Parivar K, Hanaee-Ahvaz H. Enhancement of osteogenic differentiation of adipose-derived stem cells by PRP modified nanofibrous scaffold. Cytotechnology 2018; 70:1487-1498. [PMID: 30083791 PMCID: PMC6269372 DOI: 10.1007/s10616-018-0226-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 05/03/2018] [Indexed: 12/26/2022] Open
Abstract
Recent developments in bone tissue engineering have paved the way for more efficient and cost-effective strategies. Additionally, utilization of autologous sources has been considered very desirable and is increasingly growing. Recently, activated platelet rich plasma (PRP) has been widely used in the field of bone tissue engineering, since it harbours a huge number of growth factors that can enhance osteogenesis and bone regeneration. In the present study, the osteogenic effects of PRP coated nanofibrous PES/PVA scaffolds on adipose-derived mesenchymal stem cells have been investigated. Common osteogenic markers were assayed by real time PCR. Alkaline phosphate activity, calcium deposition and Alizarin red staining assays were performed as well. The results revealed that the highest osteogenic differentiation occurred when cells were cultured on PRP coated PES/PVA scaffolds. Interestingly, direct application of PRP to culture media had no additive effects on osteogenesis of cells cultured on PRP coated PES/PVA scaffolds or those receiving typical osteogenic factors. The highest osteogenic effects were achieved by the simplest and most cost-effective method, i.e. merely by using PRP coated scaffolds. PRP coated PES/PVA scaffolds can maximally induce osteogenesis with no need for extrinsic factors. The major contribution of this paper to the current researches on bone regeneration is to suggest an easy, cost-effective approach to enhance osteogenesis via PRP coated scaffolds, with no additional external growth factors.
Collapse
Affiliation(s)
- Mandana Kazem-Arki
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Iman Rad
- Stem Cell Technology Research Center, Tehran, Iran
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | | | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
26
|
Anandan D, Mary Stella S, Arunai Nambiraj N, Vijayalakshmi U, Jaiswal AK. Development of mechanically compliant 3D composite scaffolds for bone tissue engineering applications. J Biomed Mater Res A 2018; 106:3267-3274. [DOI: 10.1002/jbm.a.36525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/24/2018] [Accepted: 07/12/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Dhivyaa Anandan
- Centre for Biomaterials; Cellular and Molecular Theranostics (CBCMT); Vellore 632014 Tamilnadu India
| | - S. Mary Stella
- School of Advanced Sciences (SAS); Vellore Institute of Technology (VIT); Vellore 632014 Tamilnadu India
| | - N. Arunai Nambiraj
- Centre for Biomaterials; Cellular and Molecular Theranostics (CBCMT); Vellore 632014 Tamilnadu India
| | - U. Vijayalakshmi
- School of Advanced Sciences (SAS); Vellore Institute of Technology (VIT); Vellore 632014 Tamilnadu India
| | - Amit Kumar Jaiswal
- Centre for Biomaterials; Cellular and Molecular Theranostics (CBCMT); Vellore 632014 Tamilnadu India
| |
Collapse
|
27
|
Li TT, Yan M, Jiang Q, Peng HK, Lin JH, Lou CW. Characterization and Microstructure of Linear Electrode-Electrospun Graphene-Filled Polyvinyl Alcohol Nanofiber Films. MATERIALS 2018; 11:ma11061033. [PMID: 29921778 PMCID: PMC6025312 DOI: 10.3390/ma11061033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 01/27/2023]
Abstract
With the aim of achieving controllable mass production of electrospun nanofiber films, this study proposes and investigates the feasibility of using a custom-made linear electrode- electrospun device to produce conductive graphene (GR)-filled polyvinyl alcohol (PVA) nanofibers. The film morphology and diameter of nanofibers are observed and measured to examine the effects of viscosity and conductivity of the PVA/GR mixtures. Likewise, the influence of the content of graphene on the hydrophilicity, electrical conductivity, electromagnetic interference shielding effectiveness (EMSE), and thermal stability of the PVA/GR nanofiber films is investigated. The test results show that the PVA/GR mixture has greater viscosity and electric conductivity than pure PVA solution and can be electrospun into PVA/GR nanofiber films that have good morphology and diameter distribution. The diameter of the nanofibers is 100 nm and the yield is 2.24 g/h, suggesting that the process qualifies for use in large-scale production. Increasing the content of graphene yields finer nanofibers, a smaller surface contact angle, and higher hydrophilicity of the nanofiber films. The presence of graphene is proven to improve the thermal stability and strengthens the EMSE by 20 dB at 150–1500 MHz. Mass production is proven to be feasible by the test results showing that PVA/GR nanofiber films can be used in the medical hygiene field.
