1
|
Angela S, Ludmila M, Cornelia-Ioana I, Denisa F, Cristina C, Natalia P, Sabina G, Mateusz M, Joanna K, Adrian-Vasile S, Doina Roxana T, Ovidiu Cristian O, Anton F. Aminoacid functionalised magnetite nanoparticles Fe 3O 4@AA (AA = Ser, Cys, Pro, Trp) as biocompatible magnetite nanoparticles with potential therapeutic applications. Sci Rep 2024; 14:26228. [PMID: 39482399 PMCID: PMC11528115 DOI: 10.1038/s41598-024-76552-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024] Open
Abstract
Magnetic nanoparticles (MNPs) are of great interest for their wide applications in biomedical applications, such as bioimaging, antitumoral therapies, regenerative medicine, and drug delivery. The work aimed to obtain biocompatible magnetite nanoparticles coated with amino acids of the general formula Fe3O4@AA (AA = L-tryptophan, L-serine, L-proline and L-cysteine) for potential therapeutic application in anticancer drug delivery. The obtained materials were characterised using XRD, FTIR, DLS analysis, SEM, thermogravimetry (TG), differential scanning calorimetry (DSC), and UV-vis spectroscopy. The photocatalytic, cytotoxic and antimicrobial activity tests of the obtained materials were carried out. The choice of amino acid determines the properties of the material and its future use, for example, Fe3O4@Cys supports radical production, which may increase the efficiency of catalytic degradation, while tryptophan captures radicals, which may be an advantage in several biomedical applications. Fe3O4@Trp exhibited good antimicrobial activity (MBEC and MIC) against E. coli ATCC 25922, P. aeruginosa ATCC 27853 and C. albicans ATCC 10231 while Fe3O4@Pro exhibited the best results against S. aureus ATCC 25923.
Collapse
Affiliation(s)
- Spoială Angela
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh Polizu Street, 011061, Bucharest, Romania
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042, Bucharest, Romania
| | - Motelica Ludmila
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh Polizu Street, 011061, Bucharest, Romania
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042, Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045, Bucharest, Romania
| | - Ilie Cornelia-Ioana
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh Polizu Street, 011061, Bucharest, Romania
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042, Bucharest, Romania
| | - Ficai Denisa
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042, Bucharest, Romania.
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh Polizu Street, 050054, Bucharest, Romania.
- Academy of Romanian Scientists, 3 Ilfov Street, 050045, Bucharest, Romania.
| | - Chircov Cristina
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh Polizu Street, 011061, Bucharest, Romania
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042, Bucharest, Romania
| | - Pieńkowska Natalia
- Institute of Medical Sciences, University of Rzeszów, Warzywna 1a, 35-310, Rzeszów, Poland
| | - Galiniak Sabina
- Institute of Medical Sciences, University of Rzeszów, Warzywna 1a, 35-310, Rzeszów, Poland
| | - Mołoń Mateusz
- Institute of Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszów, Poland
| | - Kisala Joanna
- Institute of Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszów, Poland
| | - Surdu Adrian-Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh Polizu Street, 011061, Bucharest, Romania
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042, Bucharest, Romania
| | - Trușcă Doina Roxana
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh Polizu Street, 011061, Bucharest, Romania
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042, Bucharest, Romania
| | - Oprea Ovidiu Cristian
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042, Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh Polizu Street, 050054, Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045, Bucharest, Romania
| | - Ficai Anton
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Gh Polizu Street, 011061, Bucharest, Romania
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042, Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045, Bucharest, Romania
| |
Collapse
|
2
|
Wu X, Zhang W, Wang W, Chen Y. Accurate determination of MFM tip's magnetic parameters on nanoparticles by decoupling the influence of electrostatic force. NANOTECHNOLOGY 2022; 33:475703. [PMID: 35970138 DOI: 10.1088/1361-6528/ac8998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Magnetic force microscopy (MFM) has become one of the most important instruments for characterizing magnetic materials with nanoscale spatial resolution. When analyzing magnetic particles by MFM, calibration of the magnetic tips using reference magnetic nanoparticles is a prerequisite due to similar orientation and dimension of the yielded magnetic fields. However, in such a calibration process, errors caused by extra electrostatic interactions will significantly affect the output results. In this work, we evaluate the magnetic moment and dipole radius of the MFM tip on Fe3O4nanoparticles by considering the associated electrostatic force. The coupling of electrostatic contribution on the measured MFM phase is eliminated by combining MFM and Kelvin probe force microscopy together with theoretical modeling. Numerical simulations and experiments on nickel nanoparticles demonstrate the effectiveness of decoupling. Results show that the calibrated MFM tip can enable a more accurate analysis of micro-and-nano magnetism. In addition, a fast and easy calibration method by using bimodal MFM is discussed, in which the acquisition of multiple phase shifts at different lift heights is not required.
