1
|
Quantum dots: The cutting-edge nanotheranostics in brain cancer management. J Control Release 2022; 350:698-715. [PMID: 36057397 DOI: 10.1016/j.jconrel.2022.08.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022]
Abstract
Quantum dots (QDs) are semiconductor nanocrystals possessing unique optoelectrical properties in that they can emit light energy of specific tunable wavelengths when excited by photons. They are gaining attention nowadays owing to their all-around ability to allow high-quality bio-imaging along with targeted drug delivery. The most lethal central nervous system (CNS) disorders are brain cancers or malignant brain tumors. CNS is guarded by the blood-brain barrier which poses a selective blockade toward drug delivery into the brain. QDs have displayed strong potential to deliver therapeutic agents into the brain successfully. Their bio-imaging capability due to photoluminescence and specific targeting ability through the attachment of ligand biomolecules make them preferable clinical tools for coming times. Biocompatible QDs are emerging as nanotheranostic tools to identify/diagnose and selectively kill cancer cells. The current review focuses on QDs and associated nanoformulations as potential futuristic clinical aids in the continuous battle against brain cancer.
Collapse
|
2
|
Syndiotactic hexamer peptide nanodots. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:483-491. [PMID: 35876872 DOI: 10.1007/s00249-022-01610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/24/2022] [Accepted: 07/03/2022] [Indexed: 10/16/2022]
Abstract
Spatial confinement of excitons in the nano-crystalline region of semiconducting nanostructures differ significantly from the optoelectronic properties exhibited by the bulk material. We report spike-like absorption observed in the UV spectrum of a phenylalanine hexamer peptide [(Ff)3-OH] nano-assembly, which may be attributed to the spatial confinement of electrons to the dimension of quantum dots. Interdependency of the UV and PLE spectrum of the peptide confirms the existence of quantum confinement in (Ff)3-OH nano-assemblies.
Collapse
|
3
|
Taghipour YD, Zarebkohan A, Salehi R, Rahimi F, Torchilin VP, Hamblin MR, Seifalian A. An update on dual targeting strategy for cancer treatment. J Control Release 2022; 349:67-96. [PMID: 35779656 DOI: 10.1016/j.jconrel.2022.06.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/04/2022] [Accepted: 06/24/2022] [Indexed: 12/18/2022]
Abstract
The key issue in the treatment of solid tumors is the lack of efficient strategies for the targeted delivery and accumulation of therapeutic cargoes in the tumor microenvironment (TME). Targeting approaches are designed for more efficient delivery of therapeutic agents to cancer cells while minimizing drug toxicity to normal cells and off-targeting effects, while maximizing the eradication of cancer cells. The highly complicated interrelationship between the physicochemical properties of nanoparticles, and the physiological and pathological barriers that are required to cross, dictates the need for the success of targeting strategies. Dual targeting is an approach that uses both purely biological strategies and physicochemical responsive smart delivery strategies to increase the accumulation of nanoparticles within the TME and improve targeting efficiency towards cancer cells. In both approaches, either one single ligand is used for targeting a single receptor on different cells, or two different ligands for targeting two different receptors on the same or different cells. Smart delivery strategies are able to respond to triggers that are typical of specific disease sites, such as pH, certain specific enzymes, or redox conditions. These strategies are expected to lead to more precise targeting and better accumulation of nano-therapeutics. This review describes the classification and principles of dual targeting approaches and critically reviews the efficiency of dual targeting strategies, and the rationale behind the choice of ligands. We focus on new approaches for smart drug delivery in which synthetic and/or biological moieties are attached to nanoparticles by TME-specific responsive linkers and advanced camouflaged nanoparticles.
Collapse
Affiliation(s)
- Yasamin Davatgaran Taghipour
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Fariborz Rahimi
- Department of Electrical Engineering, University of Bonab, Bonab, Iran
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine and Department of Chemical Engineering, Northeastern University, Boston, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, South Africa
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd), London BioScience Innovation Centre, London, United Kingdom
| |
Collapse
|
4
|
Kumar A, Kumar P. Cytotoxicity of quantum dots: Use of quasiSMILES in development of reliable models with index of ideality of correlation and the consensus modelling. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123777. [PMID: 33254788 DOI: 10.1016/j.jhazmat.2020.123777] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/30/2020] [Accepted: 08/15/2020] [Indexed: 05/23/2023]
Abstract
The assessment of cytotoxicity of quantum dots is very essential for environmental and health risk analysis. In the present work we have modelled HeLa cell cytotoxicity of sixty one CdSe quantum dots with ZnS shell as a function of its experimental conditions and molecular construction using quasiSMILES representations. The index of ideality of correlation helps in the building of ten statistically significant models having good fitting ability with value of R2 ranging from 0.8414 to 0.9609 for the training set. The split 5 model is rated as the best model with values of R2, Q2F1, Q2F2 and Q2F3 as 0.8964, 0.8267, 0.8264 and 0.8777 respectively for the calibration set. The extraction of features causing increase and decrease of cytotoxicity of quantum dots indicates importance of neutral surface charge, surface modified with protein, 72 h exposure time, combination of MTT assay with surface protein in decreasing the cytotoxicity. Amphiphilic polymer, polyol ligand with neutral charge, 0.5 - 0.6 nm quantum dot diameter with lipid ligand and unmodified positively charged surface are grouped in toxicity enhancer features. Further, consensus modelling using split 5 and 8 patterns enhances the prediction quality by increasing the R2val to 0.9361 and 0.9656 respectively.
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India.
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| |
Collapse
|
5
|
Dad HA, Gu TW, Zhu AQ, Huang LQ, Peng LH. Plant Exosome-like Nanovesicles: Emerging Therapeutics and Drug Delivery Nanoplatforms. Mol Ther 2020; 29:13-31. [PMID: 33278566 DOI: 10.1016/j.ymthe.2020.11.030] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/09/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022] Open
Abstract
Plant exosome-like nanovesicles, being innately replete with bioactive lipids, proteins, RNA, and other pharmacologically active molecules, offer unique morphological and compositional characteristics as natural nanocarriers. Furthermore, their compelling physicochemical traits underpin their modulative role in physiological processes, all of which have fostered the concept that these nanovesicles may be highly proficient in the development of next-generation biotherapeutic and drug delivery nanoplatforms to meet the ever-stringent demands of current clinical challenges. This review systemically deals with various facets of plant exosome-like nanovesicles ranging from their origin and isolation to identification of morphological composition, biological functions, and cargo-loading mechanisms. Efforts are made to encompass their biotherapeutic roles by elucidating their immunological modulating, anti-tumor, regenerative, and anti-inflammatory roles. We also shed light on re-engineering these nanovesicles into robust, innocuous, and non-immunogenic nanovectors for drug delivery through multiple stringent biological hindrances to various targeted organs such as intestine and brain. Finally, recent advances centered around plant exosome-like nanovesicles along with new insights into transdermal, transmembrane and targeting mechanisms of these vesicles are also elucidated. We expect that the continuing development of plant exosome-like nanovesicle-based therapeutic and delivery nanoplatforms will promote their clinical applications.