Collapse
Affiliation(s)
- Ting-Ting Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, Tianjin Polytechnic University, Tianjin 300387, China.
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou 350108, China.
| | - Mengxue Yan
- Innovation Platform of Intelligent and Energy-Saving Textiles, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Qian Jiang
- Innovation Platform of Intelligent and Energy-Saving Textiles, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Hao-Kai Peng
- Innovation Platform of Intelligent and Energy-Saving Textiles, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Jia-Horng Lin
- Innovation Platform of Intelligent and Energy-Saving Textiles, Tianjin Polytechnic University, Tianjin 300387, China.
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan.
- Department of Chemical Engineering and Materials, Ocean College, Minjiang University, Fuzhou 350108, China.
- Department of Fashion Design, Asia University, Taichung 41354, Taiwan.
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
- College of Textile and Clothing, Qingdao University, Shandong 266071, China.
| | - Ching-Wen Lou
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou 350108, China.
- Department of Chemical Engineering and Materials, Ocean College, Minjiang University, Fuzhou 350108, China.
- College of Textile and Clothing, Qingdao University, Shandong 266071, China.
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
28
|
Zhou Z, Seta J, Markel DC, Song W, Yurgelevic SM, Yu XW, Ren W. Release of vancomycin and tobramycin from polymethylmethacrylate cements impregnated with calcium polyphosphate hydrogel. J Biomed Mater Res B Appl Biomater 2017; 106:2827-2840. [PMID: 29282858 DOI: 10.1002/jbm.b.34063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 11/08/2017] [Accepted: 12/02/2017] [Indexed: 12/25/2022]
Abstract
The influence of calcium polyphosphate (CPP) gel incorporation on the release of vancomycin and tobramycin from polymethyl methacrylate (PMMA) cement (Simplex P, SP) has been studied. Adding 10% CPP gel to SP led to a much lower burst release of vancomycin and considerably extended release of both vancomycin and tobramycin up to 24 weeks. Antibiotics released from this new material retain their bactericidal activity for up to 15 weeks. The improvement in the antibiotic release is mainly due to the molecular interactions of antibiotics with embedded CPP polyphosphate chains as confirmed by Raman spectroscopy analysis. The inclusion of CPP hydrogel also increased the SP surface roughness and pore sizes, leading to a higher release rate of antibiotics. The new material is biocompatible and has similar handling properties and mechanical strength as compared to SP cements. We believe that incorporating CPP gel provides a better and usable drug carrier for PMMA cement. © 2017 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2827-2840, 2018.
Collapse
Affiliation(s)
- Zubin Zhou
- Department of Orthopaedics, Shanghai 6th Peoples Hospital, Shanghai, China
| | - Joe Seta
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan
| | - David C Markel
- Department of Orthopedics, Providence Hospital, Southfield, Michigan
| | - Wei Song
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan
| | | | - Xiao Wei Yu
- Department of Orthopaedics, Shanghai 6th Peoples Hospital, Shanghai, China
| | - Weiping Ren
- Department of Orthopaedics, Shanghai 6th Peoples Hospital, Shanghai, China.,Department of Orthopedics, Providence Hospital, Southfield, Michigan
| |
Collapse
|
29
|
Abd El-aziz A, El-Maghraby A, Taha NA. Comparison between polyvinyl alcohol (PVA) nanofiber and polyvinyl alcohol (PVA) nanofiber/hydroxyapatite (HA) for removal of Zn 2+ ions from wastewater. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2016.09.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
30
|
Abstract
As one of the biominerals, hydroxyapatite (HAP) plays important roles in biology, and inspires researchers to investigate HAP-based materials for the applications in various biomedical fields. Among them, one-dimensional (1-D) micro-/nanostructured HAP materials have attracted great interest in the last decades. This review summarizes the preparation and applications of 1-D HAP materials, and discusses different aspects of 1-D HAP materials. Various synthetic methods have been developed to prepare 1-D HAP materials with different morphologies, sizes, surface properties and crystallinities. In addition, elements-substituted 1-D HAP materials and composites have also been prepared. Surfactants and additives are usually adopted to control the nucleation and growth of 1-D HAP materials, but the related mechanisms are not very clear yet. The applications of 1-D HAP materials have been widely investigated, and the biomedical applications show great prospect but still need further improvements. A new kind of highly flexible fire-resistant inorganic paper made of ultralong HAP nanowires has been developed and is a promising alternative of the traditional cellulose paper for valuable archives and important documents. Regardless of the advances, further studies should be made for preparing 1-D HAP materials with controlled structures, sizes and morphologies and for boosting their various applications.