Collapse
Affiliation(s)
- Xiqi Wu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, People's Republic of China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Wenhao Zhang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, People's Republic of China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Wenting Wang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, People's Republic of China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Yuhang Chen
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, People's Republic of China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230027, People's Republic of China
| |
Collapse
|
3
|
Abstract
Magnetic force microscopy (MFM) enables to characterize magnetic properties with submicron (nanoscale) resolution and without much demand on sample surface preparation. MFM can operate in a wide range of temperatures and environmental conditions, that is, vacuum, liquid, or air, therefore this technique has already become the most common tool used to characterize variety of magnetic materials ranging from ferromagnetic thin films and 2D materials to biomedical and/or biological materials. The purpose of this review is to provide a summary of MFM basic fundamentals in the frame of other related methods and, correspondingly, a brief overview of physics and chiefly biomedical as well as biological applications of MFM.
Collapse
|
4
|
Magnetic Force Microscopy on Nanofibers—Limits and Possible Approaches for Randomly Oriented Nanofiber Mats. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7110143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Magnetic force microscopy (MFM) belongs to the methods that enable spatially resolved magnetization measurements on common thin-film samples or magnetic nanostructures. The lateral resolution can be much higher than in Kerr microscopy, another spatially resolved magnetization imaging technique, but since MFM commonly necessitates positioning a cantilever tip typically within a few nanometers from the surface, it is often more complicated than other techniques. Here, we investigate the progresses in MFM on magnetic nanofibers that can be found in the literature during the last years. While MFM measurements on magnetic nanodots or thin-film samples can often be found in the scientific literature, reports on magnetic force microscopy on single nanofibers or chaotic nanofiber mats are scarce. The aim of this review is to show which MFM investigations can be conducted on magnetic nanofibers, where the recent borders are, and which ideas can be transferred from MFM on other rough surfaces towards nanofiber mats.
Collapse
|
5
|
Miniaturized magnetic stir bars for controlled agitation of aqueous microdroplets. Sci Rep 2020; 10:10911. [PMID: 32616786 PMCID: PMC7331805 DOI: 10.1038/s41598-020-67767-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022] Open
Abstract
Controlled stirring of tiny volumes of aqueous fluids is of particular importance in the life sciences, e.g. in the context of microfluidic and lab-on-chip applications. Local stirring not only accelerates fluid mixing and diffusion-limited processes, but it also allows for adding controlled active noise to the fluid. Here we report on the synthesis and characterization of magnetic nano-stir bars (MNBs) with which these features can be achieved in a straightforward fashion. We also demonstrate the applicability of MNBs to cell extract droplets in microfluidic channels and we show that they can introduce active noise to cell extracts as evidenced by altered fluctuations of ensembles of cytoskeletal filaments.