Collapse
Affiliation(s)
- Haseeb Anwar Dad
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ting-Wei Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ao-Qing Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Lu-Qi Huang
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Li-Hua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China.
| |
Collapse
|
6
|
Kadian S, Manik G, Das N, Roy P. Targeted bioimaging and sensing of folate receptor-positive cancer cells using folic acid-conjugated sulfur-doped graphene quantum dots. Mikrochim Acta 2020; 187:458. [PMID: 32683509 DOI: 10.1007/s00604-020-04448-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/10/2020] [Indexed: 12/19/2022]
Abstract
For the first time is reported a facile in situ synthesis of folic acid-conjugated sulfur-doped graphene quantum dots (FA-SGQDs) through simple pyrolysis of citric acid (CA), 3-mercaptopropionic acid (MPA), and FA. The as-prepared FA-SGQDs were extensively characterized to confirm the synthesis and incidence of FA molecule on the surface of SGQDs through advanced characterization techniques. Upon excitation at 370-nm wavelength, FA-SGQDs exhibited blue fluorescence with an emission band at 455 nm. While exhibiting relatively high quantum yield (~ 78%), favorable biocompatibility, excellent photostability, and desirable optical properties, the FA-SGQDs showed suitability as a fluorescent nanoprobe to distinguish the folate receptor (FR)-positive and FR-negative cancer cells. The experimental studies revealed that FA-SGQDs aptly entered into FR-positive cancer cells via a non-immunogenic FR-mediated endocytosis process. Additionally, the FA-SGQDs exhibited excellent free radical scavenging activity. Hence, these FA-SGQDs hold high promise to serve as efficient fluorescent nanoprobes for the pre-diagnosis of cancer through targeted bioimaging and other pertinent biological studies. Graphical abstract.
Collapse
Affiliation(s)
- Sachin Kadian
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Gaurav Manik
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| | - Neeladrisingha Das
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
7
|
YANG G, ZHAO Y, HAN SM, ZHU C, HUANG YY, QU F. Screening Aptamer of Apo-transferrin via Capillary Electrophoresis-Systematic Evolution of Ligands by Exponential Enrichment and Environmental Factors Analysis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60019-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Fu W, You C, Ma L, Li H, Ju Y, Guo X, Shi S, Zhang T, Zhou R, Lin Y. Enhanced Efficacy of Temozolomide Loaded by a Tetrahedral Framework DNA Nanoparticle in the Therapy for Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39525-39533. [PMID: 31601097 DOI: 10.1021/acsami.9b13829] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glioblastoma (GBM) is one of the deadliest primary brain malignant tumors with a bleak prognosis. Craniotomy surgical resection followed by radiotherapy and chemotherapy was still the standard therapeutic strategy for GBM. As a target alkylating agent, temozolomide (TMZ) was utilized in the therapy of GBM for decades. However, effective treatment for GBM is stymied by rapid acquired resistance and bone marrow suppression. Here, we synthesize a tetrahedral framework nucleic acid (tFNA) nanoparticle that can carry TMZ to enhance the lethality on four GBM cell lines via activating the cell apoptosis and autophagy pathway. Our nanoparticle, namely, tFNA-TMZ, shows a more obvious efficacy in killing TMZ-sensitive cells (A172 and U87) than single-agent TMZ. Besides, tFNA-TMZ was able to attenuate drug resistance in TMZ-resistant cells (T98G and LN-18) via downregulating the expression of O6-methylguanine-DNA-methyltransferase. Furthermore, we modified the tFNA with GS24, a DNA aptamer that can specially bind to transferrin receptor in the cerebral vascular endothelial cell of mouse and enable the tFNA nanoparticle to cross the blood-brain barrier. In summary, our results demonstrated that tFNA-TMZ has a promising role as a nanoscale vehicle to deliver TMZ to enhance the efficacy of GBM.
Collapse
Affiliation(s)
- Wei Fu
- Department of Neurosurgery , West China Hospital of Sichuan University , Chengdu 610000 , P. R. China
| | - Chao You
- Department of Neurosurgery , West China Hospital of Sichuan University , Chengdu 610000 , P. R. China
| | - Lu Ma
- Department of Neurosurgery , West China Hospital of Sichuan University , Chengdu 610000 , P. R. China
| | - Hao Li
- Department of Neurosurgery , West China Hospital of Sichuan University , Chengdu 610000 , P. R. China
| | - Yan Ju
- Department of Neurosurgery , West China Hospital of Sichuan University , Chengdu 610000 , P. R. China
| | - Xi Guo
- Department of Neurosurgery , West China Hospital of Sichuan University , Chengdu 610000 , P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| |
Collapse
|
9
|
McConnell EM, Ventura K, Dwyer Z, Hunt V, Koudrina A, Holahan MR, DeRosa MC. In Vivo Use of a Multi-DNA Aptamer-Based Payload/Targeting System To Study Dopamine Dysregulation in the Central Nervous System. ACS Chem Neurosci 2019; 10:371-383. [PMID: 30160936 DOI: 10.1021/acschemneuro.8b00292] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The delivery of therapeutics across the blood-brain barrier remains a considerable challenge in investigating central nervous system related processes. In this work, a liposome vehicle was surface-modified with an aptamer that binds to the transferrin receptor and was loaded with two different dopamine-binding aptamer payloads. This system was effectively used to promote the delivery of the aptamer cargo from the peripheral injection site into the brain. The effect of these delivered aptamers on behavior was investigated in vivo in a locomotor task. The first dopamine binding aptamer assessed was a DNA aptamer, the binding of which had been previously validated through the aptamer-based biosensor development reported by several independent research groups. The second aptamer investigated was the result of a novel in vitro selection experiment described herein. Our data suggest that systemic administration of the modified liposomes led to delivery of the dopamine aptamers into the brain. Fluorescence microscopy revealed differential distribution of fluorescence based on the presence or absence of the transferrin receptor aptamer on the surface of fluorescently modified liposomes. In a behavioral experiment using cocaine administration to induce elevated concentrations of neural dopamine, systemic pretreatment with the dopamine aptamer-loaded liposomes reduced cocaine-induced hyperlocomotion. Multiple controls including a transferrin-negative liposome control and transferrin-positive liposomes loaded with either a nonbinding, base-substituted dopamine aptamer or a random oligonucleotide were investigated. None of these controls altered cocaine-induced hyperlocomotion. Chronic systemic administration of the modified liposomes produced no deleterious neurobehavioral or neural degenerative effects. Importantly, this work is one example of an application for this versatile multiaptamer payload/targeting system. Its general application is limited only by the availability of aptamers for specific neural targets.