Collapse
Affiliation(s)
- Bing-Qiang Lu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| |
Collapse
|
31
|
Song W, Chen L, Seta J, Markel DC, Yu X, Ren W. Corona Discharge: A Novel Approach To Fabricate Three-Dimensional Electrospun Nanofibers for Bone Tissue Engineering. ACS Biomater Sci Eng 2017; 3:1146-1153. [DOI: 10.1021/acsbiomaterials.7b00061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei Song
- Department of Biomedical
Engineering, Wayne State University, Detroit, Michigan 48201, United States
| | - Liang Chen
- Department of Biomedical
Engineering, Wayne State University, Detroit, Michigan 48201, United States
| | - Joseph Seta
- Department of Biomedical
Engineering, Wayne State University, Detroit, Michigan 48201, United States
| | - David C. Markel
- Department of Biomedical
Engineering, Wayne State University, Detroit, Michigan 48201, United States
- Department
of Orthopaedic Surgery, Providence Hospital, Southfield, Michigan 48075, United States
| | - Xiaowei Yu
- Department
of Orthopaedics, Shanghai Sixth People’s Hospital, Shanghai 200231, China
| | - Weiping Ren
- Department of Biomedical
Engineering, Wayne State University, Detroit, Michigan 48201, United States
- Department
of Orthopaedic Surgery, Providence Hospital, Southfield, Michigan 48075, United States
| |
Collapse
|
32
|
Ghasemi Hamidabadi H, Rezvani Z, Nazm Bojnordi M, Shirinzadeh H, Seifalian AM, Joghataei MT, Razaghpour M, Alibakhshi A, Yazdanpanah A, Salimi M, Mozafari M, Urbanska AM, Reis RL, Kundu SC, Gholipourmalekabadi M. Chitosan-Intercalated Montmorillonite/Poly(vinyl alcohol) Nanofibers as a Platform to Guide Neuronlike Differentiation of Human Dental Pulp Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11392-11404. [PMID: 28117963 DOI: 10.1021/acsami.6b14283] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In this study, we present a novel chitosan-intercalated montmorillonite/poly(vinyl alcohol) (OMMT/PVA) nanofibrous mesh as a microenvironment for guiding differentiation of human dental pulp stem cells (hDPSCs) toward neuronlike cells. The OMMT was prepared through ion exchange reaction between the montmorillonite (MMT) and chitosan. The PVA solutions containing various concentrations of OMMT were electrospun to form 3D OMMT-PVA nanofibrous meshes. The biomechanical and biological characteristics of the nanofibrous meshes were evaluated by ATR-FTIR, XRD, SEM, MTT, and LDH specific activity, contact angle, and DAPI staining. They were carried out for mechanical properties, overall viability, and toxicity of the cells. The hDPSCs were seeded on the prepared scaffolds and induced with neuronal specific differentiation media at two differentiation stages (2 days at preinduction stage and 6 days at induction stage). The neural differentiation of the cells cultured on the meshes was evaluated by determining the expression of Oct-4, Nestin, NF-M, NF-H, MAP2, and βIII-tubulin in the cells after preinduction, at induction stages by real-time PCR (RT-PCR) and immunostaining. All the synthesized nanofibers exhibited a homogeneous morphology with a favorable mechanical behavior. The population of the cells differentiated into neuronlike cells in all the experimental groups was significantly higher than that in control group. The expression level of the neuronal specific markers in the cells cultured on 5% OMMT/PVA meshes was significantly higher than the other groups. This study demonstrates the feasibility of the OMMT/PVA artificial nerve graft cultured with hDPSCs for regeneration of damaged neural tissues. These fabricated matrices may have a potential in neural tissue engineering applications.