Collapse
|
6
|
A multifunctional magnetic nanosystem based on "two strikes" effect for synergistic anticancer therapy in triple-negative breast cancer. J Control Release 2020; 322:401-415. [PMID: 32246976 DOI: 10.1016/j.jconrel.2020.03.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Multifunctional magnetic nanoparticles (MNPs) were widely used for ablation of cancer cells because of their potential on physical treatment. Herein, we developed the "cell targeting destructive" multifunctional polymeric nanoparticles (named as HA-Olb-PPMNPs) based on PEI-PLGA co-loaded with the anticancer drug Olaparib (Olb) and superparamagnetic iron oxide nanoparticles (Fe3O4 NPs), and further coated with a low molecular weight hyaluronic acid (HA) on its surface. Due to the high affinity between HA and CD44-receptor on cell surface of triple negative breast cancer (TNBC), an active targeting can be achieved. Under a rotating magnetic field (RMF), HA-Olb-PPMNPs produced a physical transfer of mechanical force by incomplete rotation. This mechanical force could cause the "two strikes" effect on the cells, in which "First-strike" was to damage the cell membrane structure (magneto-cell-lysis), another "Second-strike" could activate the lysosome-mitochondrial pathway by injuring lysosomes to induce cell apoptosis (magneto-cell-apoptosis). Therefore, the mechanical force and Olb exert dual anti-tumor effect to achieve synergistic therapeutic in the presence of RMF. This study proposes a novel multi-therapeutic concept for TNBC, as well as provided evidences of new anti-tumor therapeutic effects induced by the magnetic nanoparticles drug system.
Collapse
|
7
|
Li X, Zhu X, Pan D, Xue Y, Jia Q, Liu F, Li Z. Magnetic domains characterization of crystalline Fe3O4 under DC and AC magnetic field. Microscopy (Oxf) 2019; 68:310-315. [PMID: 31034075 DOI: 10.1093/jmicro/dfz018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/22/2019] [Accepted: 04/06/2019] [Indexed: 11/13/2022] Open
Abstract
Fe3O4 nanoparticles with crystallite sizes around 10 nm were synthesized by an emulsion method. X-ray diffractometer (XRD) shows that nanocrystalline Fe3O4 possesses face center cubic structure. The magnetic characteristics are investigated by magnetic force microscopy (MFM). Magnetic field directions were applied parallel and perpendicular to the Fe3O4 sample surface for magnetic measurements. Under the perpendicular magnetic field, the phase images of most magnetic nanoparticles exhibit bright or dark MFM contrast. In comparison, the parallel field phase images display a bright-dark dipole MFM contrast, with in-plane magnetic domain configurations. Furthermore, the investigation of strip domains inside Fe3O4 particles under altering magnetic fields indicates the existence of magnetic anisotropy energies, dipole energies as well as inter-grain coupling energies inside the clusters. This approach for probing magnetic responses on nanoscale magnetic domains can be further extended to the analysis of local physical features.
Collapse
Affiliation(s)
- Xiang Li
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaojuan Zhu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Dong Pan
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yan Xue
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qingqing Jia
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fang Liu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhenghua Li
- School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
8
|
Sifford J, Walsh KJ, Tong S, Bao G, Agarwal G. Indirect magnetic force microscopy. NANOSCALE ADVANCES 2019; 1:2348-2355. [PMID: 31608318 PMCID: PMC6788631 DOI: 10.1039/c9na00193j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/03/2019] [Indexed: 06/10/2023]
Abstract
Magnetic force microscopy (MFM) is an atomic force microscopy (AFM)-based technique to map magnetic domains in a sample. MFM is widely used to characterize magnetic recording media, magnetic domain walls in materials, nanoparticles and more recently iron deposits in biological samples. However, conventional MFM requires multiple scans of the samples, suffers from various artifacts and is limited in its capability for multimodal imaging or imaging in a fluid environment. We propose a new modality, namely indirect magnetic force microscopy (ID-MFM), a technique that employs an ultrathin barrier between the probe and the sample. Using fluorescently conjugated superparamagnetic nanoparticles, we demonstrate how ID-MFM can be achieved using commercially available silicon nitride windows, MFM probes and AFM equipment. The MFM signals obtained using ID-MFM were comparable to those obtained using conventional MFM. Further, samples prepared for ID-MFM were compatible with multi-modal imaging via fluorescence and transmission electron microscopy. Thus ID-MFM can serve as a high-throughput, multi-modal microscopy technique which can be especially attractive for detecting magnetism in nanoparticles and biological samples.