Collapse
Affiliation(s)
- Erin M. McConnell
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Katelyn Ventura
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Zach Dwyer
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Vernon Hunt
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Anna Koudrina
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Matthew R. Holahan
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Maria C. DeRosa
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
10
|
Imaging Fast Cellular Uptake of Polymer Dots via Receptor-Mediated Endocytosis. JOURNAL OF ANALYSIS AND TESTING 2018. [DOI: 10.1007/s41664-018-0048-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Zhang J, Zhao X, Xian M, Dong C, Shuang S. Folic acid-conjugated green luminescent carbon dots as a nanoprobe for identifying folate receptor-positive cancer cells. Talanta 2018; 183:39-47. [PMID: 29567187 DOI: 10.1016/j.talanta.2018.02.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/02/2018] [Accepted: 02/04/2018] [Indexed: 12/15/2022]
Abstract
Early diagnosis is pivotal in subsequent prognosis and treatment of cancer. Herein, folic acid-conjugated carbon dots (FA-CDs) as a fluorescent nanoprobe were fabricated for identifying cancer cells visually. Green luminescent carbon dots (CDs) from active dry yeast (ADY) were readily prepared in scale-up to reach macroscopic production with a high yield of ~50% via a facile and rapid microwave approach. The as-prepared CDs were further combined with folic acid (FA) by covalent bonding to fabricate the FA-CDs for identification of cancer cells over-expressing folate receptor (FR). Experimental outcomes demonstrated that the resultant FA-CDs noninvasively entered into cancer cells via receptor-mediated endocytosis and could differentiate FR-positive HepG2 cells from a cell mixture by fluorescence imaging, which suggests a promising prospect of the FA-CDs as an efficient probe for cancer diagnosis and succeeding personalized therapy.
Collapse
Affiliation(s)
- Junli Zhang
- College of Chemistry and Chemical Engineering, Center of Environmental Science and Engineering Research, Shanxi University, Taiyuan 030006, China
| | - Xuewei Zhao
- College of Chemistry and Chemical Engineering, Center of Environmental Science and Engineering Research, Shanxi University, Taiyuan 030006, China
| | - Ming Xian
- College of Chemistry and Chemical Engineering, Center of Environmental Science and Engineering Research, Shanxi University, Taiyuan 030006, China; Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Chuan Dong
- College of Chemistry and Chemical Engineering, Center of Environmental Science and Engineering Research, Shanxi University, Taiyuan 030006, China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering, Center of Environmental Science and Engineering Research, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
12
|
Ramírez-García G, d’Orlyé F, Gutiérrez-Granados S, Martínez-Alfaro M, Mignet N, Richard C, Varenne A. Electrokinetic Hummel-Dreyer characterization of nanoparticle-plasma protein corona: The non-specific interactions between PEG-modified persistent luminescence nanoparticles and albumin. Colloids Surf B Biointerfaces 2017; 159:437-444. [DOI: 10.1016/j.colsurfb.2017.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/27/2017] [Accepted: 08/02/2017] [Indexed: 12/30/2022]
|
13
|
Yang J, Yao MH, Zhao DH, Zhang XS, Jin RM, Zhao YD, Liu B. Fabrication of genetically engineered polypeptide@quantum dots hybrid nanogels for targeted imaging. JOURNAL OF NANOPARTICLE RESEARCH 2017; 19:284. [DOI: 10.1007/s11051-017-3948-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Aleksenko SS, Matczuk M, Timerbaev AR. Characterization of interactions of metal-containing nanoparticles with biomolecules by CE: An update (2012-2016). Electrophoresis 2017; 38:1661-1668. [DOI: 10.1002/elps.201700132] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Svetlana S. Aleksenko
- Institute of Nanostructures and Biosystems; Saratov State University; Russian Federation
| | - Magdalena Matczuk
- Chair of Analytical Chemistry, Faculty of Chemistry; Warsaw University of Technology; Warsaw Poland
| | - Andrei R. Timerbaev
- Chair of Analytical Chemistry, Faculty of Chemistry; Warsaw University of Technology; Warsaw Poland
- Vernadsky Institute of Geochemistry and Analytical Chemistry; Moscow Russian Federation
| |
Collapse
|
15
|
Trapiella-Alfonso L, Ramírez-García G, d'Orlyé F, Varenne A. Electromigration separation methodologies for the characterization of nanoparticles and the evaluation of their behaviour in biological systems. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.04.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Pratt EC, Shaffer TM, Grimm J. Nanoparticles and radiotracers: advances toward radionanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:872-890. [PMID: 27006133 PMCID: PMC5035177 DOI: 10.1002/wnan.1402] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 12/27/2022]
Abstract
In this study, we cover the convergence of radiochemistry for imaging and therapy with advances in nanoparticle (NP) design for biomedical applications. We first explore NP properties relevant for therapy and theranostics and emphasize the need for biocompatibility. We then explore radionuclide-imaging modalities such as positron emission tomography (PET), single-photon emission computed tomography (SPECT), and Cerenkov luminescence (CL) with examples utilizing radiolabeled NP for imaging. PET and SPECT have served as diagnostic workhorses in the clinic, while preclinical NP design examples of multimodal imaging with radiotracers show promise in imaging and therapy. CL expands the types of radionuclides beyond PET and SPECT tracers to include high-energy electrons (β- ) for imaging purposes. These advances in radionanomedicine will be discussed, showing the potential for radiolabeled NPs as theranostic agents. WIREs Nanomed Nanobiotechnol 2016, 8:872-890. doi: 10.1002/wnan.1402 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Edwin C Pratt
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - Travis M Shaffer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Chemistry, Hunter College and Graduate Center of the City University of New York, New York, NY, USA
| | - Jan Grimm
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
17
|