Collapse
Affiliation(s)
| | - Zahra Rezvani
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC) , P.O. Box 14155-4777, Tehran, Iran
| | | | - Haji Shirinzadeh
- Semiconductor Department, Materials and Energy Research Center (MERC) , P.O. Box 14155-4777, Tehran, Iran
| | - Alexander M Seifalian
- Nanotechnology and Regenerative Medicine Commercialisation centre (Ltd) The London BioScience Innovation Centre , London, NW1 0NH, United Kingdom
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS) , Tehran, Iran
| | - Mojgan Razaghpour
- Amirkabir University of Technology , Textile Department, No. 424, Tehran, Iran
| | | | - Abolfazl Yazdanpanah
- Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology , P.O. Box 15875-4413, Tehran, Iran
| | | | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC) , P.O. Box 14155-4777, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS) , Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences , Tehran, Iran
| | - Aleksandra M Urbanska
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University , New York, New York 10032, United States
| | - Rui L Reis
- 3Bs Research Group, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho , AvePark 4805-017 Barco, Guimaraes, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho , AvePark 4805-017 Barco, Guimaraes, Portugal
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS) , Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
33
|
Kumar S, Stokes JA, Dean D, Rogers C, Nyairo E, Thomas V, Mishra MK. Biphasic organo-bioceramic fibrous composite as a biomimetic extracellular matrix for bone tissue regeneration. Front Biosci (Elite Ed) 2017; 9:192-203. [PMID: 28199184 DOI: 10.2741/e795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In bone tissue engineering, the organo-ceramic composite, electrospun polycaprolactone/hydroxyapatite (PCL/HA) scaffold has the potential to support cell proliferation, migration, differentiation, and homeostasis. Here, we report the effect of PCL/HA scaffold in tissue regeneration using human mesenchymal stem cells (hMSCs). We characterized the scaffold by fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscope (SEM) and assessed its biocompatibility. PCL/HA composite is superior as a scaffold compared to PCL alone. Furthermore, increasing HA content (5-10%) was more efficacious in supporting cell-scaffold attachment, expression of ECM molecules and proliferation. These results suggest that PCL/HA is useful as a scaffold for tissue regeneration.
Collapse
Affiliation(s)
- Sanjay Kumar
- Cancer Biology Research and Training Program, Department of Biological Sciences ,Alabama State University, Montgomery, AL 36104, USA
| | - James A Stokes
- Cancer Biology Research and Training Program, Department of Biological Sciences,Alabama State University, Montgomery, AL 36104, USA
| | - Derrick Dean
- Biomedical Engineering, Alabama State University, Montgomery, AL 36104, USA
| | - Christian Rogers
- Physical Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - Elijah Nyairo
- Physical Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - Vinoy Thomas
- Department of Material Science and Engineering, University of Alabama, Birmingham, AL USA
| | - Manoj K Mishra
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, 915 S Jackson Street, Montgomery, AL 36104,
| |
Collapse
|
34
|
Biodegradable and Biocompatible Systems Based on Hydroxyapatite Nanoparticles. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7010060] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Koneru B, Shi Y, Munaweera I, Wight-Carter M, Kadara H, Yuan H, Di Pasqua AJ, Balkus KJ. Radiotherapeutic bandage for the treatment of squamous cell carcinoma of the skin. Nucl Med Biol 2016; 43:333-8. [DOI: 10.1016/j.nucmedbio.2016.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 11/25/2022]
|
36
|
Fortunati E, Luzi F, Dugo L, Fanali C, Tripodo G, Santi L, Kenny JM, Torre L, Bernini R. Effect of hydroxytyrosol methyl carbonate on the thermal, migration and antioxidant properties of PVA-based films for active food packaging. POLYM INT 2016. [DOI: 10.1002/pi.5090] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Elena Fortunati
- Civil and Environmental Engineering Department; UdR INSTM, University of Perugia; Strada di Pentima 4 05100 Terni Italy
| | - Francesca Luzi
- Civil and Environmental Engineering Department; UdR INSTM, University of Perugia; Strada di Pentima 4 05100 Terni Italy
| | - Laura Dugo
- Centre of Integrated Research (CIR); University Campus Bio-Medico of Rome; Via Alvaro del Portillo 21 00128 Rome Italy
| | - Chiara Fanali
- Centre of Integrated Research (CIR); University Campus Bio-Medico of Rome; Via Alvaro del Portillo 21 00128 Rome Italy
| | - Giusy Tripodo
- Centre of Integrated Research (CIR); University Campus Bio-Medico of Rome; Via Alvaro del Portillo 21 00128 Rome Italy
| | - Luca Santi