Collapse
Affiliation(s)
- Joshua Sifford
- Department of Mechanical Engineering, The Ohio State UniversityColumbusOH 43210USA
| | - Kevin J. Walsh
- Biophysics Program, The Ohio State UniversityColumbusOH 43210USA
| | - Sheng Tong
- Department of Bioengineering, Rice UniversityHoustonTexas 77005USA
| | - Gang Bao
- Department of Bioengineering, Rice UniversityHoustonTexas 77005USA
| | - Gunjan Agarwal
- Department of Biomedical Engineering, The Ohio State University288 Bevis Hall, 1080 Carmack RoadColumbusOH 43210USA+1 614 247 7799+1 614 292 4213
| |
Collapse
|
9
|
Angeloni L, Reggente M, Passeri D, Natali M, Rossi M. Identification of nanoparticles and nanosystems in biological matrices with scanning probe microscopy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1521. [PMID: 29665287 DOI: 10.1002/wnan.1521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/26/2018] [Accepted: 03/10/2018] [Indexed: 01/22/2023]
Abstract
Identification of nanoparticles and nanosystems into cells and biological matrices is a hot research topic in nanobiotechnologies. Because of their capability to map physical properties (mechanical, electric, magnetic, chemical, or optical), several scanning probe microscopy based techniques have been proposed for the subsurface detection of nanomaterials in biological systems. In particular, atomic force microscopy (AFM) can be used to reveal stiff nanoparticles in cells and other soft biomaterials by probing the sample mechanical properties through the acquisition of local indentation curves or through the combination of ultrasound-based methods, like contact resonance AFM (CR-AFM) or scanning near field ultrasound holography. Magnetic force microscopy can detect magnetic nanoparticles and other magnetic (bio)materials in nonmagnetic biological samples, while electric force microscopy, conductive AFM, and Kelvin probe force microscopy can reveal buried nanomaterials on the basis of the differences between their electric properties and those of the surrounding matrices. Finally, scanning near field optical microscopy and tip-enhanced Raman spectroscopy can visualize buried nanostructures on the basis of their optical and chemical properties. Despite at a still early stage, these methods are promising for detection of nanomaterials in biological systems as they could be truly noninvasive, would not require destructive and time-consuming specific sample preparation, could be performed in vitro, on alive samples and in water or physiological environment, and by continuously imaging the same sample could be used to dynamically monitor the diffusion paths and interaction mechanisms of nanomaterials into cells and biological systems. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Livia Angeloni
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | - Melania Reggente
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | - Daniele Passeri
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | - Marco Natali
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Rome, Italy.,Research Center for Nanotechnology Applied to Engineering of Sapienza University of Rome (CNIS), Rome, Italy
| |
Collapse
|
10
|
Synergistic structures from magnetic freeze casting with surface magnetized alumina particles and platelets. J Mech Behav Biomed Mater 2017. [DOI: 10.1016/j.jmbbm.2017.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Angeloni L, Passeri D, Corsetti S, Peddis D, Mantovani D, Rossi M. Single nanoparticles magnetization curves by controlled tip magnetization magnetic force microscopy. NANOSCALE 2017; 9:18000-18011. [PMID: 29131224 DOI: 10.1039/c7nr05742c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The development of high spatial resolution and element sensitive magnetic characterization techniques to quantitatively measure magnetic parameters of individual nanoparticles (NPs) and deeply understand and tune their magnetic properties is a hot topic in nanomagnetism. Magnetic force microscopy (MFM), thanks to its high lateral resolution, appears as a promising technique for the magnetic characterization of single nano-sized materials although it is still limited by some drawbacks, especially by the presence of electrostatic artifacts. Recently, these limitations have been overcome by the development of a particular MFM based technique called controlled magnetization - MFM (CM-MFM) allowing, in principle, a quantifiable correlation between the measured magnetic signal and the magnetization of the object under investigation. Here we propose an experimental procedure, based on the use of CM-MFM technique, to measure the magnetization curve of single magnetic NPs individuating their saturation magnetization, magnetic field, and coercivity. We measured, for the first time, the magnetization curves of individual Fe3O4 nanoparticles with diameters in the range of 18-32 nm by using a MFM instrument. Results are in very good agreement with the quantitative data obtained by SQUID analysis on a macroscopic sample, showing the high potential of the technique in the field of nanomagnetometry.