Zhang M, Xiao B, Wang H, Han MK, Zhang Z, Viennois E, Xu C, Merlin D. Edible Ginger-derived Nano-lipids Loaded with Doxorubicin as a Novel Drug-delivery Approach for Colon Cancer Therapy. Mol Ther 2016; 24:1783-1796. [PMID: 27491931 PMCID: PMC5112046 DOI: 10.1038/mt.2016.159] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/28/2016] [Indexed: 12/18/2022] Open
Abstract
The use of nanotechnology for drug delivery has shown great promise for improving cancer treatment. However, potential toxicity, hazardous environmental effects, issues with large-scale production, and potential excessive costs are challenges that confront their further clinical applications. Here, we describe a nanovector made from ginger-derived lipids that can serve as a delivery platform for the therapeutic agent doxorubicin (Dox) to treat colon cancer. We created nanoparticles from ginger and reassembled their lipids into ginger-derived nanovectors (GDNVs). A subsequent characterization showed that GDNVs were efficiently taken up by colon cancer cells. Viability and apoptosis assays and electric cell-substrate impedance-sensing technology revealed that GDNVs exhibited excellent biocompatibility up to 200 μmol/l; by contrast, cationic liposomes at the same concentrations decreased cell proliferation and increased apoptosis. GDNVs were capable of loading Dox with high efficiency and showed a better pH-dependent drug-release profile than commercially available liposomal-Dox. Modified GDNVs conjugated with the targeting ligand folic acid mediated targeted delivery of Dox to Colon-26 tumors in vivo and enhanced the chemotherapeutic inhibition of tumor growth compared with free drug. Current experiments explore the feasibility of producing nature-derived nanoparticles that are effective as a treatment vehicle while potentially attenuating the issues related to traditional synthetic nanoparticles.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Bo Xiao
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
- Institute for Clean Energy and Advanced Materials, Faculty for Materials and Energy, Southwest University, Chongqing, People's Republic of China
| | - Huan Wang
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, Georgia, USA
| | - Moon Kwon Han
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Zhan Zhang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Emilie Viennois
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Changlong Xu
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
- The 2nd Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Didier Merlin
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
- Veterans Affairs Medical Center, Decatur, Georgia, USA
| |
Collapse
|
18
|
Xu G, Zeng S, Zhang B, Swihart MT, Yong KT, Prasad PN. New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine. Chem Rev 2016; 116:12234-12327. [DOI: 10.1021/acs.chemrev.6b00290] [Citation(s) in RCA: 395] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gaixia Xu
- Key
Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong
Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People’s Republic of China
- CINTRA
CNRS/NTU/THALES,
UMI 3288, Research Techno Plaza, 50
Nanyang Drive, Border X Block, Singapore 637553, Singapore
| | - Shuwen Zeng
- School
of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- CINTRA
CNRS/NTU/THALES,
UMI 3288, Research Techno Plaza, 50
Nanyang Drive, Border X Block, Singapore 637553, Singapore
| | - Butian Zhang
- School
of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | | | - Ken-Tye Yong
- School
of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | | |
Collapse
|
19
|
Mokhtarzadeh A, Tabarzad M, Ranjbari J, de la Guardia M, Hejazi M, Ramezani M. Aptamers as smart ligands for nano-carriers targeting. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.06.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
20
|
Liu F, Wang J, Yang L, Liu L, Ding S, Fu M, Deng L, Gao LQ. Developing a fluorescence-coupled capillary electrophoresis based method to probe interactions between QDs and colorectal cancer targeting peptides. Electrophoresis 2016; 37:2170-4. [DOI: 10.1002/elps.201600165] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 04/16/2016] [Accepted: 05/02/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Feifei Liu
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
| | - Jianhao Wang
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
| | - Li Yang
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
| | - Li Liu
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
| | - Shumin Ding
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
| | - Minli Fu
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
| | - Linhong Deng
- School of Pharmaceutical Engineering and Life Science; Changzhou University; Changzhou Jiangsu P. R. China
- Institute of Biomedical Engineering and Health Sciences; Changzhou University; Changzhou Jiangsu P. R. China
| | - Li-qian Gao
- Department of Chemistry; National University of Singapore; Singapore
| |
Collapse
|
21
|
Oh E, Liu R, Nel A, Gemill KB, Bilal M, Cohen Y, Medintz IL. Meta-analysis of cellular toxicity for cadmium-containing quantum dots. NATURE NANOTECHNOLOGY 2016; 11:479-86. [PMID: 26925827 DOI: 10.1038/nnano.2015.338] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/16/2015] [Indexed: 04/14/2023]
Abstract
Understanding the relationships between the physicochemical properties of engineered nanomaterials and their toxicity is critical for environmental and health risk analysis. However, this task is confounded by material diversity, heterogeneity of published data and limited sampling within individual studies. Here, we present an approach for analysing and extracting pertinent knowledge from published studies focusing on the cellular toxicity of cadmium-containing semiconductor quantum dots. From 307 publications, we obtain 1,741 cell viability-related data samples, each with 24 qualitative and quantitative attributes describing the material properties and experimental conditions. Using random forest regression models to analyse the data, we show that toxicity is closely correlated with quantum dot surface properties (including shell, ligand and surface modifications), diameter, assay type and exposure time. Our approach of integrating quantitative and categorical data provides a roadmap for interrogating the wide-ranging toxicity data in the literature and suggests that meta-analysis can help develop methods for predicting the toxicity of engineered nanomaterials.