- Department of Agricultural and Forestry Sciences (DAFNE); University of Tuscia; Via S. Camillo De Lellis 01100 Viterbo Italy
| | - José M Kenny
- Civil and Environmental Engineering Department; UdR INSTM, University of Perugia; Strada di Pentima 4 05100 Terni Italy
| | - Luigi Torre
- Civil and Environmental Engineering Department; UdR INSTM, University of Perugia; Strada di Pentima 4 05100 Terni Italy
| | - Roberta Bernini
- Department of Agricultural and Forestry Sciences (DAFNE); University of Tuscia; Via S. Camillo De Lellis 01100 Viterbo Italy
| |
Collapse
|
37
|
Bhattacharjee P, Kundu B, Naskar D, Maiti TK, Bhattacharya D, Kundu SC. Nanofibrous nonmulberry silk/PVA scaffold for osteoinduction and osseointegration. Biopolymers 2015; 103:271-84. [DOI: 10.1002/bip.22594] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Promita Bhattacharjee
- Materials Science Centre; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| | - Banani Kundu
- Department of Biotechnology; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| | - Deboki Naskar
- Department of Biotechnology; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| | - Tapas K. Maiti
- Department of Biotechnology; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| | - Debasis Bhattacharya
- Materials Science Centre; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| | - Subhas C. Kundu
- Department of Biotechnology; Indian Institute of Technology Kharagpur; Kharagpur 721302 India
| |
Collapse
|
38
|
Huang CL, Peng SY, Wang YJ, Chen WC, Lin JH. Microstructure and characterization of electrospun poly(vinyl alcohol) nanofiber scaffolds filled with graphene nanosheets. J Appl Polym Sci 2015. [DOI: 10.1002/app.41891] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Chien-Lin Huang
- Department of Fiber and Composite Materials; Feng Chia University; Taichung 40724 Taiwan
| | - Sheng-Yin Peng
- Department of Fiber and Composite Materials; Feng Chia University; Taichung 40724 Taiwan
| | - Yu-Jyun Wang
- Department of Fiber and Composite Materials; Feng Chia University; Taichung 40724 Taiwan
| | - Wen-Cheng Chen
- Department of Fiber and Composite Materials; Feng Chia University; Taichung 40724 Taiwan
| | - Jia-Horng Lin
- Department of Fiber and Composite Materials; Feng Chia University; Taichung 40724 Taiwan
- School of Chinese Medicine; China Medical University; Taichung 40402 Taiwan
- Department of Biotechnology; Asia University; Taichung 41354 Taiwan
| |
Collapse
|
39
|
Pathan SG, Fitzgerald LM, Ali SM, Damrauer SM, Bide MJ, Nelson DW, Ferran C, Phaneuf TM, Phaneuf MD. Cytotoxicity associated with electrospun polyvinyl alcohol. J Biomed Mater Res B Appl Biomater 2015; 103:1652-62. [PMID: 25573200 DOI: 10.1002/jbm.b.33337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 10/20/2014] [Accepted: 11/13/2014] [Indexed: 11/10/2022]
Abstract
Polyvinyl alcohol (PVA) is a synthetic, water-soluble polymer, with applications in industries ranging from textiles to biomedical devices. Research on electrospinning of PVA has been targeted toward optimizing or finding novel applications in the biomedical field. However, the effects of electrospinning on PVA biocompatibility have not been thoroughly evaluated. In this study, the cytotoxicity of electrospun PVA (nPVA) which was not crosslinked after electrospinning was assessed. PVA polymers of several molecular weights were dissolved in distilled water and electrospun using the same parameters. Electrospun PVA materials with varying molecular weights were then dissolved in tissue culture medium and directly compared against solutions of nonelectrospun PVA polymer in human coronary artery smooth muscle cells and human coronary artery endothelial cells cultures. All nPVA solutions were cytotoxic at a threshold molar concentration that correlated with the molecular weight of the starting PVA polymer. In contrast, none of the nonelectrospun PVA solutions caused any cytotoxicity, regardless of their concentration in the cell culture. Evaluation of the nPVA material by differential scanning calorimetry confirmed that polymer degradation had occurred after electrospinning. To elucidate the identity of the nPVA component that caused cytotoxicity, nPVA materials were dissolved, fractionated using size exclusion columns, and the different fractions were added to HCASMC and human coronary artery endothelial cells cultures. These studies indicated that the cytotoxic component of the different nPVA solutions were present in the low-molecular-weight fraction. Additionally, the amount of PVA present in the 3-10 kg/mol fraction was approximately sixfold greater than that in the nonelectrospun samples. In conclusion, electrospinning of PVA resulted in small-molecular-weight fractions that were cytotoxic to cells. This result demonstrates that biocompatibility of electrospun biodegradable polymers should not be assumed on the basis of success of their nonelectrospun predecessors.
Collapse
Affiliation(s)
- Saif G Pathan
- BioSurfaces, Inc., Unit 1P, Ashland, Massachusetts, 01721
| | | | - Syed M Ali
- BioSurfaces, Inc., Unit 1P, Ashland, Massachusetts, 01721
| | - Scott M Damrauer
- Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, 02215
| | - Martin J Bide
- Department of Textiles, Fashion Merchandising and Design, University of Rhode Island, Kingston, Rhode Island, 02881
| | - David W Nelson
- BioSurfaces, Inc., Unit 1P, Ashland, Massachusetts, 01721
| | - Christiane Ferran
- Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, 02215
| | - Tina M Phaneuf
- BioSurfaces, Inc., Unit 1P, Ashland, Massachusetts, 01721
| | | |
Collapse
|
40
|
Liu X, Dan W, Ju H, Dan N, Gong J. Preparation and evaluation of a novel pADM-derived micro- and nano electrospun collagen membrane. RSC Adv 2015. [DOI: 10.1039/c5ra08992a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel pADM-derived micro- and nano electrospun collagen membrane (PDEC) was successfully prepared by the electrospinning technique.
Collapse
Affiliation(s)
- Xinhua Liu
- Key Laboratory for Leather Chemistry and Engineering of the Education Ministry
- Sichuan University
- Chengdu
- China
- Research Center of Biomedical Engineering
| | - Weihua Dan
- Key Laboratory for Leather Chemistry and Engineering of the Education Ministry
- Sichuan University
- Chengdu
- China
- Research Center of Biomedical Engineering
| | - Haiyan Ju
- Key Laboratory for Leather Chemistry and Engineering of the Education Ministry
- Sichuan University
- Chengdu
- China
- Research Center of Biomedical Engineering
| | - Nianhua Dan
- Key Laboratory for Leather Chemistry and Engineering of the Education Ministry
- Sichuan University
- Chengdu
- China
- Research Center of Biomedical Engineering
| | - Juxia Gong
- Key Laboratory for Leather Chemistry and Engineering of the Education Ministry
- Sichuan University
- Chengdu
- China
- Research Center of Biomedical Engineering
| |
Collapse
|
41
|
Munaweera I, Levesque-Bishop D, Shi Y, Di Pasqua AJ, Balkus KJ. Radiotherapeutic bandage based on electrospun polyacrylonitrile containing holmium-166 iron garnet nanoparticles for the treatment of skin cancer. ACS APPLIED MATERIALS & INTERFACES 2014; 6:22250-22256. [PMID: 25396281 DOI: 10.1021/am506045k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Radiation therapy is used as a primary treatment for inoperable tumors and in patients that cannot or will not undergo surgery. Radioactive holmium-166 ((166)Ho) is a viable candidate for use against skin cancer. Nonradioactive holmium-165 ((165)Ho) iron garnet nanoparticles have been incorporated into a bandage, which, after neutron-activation to (166)Ho, can be applied to a tumor lesion. The (165)Ho iron garnet nanoparticles ((165)HoIG) were synthesized and introduced into polyacrylonitrile (PAN) polymer solutions. The polymer solutions were then electrospun to produce flexible nonwoven bandages, which are stable to neutron-activation. The fiber mats were characterized using scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis and inductively coupled plasma mass spectrometry. The bandages are stable after neutron-activation at a thermal neutron-flux of approximately 3.5 × 10(12) neutrons/cm(2)·s for at least 4 h and 100 °C. Different amounts of radioactivity can be produced by changing the amount of the (165)HoIG nanoparticles inside the bandage and the duration of neutron-activation, which is important for different stages of skin cancer. Furthermore, the radioactive bandage can be easily manipulated to irradiate only the tumor site by cutting the bandage into specific shapes and sizes that cover the tumor prior to neutron-activation. Thus, exposure of healthy cells to high energy β-particles can be avoided. Moreover, there is no leakage of radioactive material after neutron activation, which is critical for safe handling by healthcare professionals treating skin cancer patients.