Collapse
Affiliation(s)
- Eunkeu Oh
- Optical Sciences Division, Code 5611, US Naval Research Laboratory, Washington, Washington DC 20375, USA
- Sotera Defense Solutions, Columbia, Maryland 21046, USA
| | - Rong Liu
- Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095-1496, USA
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
| | - Andre Nel
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
- Department of Medicine, Division of NanoMedicine, University of California, Los Angeles, California 90095, USA
| | - Kelly Boeneman Gemill
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, SW Washington, Washington DC 20375, USA
| | - Muhammad Bilal
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
| | - Yoram Cohen
- Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095-1496, USA
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095-1592, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, SW Washington, Washington DC 20375, USA
| |
Collapse
|
22
|
Zhang R, Feng G, Zhang CJ, Cai X, Cheng X, Liu B. Real-Time Specific Light-Up Sensing of Transferrin Receptor: Image-Guided Photodynamic Ablation of Cancer Cells through Controlled Cytomembrane Disintegration. Anal Chem 2016; 88:4841-8. [DOI: 10.1021/acs.analchem.6b00524] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ruoyu Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Guangxue Feng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Chong-Jing Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Xiaolei Cai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Xiamin Cheng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
- Institute of Materials Research and Engineering (Astar), 3 Research Link, Singapore 117602
| |
Collapse
|
23
|
Zhang M, Viennois E, Xu C, Merlin D. Plant derived edible nanoparticles as a new therapeutic approach against diseases. Tissue Barriers 2016; 4:e1134415. [PMID: 27358751 DOI: 10.1080/21688370.2015.1134415] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/17/2022] Open
Abstract
In plant cells, nanoparticles containing miRNA, bioactive lipids and proteins serve as extracellular messengers to mediate cell-cell communication in a manner similar to the exosomes secreted by mammalian cells. Notably, such nanoparticles are edible. Moreover, given the proper origin and cargo, plant derived edible nanoparticles could function in interspecies communication and may serve as natural therapeutics against a variety of diseases. In addition, nanoparticles made of plant-derived lipids may be used to efficiently deliver specific drugs. Plant derived edible nanoparticles could be more easily scaled up for mass production, compared to synthetic nanoparticles. In this review, we discuss recent significant developments pertaining to plant derived edible nanoparticles and provide insight into the use of plants as a bio-renewable, sustainable, diversified platform for the production of therapeutic nanoparticles.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Emilie Viennois
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Changlong Xu
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA; The 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Didier Merlin
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA; Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| |
Collapse
|
24
|
Zahedi P, Ziaee M, Abdouss M, Farazin A, Mizaikoff B. Biomacromolecule template-based molecularly imprinted polymers with an emphasis on their synthesis strategies: a review. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3754] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering; University of Tehran; PO Box 11155-4563 Tehran Iran
| | - Morteza Ziaee
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering; University of Tehran; PO Box 11155-4563 Tehran Iran
| | - Majid Abdouss
- Department of Chemistry; Amirkabir University of Technology (Tehran Polytechnic); Tehran Iran
| | - Alireza Farazin
- Department of Chemistry, Faculty of Science; University of Tehran; Tehran Iran
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry; University of Ulm; 89081 Ulm Germany
| |
Collapse
|
25
|
CdTe quantum dots as fluorescent probes to study transferrin receptors in glioblastoma cells. Biochim Biophys Acta Gen Subj 2016; 1860:28-35. [DOI: 10.1016/j.bbagen.2015.09.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/18/2015] [Accepted: 09/30/2015] [Indexed: 12/17/2022]
|
26
|
In-capillary self-assembly and proteolytic cleavage of polyhistidine peptide capped quantum dots. Anal Chim Acta 2015; 895:112-7. [DOI: 10.1016/j.aca.2015.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/23/2015] [Accepted: 09/07/2015] [Indexed: 12/17/2022]
|
27
|
Wang J, Li J, Chen Y, Teng Y, Wang C, Li J, Liu L, Dong B, Qiu L, Jiang P. Capillary electrophoretic studies on quantum dots and histidine appended peptides self-assembly. Electrophoresis 2015; 36:2419-24. [PMID: 26084876 DOI: 10.1002/elps.201500205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 05/28/2015] [Accepted: 05/28/2015] [Indexed: 11/10/2022]
Abstract
Herein, we designed four peptides appended with different numbers of histidine (Hisn -peptide). We launched a systematic investigation on quantum dots (QDs) and Hisn -peptide self-assembly in solution using fluorescence coupled CE (CE-FL). The results indicated that CE-FL was a powerful method to probe how ligands interaction on the surface of nanoparticles. The self-assembly of QDs and peptide was determined by the numbers of histidine. We also observed that longer polyhistidine tags (n ≤ 6) could improve the self-assembly efficiency. Furthermore, the formation and separation of QD-peptide assembly were also studied by CE-FL inside a capillary. The total time for the mixing, self-assembly, separation, and detection was less than 10 min. Our method greatly expands the application of CE-FL in QDs-based biolabeling and bioanalysis.
Collapse
Affiliation(s)
- Jianhao Wang
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, P. R. China
| | - Jingyan Li
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, P. R. China
| | - Yao Chen
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, P. R. China
| | - Yiwan Teng
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, P. R. China
| | - Cheli Wang
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, P. R. China
| | - Jinchen Li
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, P. R. China
| | - Li Liu
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, P. R. China
| | - Bingyu Dong
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, P. R. China
| | - Lin Qiu
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, P. R. China
| | - Pengju Jiang
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu, P. R. China
| |
Collapse
|
28
|
Aptekar S, Arora M, Lawrence CL, Lea RW, Ashton K, Dawson T, Alder JE, Shaw L. Selective Targeting to Glioma with Nucleic Acid Aptamers. PLoS One 2015; 10:e0134957. [PMID: 26252900 PMCID: PMC4529171 DOI: 10.1371/journal.pone.0134957] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/16/2015] [Indexed: 12/11/2022] Open
Abstract
Malignant glioma is characterised by a rapid growth rate and high capacity for invasive infiltration to surrounding brain tissue; hence, diagnosis and treatment is difficult and patient survival is poor. Aptamers contribute a promising and unique technology for the in vitro imaging of live cells and tissues, with a potentially bright future in clinical diagnostics and therapeutics for malignant glioma. The binding selectivity, uptake capacity and binding target of two DNA aptamers, SA43 and SA44, were investigated in glioma cells and patient tissues. The binding assay showed that SA43 and SA44 bound with strong affinity (Kd, 21.56 ± 4.60 nM and Kd, 21.11 ± 3.30 nM respectively) to the target U87MG cells. Quantitative analysis by flow cytometry showed that the aptamers were able to actively internalise in U87MG and 1321N1 glioma cells compared to the non-cancerous and non-glioma cell types. Confocal microscopy confirmed staining in the cytoplasm, and co-localisation studies with endoplasmic reticulum, Golgi apparatus and lysosomal markers suggested internalisation and compartmentalisation within the endomembrane system. Both aptamers selectively bound to Ku 70 and Ku 80 DNA repair proteins as determined by aptoprecipitation (AP) followed by mass spectrometry analysis and confirmation by Western blot. In addition, aptohistochemical (AHC) staining on paraffin embedded, formalin fixed patient tissues revealed that the binding selectivity was significantly higher for SA43 aptamer in glioma tissues (grade I, II, III and IV) compared to the non-cancerous tissues, whereas SA44 did not show selectivity towards glioma tissues. The results indicate that SA43 aptamer can differentiate between glioma and non-cancerous cells and tissues and therefore, shows promise for histological diagnosis of glioma.