Collapse
Affiliation(s)
- Imalka Munaweera
- Department of Chemistry, University of Texas at Dallas, Richardson , 800 West Campbell Road, Richardson, Texas 75080, United States
| | | | | | | | | |
Collapse
|
42
|
In vitro degradation study of novel HEC/PVA/collagen nanofibrous scaffold for skin tissue engineering applications. Polym Degrad Stab 2014. [DOI: 10.1016/j.polymdegradstab.2014.10.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Kavoosi G, Nateghpoor B, Dadfar SMM, Dadfar SMA. Antioxidant, antifungal, water binding, and mechanical properties of poly(vinyl alcohol) film incorporated with essential oil as a potential wound dressing material. J Appl Polym Sci 2014. [DOI: 10.1002/app.40937] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | - Behroz Nateghpoor
- Institute of Biotechnology, Shiraz University; Shiraz 71441-65186 Iran
| | | | | |
Collapse
|
44
|
Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 38:63-72. [DOI: 10.1016/j.msec.2014.01.040] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/01/2013] [Accepted: 01/22/2014] [Indexed: 11/23/2022]
|
45
|
Tas AC. The use of physiological solutions or media in calcium phosphate synthesis and processing. Acta Biomater 2014; 10:1771-92. [PMID: 24389317 DOI: 10.1016/j.actbio.2013.12.047] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 12/02/2013] [Accepted: 12/17/2013] [Indexed: 11/29/2022]
Abstract
This review examined the literature to spot uses, if any, of physiological solutions/media for the in situ synthesis of calcium phosphates (CaP) under processing conditions (i.e. temperature, pH, concentration of inorganic ions present in media) mimicking those prevalent in the human hard tissue environments. There happens to be a variety of aqueous solutions or media developed for different purposes; sometimes they have been named as physiological saline, isotonic solution, cell culture solution, metastable CaP solution, supersaturated calcification solution, simulated body fluid or even dialysate solution (for dialysis patients). Most of the time such solutions were not used as the aqueous medium to perform the biomimetic synthesis of calcium phosphates, and their use was usually limited to the in vitro testing of synthetic biomaterials. This review illustrates that only a limited number of research studies used physiological solutions or media such as Earle's balanced salt solution, Bachra et al. solutions or Tris-buffered simulated body fluid solution containing 27mM HCO3(-) for synthesizing CaP, and these studies have consistently reported the formation of X-ray-amorphous CaP nanopowders instead of Ap-CaP or stoichiometric hydroxyapatite (HA, Ca10(PO4)6(OH)2) at 37°C and pH 7.4. By relying on the published articles, this review highlights the significance of the use of aqueous solutions containing 0.8-1.5 mMMg(2+), 22-27mM HCO3(-), 142-145mM Na(+), 5-5.8mM K(+), 103-133mM Cl(-), 1.8-3.75mM Ca(2+), and 0.8-1.67mM HPO4(2-), which essentially mimic the composition and the overall ionic strength of the human extracellular fluid (ECF), in forming the nanospheres of X-ray-amorphous CaP.
Collapse
Affiliation(s)
- A Cuneyt Tas
- Department of Materials Science and Engineering, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
46
|
In situ mineralization of hydroxyapatite on poly(vinyl alcohol) monolithic scaffolds for tissue engineering. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-013-3155-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Novotna K, Zajdlova M, Suchy T, Hadraba D, Lopot F, Zaloudkova M, Douglas TE, Munzarova M, Juklickova M, Stranska D, Kubies D, Schaubroeck D, Wille S, Balcaen L, Jarosova M, Kozak H, Kromka A, Svindrych Z, Lisa V, Balik K, Bacakova L. Polylactide nanofibers with hydroxyapatite as growth substrates for osteoblast-like cells. J Biomed Mater Res A 2013; 102:3918-30. [DOI: 10.1002/jbm.a.35061] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/21/2013] [Accepted: 12/09/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Katarina Novotna
- Department of Biomaterials and Tissue Engineering Institute of Physiology; Academy of Sciences of the Czech Republic; Videnska 1083 14220 Prague 4 Czech Republic
| | - Martina Zajdlova
- Department of Biomaterials and Tissue Engineering Institute of Physiology; Academy of Sciences of the Czech Republic; Videnska 1083 14220 Prague 4 Czech Republic
| | - Tomas Suchy
- Department of Composites and Carbon Materials Institute of Rock Structure and Mechanics; Academy of Sciences of the Czech Republic; V Holesovickach 41, 18209 Prague 8 Czech Republic