Collapse
Affiliation(s)
- Shraddha Aptekar
- School of Pharmacy and Biomedical Sciences, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, United Kingdom
| | - Mohit Arora
- School of Pharmacy and Biomedical Sciences, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, United Kingdom
- Department of Neuropathology, Lancashire Teaching Hospitals (NHS trust), Preston, PR2 9HT, United Kingdom
| | - Clare Louise Lawrence
- School of Pharmacy and Biomedical Sciences, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, United Kingdom
| | - Robert William Lea
- School of Pharmacy and Biomedical Sciences, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, United Kingdom
| | - Katherine Ashton
- Department of Neuropathology, Lancashire Teaching Hospitals (NHS trust), Preston, PR2 9HT, United Kingdom
| | - Tim Dawson
- Department of Neuropathology, Lancashire Teaching Hospitals (NHS trust), Preston, PR2 9HT, United Kingdom
| | - Jane Elizabeth Alder
- School of Pharmacy and Biomedical Sciences, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, United Kingdom
| | - Lisa Shaw
- School of Pharmacy and Biomedical Sciences, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, United Kingdom
| |
Collapse
|
29
|
Ban E, Yoo YS, Song EJ. Analysis and applications of nanoparticles in capillary electrophoresis. Talanta 2015; 141:15-20. [DOI: 10.1016/j.talanta.2015.03.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 10/23/2022]
|
30
|
Distinguish cancer cells based on targeting turn-on fluorescence imaging by folate functionalized green emitting carbon dots. Biosens Bioelectron 2015; 64:119-25. [DOI: 10.1016/j.bios.2014.08.052] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/04/2014] [Accepted: 08/22/2014] [Indexed: 02/07/2023]
|
31
|
Kong HY, Byun J. Screening and characterization of a novel RNA aptamer that specifically binds to human prostatic acid phosphatase and human prostate cancer cells. Mol Cells 2015; 38:171-9. [PMID: 25591398 PMCID: PMC4332034 DOI: 10.14348/molcells.2015.2272] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 12/23/2022] Open
Abstract
Prostatic acid phosphatase (PAP) expression increases proportionally with prostate cancer progression, making it useful in prognosticating intermediate to high-risk prostate cancers. A novel ligand that can specifically bind to PAP would be very helpful for guiding prostate cancer therapy. RNA aptamers bind to target molecules with high specificity and have key advantages such as low immunogenicity and easy synthesis. Here, human PAP-specific aptamers were screened from a 2'-fluoropyrimidine (FY)-modified RNA library by SELEX. The candidate aptamer families were identified within six rounds followed by analysis of their sequences and PAP-specific binding. A gel shift assay was used to identify PAP binding aptamers and the 6N aptamer specifically bound to PAP with a Kd value of 118 nM. RT-PCR and fluorescence labeling analyses revealed that the 6N aptamer bound to PAP-positive mammalian cells, such as PC-3 and LNCaP. IMR-90 negative control cells did not bind the 6N aptamer. Systematic minimization analyses revealed that 50 nucleotide sequences and their two hairpin structures in the 6N 2'-FY RNA aptamer were equally important for PAP binding. Renewed interest in PAP combined with the versatility of RNA aptamers, including conjugation of anti-cancer drugs and nano-imaging probes, could open up a new route for early theragnosis of prostate cancer.
Collapse
Affiliation(s)
- Hoon Young Kong
- Department of Molecular Biology, Dankook University, Yongin 448-701, Korea
- Institute of Nanosensor and Biotechnology, Dankook University, Yongin 448-701, Korea
| | - Jonghoe Byun
- Department of Molecular Biology, Dankook University, Yongin 448-701, Korea
- Institute of Nanosensor and Biotechnology, Dankook University, Yongin 448-701, Korea
| |
Collapse
|
32
|
Wu Y, Si T, Lin X, He Q. Near infrared-modulated propulsion of catalytic Janus polymer multilayer capsule motors. Chem Commun (Camb) 2015; 51:511-4. [DOI: 10.1039/c4cc07182d] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of a near-infrared (NIR) laser for reversible modulation of a bubble-driven Janus polymer capsule motor is demonstrated.
Collapse
Affiliation(s)
- Yingjie Wu
- Key Lab for Microsystems and Microstructure Manufacturing
- Micro/Nanotechnology Research Centre
- Harbin Institute of Technology
- Harbin 150080
- China
| | - Tieyan Si
- Key Lab for Microsystems and Microstructure Manufacturing
- Micro/Nanotechnology Research Centre
- Harbin Institute of Technology
- Harbin 150080
- China
| | - Xiankun Lin
- Key Lab for Microsystems and Microstructure Manufacturing
- Micro/Nanotechnology Research Centre
- Harbin Institute of Technology
- Harbin 150080
- China
| | - Qiang He
- Key Lab for Microsystems and Microstructure Manufacturing
- Micro/Nanotechnology Research Centre
- Harbin Institute of Technology
- Harbin 150080
- China
| |
Collapse
|
33
|
Kaittanis C, Shaffer TM, Thorek DLJ, Grimm J. Dawn of advanced molecular medicine: nanotechnological advancements in cancer imaging and therapy. Crit Rev Oncog 2014; 19:143-76. [PMID: 25271430 DOI: 10.1615/critrevoncog.2014011601] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nanotechnology plays an increasingly important role not only in our everyday life (with all its benefits and dangers) but also in medicine. Nanoparticles are to date the most intriguing option to deliver high concentrations of agents specifically and directly to cancer cells; therefore, a wide variety of these nanomaterials has been developed and explored. These span the range from simple nanoagents to sophisticated smart devices for drug delivery or imaging. Nanomaterials usually provide a large surface area, allowing for decoration with a large amount of moieties on the surface for either additional functionalities or targeting. Besides using particles solely for imaging purposes, they can also carry as a payload a therapeutic agent. If both are combined within the same particle, a theranostic agent is created. The sophistication of highly developed nanotechnology targeting approaches provides a promising means for many clinical implementations and can provide improved applications for otherwise suboptimal formulations. In this review we will explore nanotechnology both for imaging and therapy to provide a general overview of the field and its impact on cancer imaging and therapy.
Collapse
Affiliation(s)
- Charalambos Kaittanis
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Travis M Shaffer
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Daniel L J Thorek
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jan Grimm
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|
34
|
Kruspe S, Mittelberger F, Szameit K, Hahn U. Aptamers as drug delivery vehicles. ChemMedChem 2014; 9:1998-2011. [PMID: 25130604 DOI: 10.1002/cmdc.201402163] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/02/2014] [Indexed: 01/22/2023]
Abstract
The benefits of directed and selective therapy for systemic treatment are reasons for increased interest in exploiting aptamers for cell-specific drug delivery. Nucleic acid based pharmaceuticals represent an interesting and novel tool to counter human diseases. Combining inhibitory potential and cargo transfer upon internalization, nanocarriers as well as various therapeutics including siRNAs, chemotherapeutics, photosensitizers, or proteins can be imported via these synthetic nucleic acids. However, widespread clinical application is still hampered by obstacles that must be overcome. In this review, we give an overview of applications and recent advances in aptamer-mediated drug delivery. We also introduce prominent selection methods as well as useful approaches in choice of drug and conjugation method. We discuss the challenges that need to be considered and present strategies that have been applied to achieve intracellular delivery of effectors transported by readily internalized aptamers.