| | - Daniel Hadraba
- Department of Biomaterials and Tissue Engineering Institute of Physiology; Academy of Sciences of the Czech Republic; Videnska 1083 14220 Prague 4 Czech Republic
| | - Frantisek Lopot
- Faculty of Mechanical Engineering of Czech Technical University in Prague; Technicka 4, 16607 Prague 6, and Laboratory of Extreme Loading, Dept. Anatomy and Biomechanics, Charles University in Prague, Jose Martiho 31, 162 52 Prague 6 Czech Republic
| | - Margit Zaloudkova
- Department of Composites and Carbon Materials Institute of Rock Structure and Mechanics; Academy of Sciences of the Czech Republic; V Holesovickach 41, 18209 Prague 8 Czech Republic
| | - Timothy E.L. Douglas
- Polymer Chemistry and Biomaterials (PBM) Group Department of Organic Chemistry; Ghent University; Campus Sterre, Krijgslaan 281 S4, 9000 Gent Belgium
| | | | | | | | - Dana Kubies
- Department of Biomaterials and Bioanalogous Polymer Systems Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; Heyrovsky Sq. 2, 16206 Prague 6 Czech Republic
| | - David Schaubroeck
- Center for Microsystems Technology (CMST); ELIS, imec; Technologiepark 914A, 9052 Gent Belgium
| | - Sebastian Wille
- Functional Nanomaterials, Institute for Materials Science Faculty of Engineering; Christian-Albrechts-University Kiel; Kaiserstr. 2, 24143 Kiel Germany
| | - Lieve Balcaen
- Department of Analytical Chemistry; Ghent University; Krijgslaan 281 S12, 9000 Gent Belgium
| | - Marketa Jarosova
- Institute of Physics; Academy of Sciences of the Czech Republic; Cukrovarnicka 10, 16200 Prague 6 Czech Republic
| | - Halyna Kozak
- Institute of Physics; Academy of Sciences of the Czech Republic; Cukrovarnicka 10, 16200 Prague 6 Czech Republic
| | - Alexander Kromka
- Institute of Physics; Academy of Sciences of the Czech Republic; Cukrovarnicka 10, 16200 Prague 6 Czech Republic
| | - Zdenek Svindrych
- Department of Biomaterials and Tissue Engineering Institute of Physiology; Academy of Sciences of the Czech Republic; Videnska 1083 14220 Prague 4 Czech Republic
| | - Vera Lisa
- Department of Biomaterials and Tissue Engineering Institute of Physiology; Academy of Sciences of the Czech Republic; Videnska 1083 14220 Prague 4 Czech Republic
| | - Karel Balik
- Department of Composites and Carbon Materials Institute of Rock Structure and Mechanics; Academy of Sciences of the Czech Republic; V Holesovickach 41, 18209 Prague 8 Czech Republic
| | - Lucie Bacakova
- Department of Biomaterials and Tissue Engineering Institute of Physiology; Academy of Sciences of the Czech Republic; Videnska 1083 14220 Prague 4 Czech Republic
| |
Collapse
|
48
|
Hu Y, Liu L, Gu Z, Dan W, Dan N, Yu X. Modification of collagen with a natural derived cross-linker, alginate dialdehyde. Carbohydr Polym 2013; 102:324-32. [PMID: 24507288 DOI: 10.1016/j.carbpol.2013.11.050] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/27/2013] [Accepted: 11/27/2013] [Indexed: 01/03/2023]
Abstract
The interaction between collagen and a natural derived cross-linker alginate dialdehyde (ADA) was investigated. Fourier transform infrared (FTIR) spectroscopy and the circular dichroism (CD) measurements indicate that the structure integrity of collagen is still maintained after the ADA treatment, while the differential scanning calorimetry (DSC) study suggests that ADA could promote collagen-ADA membrane's thermostability compared to pure collagen. And the atomic force microscopy (AFM) of cross-linked collagen reveals a denser network structure. Besides, the water contact angle test indicates that the hydrophilic property of collagen-ADA membrane is promoted, which is favorable for cell's attachment and proliferation. Meanwhile, the cytocompatibility results imply that not only no extra cytotoxicity is introduced into the collagen-ADA membrane after ADA treatment, but also collagen-ADA membrane facilitates cell's proliferation when the content of ADA is less than 20%. In conclusion, our study reveals that ADA stabilizes collagen as a cross-linker and preserves its triple helical structure.
Collapse
Affiliation(s)
- Yang Hu
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Lan Liu
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Weihua Dan
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Nianhua Dan
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, Sichuan 610065, China; Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|