Collapse
Affiliation(s)
- Sven Kruspe
- Institut für Biochemie und Molekularbiologie, Universität Hamburg, Martin-Luther-King Platz 6, 20146 Hamburg (Germany)
| | | | | | | |
Collapse
|
35
|
Zhang MZ, Li C, Fang BY, Yao MH, Ren QQ, Zhang L, Zhao YD. High transfection efficiency of quantum dot-antisense oligonucleotide nanoparticles in cancer cells through dual-receptor synergistic targeting. NANOTECHNOLOGY 2014; 25:255102. [PMID: 24896735 DOI: 10.1088/0957-4484/25/25/255102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Incorporating ligands with nanoparticle-based carriers for specific delivery of therapeutic nucleic acids (such as antisense oligonucleotides and siRNA) to tumor sites is a promising approach in anti-cancer strategies. However, nanoparticle-based carriers remain insufficient in terms of the selectivity and transfection efficiency. In this paper, we designed a dual receptor-targeted QDs gene carrier QD-(AS-ODN+GE11+c(RGDfK)) which could increase the cellular uptake efficiency and further enhance the transfection efficiency. Here, the targeting ligands used were peptides GE11 and c(RGDfK) which could recognize epidermal growth factor receptors (EGFR) and integrin ανβ3 receptors, respectively. Quantitative flow cytometry and ICP/MS showed that the synergistic effect between EGFR and integrin ανβ3 increased the cellular uptake of QDs carriers. The effects of inhibition agents showed the endocytosis pathway of QD-(AS-ODN+GE11+c(RGDfK)) probe was mainly clathrin-mediated. Western blot confirmed that QD-(AS-ODN+GE11+c(RGDfK)) could further enhance gene silencing efficiency compared to QD-(AS-ODN+GE11) and QD-(AS-ODN+c(RGDfK)), suggesting this dual receptor-targeted gene carrier achieved desired transfection efficiency. In this gene delivery system, QDs could not only be used as a gene vehicle but also as fluorescence probe, allowing for localization and tracking during the delivery process. This transport model is very well referenced for non-viral gene carriers to enhance the targeting ability and transfection efficiency.
Collapse
Affiliation(s)
- Ming-Zhen Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
36
|
Wu Z, Lin X, Wu Y, Si T, Sun J, He Q. Near-infrared light-triggered "on/off" motion of polymer multilayer rockets. ACS NANO 2014; 8:6097-6105. [PMID: 24806430 DOI: 10.1021/nn501407r] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We describe an approach to modulating the on-demand motion of catalytic polymer-based microengines via near-infrared (NIR) laser irradiation. The polymer multilayer motor was fabricated by the template-assisted layer-by-layer assembly and subsequently deposition of platinum nanoparticles inside and a thin gold shell outside. Then a mixed monolayer of a tumor-targeted peptide and an antifouling poly(ethylene glycol) was functionalized on the gold shell. The microengines remain motionless at the critical peroxide concentration (0.1%, v/v); however, NIR illumination on the engines leads to a photothermal effect and thus rapidly triggers the motion of the catalytic engines. Computational modeling explains the photothermal effect and gives the temperature profile accordingly. Also, the photothermal effect can alone activate the motion of the engines in the absence of the peroxide fuel, implying that it may eliminate the use of toxic fuel in the future. The targeted recognition ability and subsequently killing of cancer cells by the photothermal effect under the higher power of a NIR laser were illustrated. Our results pave the way to apply self-propelled synthetic engines in biomedical fields.
Collapse
Affiliation(s)
- Zhiguang Wu
- State Key Laboratory of Robotics and System (HIT), Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology , Harbin 150080, China
| | | | | | | | | | | |
Collapse
|
37
|
Babu A, Templeton AK, Munshi A, Ramesh R. Nanodrug delivery systems: a promising technology for detection, diagnosis, and treatment of cancer. AAPS PharmSciTech 2014; 15:709-21. [PMID: 24550101 DOI: 10.1208/s12249-014-0089-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/17/2014] [Indexed: 01/15/2023] Open
Abstract
Nanotechnology has enabled the development of novel therapeutic and diagnostic strategies, such as advances in targeted drug delivery systems, versatile molecular imaging modalities, stimulus responsive components for fabrication, and potential theranostic agents in cancer therapy. Nanoparticle modifications such as conjugation with polyethylene glycol have been used to increase the duration of nanoparticles in blood circulation and reduce renal clearance rates. Such modifications to nanoparticle fabrication are the initial steps toward clinical translation of nanoparticles. Additionally, the development of targeted drug delivery systems has substantially contributed to the therapeutic efficacy of anti-cancer drugs and cancer gene therapies compared with nontargeted conventional delivery systems. Although multifunctional nanoparticles offer numerous advantages, their complex nature imparts challenges in reproducibility and concerns of toxicity. A thorough understanding of the biological behavior of nanoparticle systems is strongly warranted prior to testing such systems in a clinical setting. Translation of novel nanodrug delivery systems from the bench to the bedside will require a collective approach. The present review focuses on recent research efforts citing relevant examples of advanced nanodrug delivery and imaging systems developed for cancer therapy. Additionally, this review highlights the newest technologies such as microfluidics and biomimetics that can aid in the development and speedy translation of nanodrug delivery systems to the clinic.
Collapse
|
38
|
Gaur RL, Srivastava R. Diagnosis and Treatment of Cancer—Where We are and Where We have to Go! Adv Healthc Mater 2014. [DOI: 10.1002/9781118774205.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Kong HY, Byun J. Nucleic Acid aptamers: new methods for selection, stabilization, and application in biomedical science. Biomol Ther (Seoul) 2014; 21:423-34. [PMID: 24404332 PMCID: PMC3879913 DOI: 10.4062/biomolther.2013.085] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/05/2013] [Accepted: 11/05/2013] [Indexed: 12/19/2022] Open
Abstract
The adoption of oligonucleotide aptamer is well on the rise, serving an ever increasing demand for versatility in biomedical field. Through the SELEX (Systematic Evolution of Ligands by EXponential enrichment), aptamer that can bind to specific target with high affinity and specificity can be obtained. Aptamers are single-stranded nucleic acid molecules that can fold into complex threedimensional structures, forming binding pockets and clefts for the specific recognition and tight binding of any given molecular target. Recently, aptamers have attracted much attention because they not only have all of the advantages of antibodies, but also have unique merits such as thermal stability, ease of synthesis, reversibility, and little immunogenicity. The advent of novel technologies is revolutionizing aptamer applications. Aptamers can be easily modified by various chemical reactions to introduce functional groups and/or nucleotide extensions. They can also be conjugated to therapeutic molecules such as drugs, drug containing carriers, toxins, or photosensitizers. Here, we discuss new SELEX strategies and stabilization methods as well as applications in drug delivery and molecular imaging.
Collapse
Affiliation(s)
- Hoon Young Kong
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University, Yongin 448-701, Republic of Korea
| | - Jonghoe Byun
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University, Yongin 448-701, Republic of Korea
| |
Collapse
|
40
|
Yu G, Tan Y, He X, Qin Y, Liang J. CLAVATA3 dodecapeptide modified CdTe nanoparticles: a biocompatible quantum dot probe for in vivo labeling of plant stem cells. PLoS One 2014; 9:e89241. [PMID: 24586624 PMCID: PMC3933426 DOI: 10.1371/journal.pone.0089241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 01/21/2014] [Indexed: 12/13/2022] Open
Abstract
CLAVATA3 (CLV3) dodecapeptides function in plant stem cell maintenance, but CLV3 function in cell-cell communication remains less clear. Here, we coupled CLV3 dodecapeptides to synthesized CdTe nanoparticles to track their bioactivity on stem cells in the root apical meristem. To achieve this, we first synthesized CdTe quantum dots (QDs) using a one-pot method, and then evaluated the cytotoxicity of the QDs in BY-2 cells. The results showed that QDs in plant cells must be used at low concentrations and for short treatment time. To make biocompatible probes to track stem cell fate, we conjugated CLV3 dodecapeptides to the QDs by the zero-coupling method; this modification greatly reduced the cytotoxicity of the QDs. Furthermore, we detected CLV3-QDs localized on the cell membrane, consistent with the known localization of CLV3. Our results indicate that using surface-modified QDs at low concentrations and for short time treatment can improve their utility for plant cell imaging.
Collapse
Affiliation(s)
- Guanghui Yu
- Key Laboratory for Biotechnology of the State Ethnic Affairs Commission, College of Life Sciences, Hubei provincial Key laboratory for protection and application of special plants in Wuling Area of China, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Yanping Tan
- Key Laboratory for Biotechnology of the State Ethnic Affairs Commission, College of Life Sciences, Hubei provincial Key laboratory for protection and application of special plants in Wuling Area of China, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Xiangzhu He
- College of Electronics and Information Engineering, South-Central University for Natonalities, Wuhan, Hubei, China
| | - Yonghua Qin
- Key Laboratory for Biotechnology of the State Ethnic Affairs Commission, College of Life Sciences, Hubei provincial Key laboratory for protection and application of special plants in Wuling Area of China, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Jiangong Liang
- College of Science, State Key Laboratory of Agricultural Microbiology, Institute of Chemical Biology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
41
|
Sang F, Huang X, Ren J. Characterization and separation of semiconductor quantum dots and their conjugates by capillary electrophoresis. Electrophoresis 2014; 35:793-803. [DOI: 10.1002/elps.201300528] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Fuming Sang
- School of Marine Science and Technology; Harbin Institute of Technology; Weihai P. R. China
| | - Xiangyi Huang
- College of Chemistry & Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiaotong University; Shanghai P. R. China
| | - Jicun Ren
- College of Chemistry & Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiaotong University; Shanghai P. R. China
| |
Collapse
|
42
|
Two interconvertible folds modulate the activity of a DNA aptamer against transferrin receptor. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e144. [PMID: 24472870 PMCID: PMC3912326 DOI: 10.1038/mtna.2013.71] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/12/2013] [Indexed: 01/21/2023]
Abstract
Thanks to their ability to recognize biomolecular targets with high affinity and specificity, nucleic acid aptamers are increasingly investigated as diagnostic and therapeutic tools, particularly when their targets are cell-surface receptors. Here, we investigate the relationship between the folding of an anti-mouse transferrin receptor DNA aptamer and its interaction with the transferrin receptor both in vitro and in living cells. We identified and purified two aptamer conformers by means of chromatographic techniques. Fluorescence-anisotropy measurements showed that only one fold is able to bind mouse transferrin receptor. Besides displaying enhanced endocytosis in living mouse fibroblasts, the purified active fold is internalized also in human pancreatic cancer cells. Starting from these observations, we rationally designed variations of the parent sequence aimed at stabilizing the active fold, and consequently increase aptamer activity. A truncated version and full-length mutants with higher affinity than the parent sequence are shown.
Collapse
|
43
|
Shigdar S, Macdonald J, O'Connor M, Wang T, Xiang D, Al.Shamaileh H, Qiao L, Wei M, Zhou SF, Zhu Y, Kong L, Bhattacharya S, Li C, Duan W. Aptamers as theranostic agents: modifications, serum stability and functionalisation. SENSORS 2013; 13:13624-37. [PMID: 24152925 PMCID: PMC3859083 DOI: 10.3390/s131013624] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/24/2013] [Accepted: 09/27/2013] [Indexed: 02/07/2023]
Abstract
Aptamers, and the selection process known as Systematic Evolution of Ligands by Exponential Enrichment (SELEX) used to generate them, were first described more than twenty years ago. Since then, there have been numerous modifications to the selection procedures. This review discusses the use of modified bases as a means of enhancing serum stability and producing effective therapeutic tools, as well as functionalising these nucleic acids to be used as potential diagnostic agents.
Collapse
Affiliation(s)
- Sarah Shigdar
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia; E-Mails: (J.M.); (M.O.); (T.W.); (D.X.); (H.A.)
- Authors to whom correspondence should be addressed; E-Mails: (S.S.); (W.D.)
| | - Joanna Macdonald
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia; E-Mails: (J.M.); (M.O.); (T.W.); (D.X.); (H.A.)
| | - Michael O'Connor
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia; E-Mails: (J.M.); (M.O.); (T.W.); (D.X.); (H.A.)
| | - Tao Wang
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia; E-Mails: (J.M.); (M.O.); (T.W.); (D.X.); (H.A.)
| | - Dongxi Xiang
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia; E-Mails: (J.M.); (M.O.); (T.W.); (D.X.); (H.A.)
| | - Hadi Al.Shamaileh
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia; E-Mails: (J.M.); (M.O.); (T.W.); (D.X.); (H.A.)
| | - Liang Qiao
- Storr Liver Unit, at the Westmead Millennium Institute, The University of Sydney at the Westmead Hospital, Westmead NSW 2145, Australia; E-Mail:
| | - Ming Wei
- School of Medical Science and Griffith Health Institute, Griffith University, Gold Coast Campus, Southport 4222, Australia; E-Mail:
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; E-Mail:
| | - Yimin Zhu
- Suzhou Key Laboratory of Nanobiomedicine, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China; E-Mail:
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3217, Australia; E-Mail:
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India; E-Mail:
| | - ChunGuang Li
- Centre for Complimentary Medicine Research, National Institute of Complementary Medicine, University of Western Sydney, Campbelltown Campus, Penrith, NSW 2751, Australia; E-Mail:
| | - Wei Duan
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia; E-Mails: (J.M.); (M.O.); (T.W.); (D.X.); (H.A.)
- Authors to whom correspondence should be addressed; E-Mails: (S.S.); (W.D.)
| |
Collapse
|