Collapse
Affiliation(s)
- Livia Angeloni
- Department of Basic and Applied Sciences for Engineering, SAPIENZA University of Rome, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
12
|
Frank MB, Naleway SE, Haroush T, Liu CH, Siu SH, Ng J, Torres I, Ismail A, Karandikar K, Porter MM, Graeve OA, McKittrick J. Stiff, porous scaffolds from magnetized alumina particles aligned by magnetic freeze casting. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:484-492. [DOI: 10.1016/j.msec.2017.03.246] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 01/05/2017] [Accepted: 03/25/2017] [Indexed: 12/26/2022]
|
13
|
Lee K, Jang JT, Nakano H, Nakagawa S, Paek SH, Bae S. External magnetic field dependent shift of superparamagnetic blocking temperature due to core/surface disordered spin interactions. NANOTECHNOLOGY 2017; 28:075710. [PMID: 28094245 DOI: 10.1088/1361-6528/aa5190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Although the blocking temperature of superparamagnetic nanoparticles (SPNPs) is crucial for various spintronics and biomedical applications, the precise determination of the blocking temperature is still not clear. Here, we present 'intrinsic' and 'extrinsic' characteristics of the blocking temperature in SPNP systems. In zero-field-cooled/field-cooled (ZFC-FC) curves, there was no shift of 'intrinsic blocking temperature' at different applied external (excitation) magnetic fields. However, 'extrinsic blocking temperature' shift is clearly dependent on the external (excitation) magnetic field. According to our newly proposed physical model, the 'intermediate spin layer' located between the core and surface disordered spin layers is primarily responsible for the physical nature of the shift of extrinsic blocking temperature. Our new findings offer possibilities for characterizing the thermally induced physical properties of SPNPs. Furthermore, these findings provide a new empirical approach to indirectly estimate the qualitative degree of the disordered surface spin status in SPNPs.
Collapse
Affiliation(s)
- Kwan Lee
- Nanobiomagnetics and Bioelectronics Laboratory (NBL), Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208, United States. P&B Nano Laboratory, Advanced Institutes of Convergence Technology (AICT), Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-270, Republic of Korea
| | | | | | | | | | | |
Collapse
|
14
|
Kessl JJ, Kutluay SB, Townsend D, Rebensburg S, Slaughter A, Larue RC, Shkriabai N, Bakouche N, Fuchs JR, Bieniasz PD, Kvaratskhelia M. HIV-1 Integrase Binds the Viral RNA Genome and Is Essential during Virion Morphogenesis. Cell 2016; 166:1257-1268.e12. [PMID: 27565348 DOI: 10.1016/j.cell.2016.07.044] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/16/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022]
Abstract
While an essential role of HIV-1 integrase (IN) for integration of viral cDNA into human chromosome is established, studies with IN mutants and allosteric IN inhibitors (ALLINIs) have suggested that IN can also influence viral particle maturation. However, it has remained enigmatic as to how IN contributes to virion morphogenesis. Here, we demonstrate that IN directly binds the viral RNA genome in virions. These interactions have specificity, as IN exhibits distinct preference for select viral RNA structural elements. We show that IN substitutions that selectively impair its binding to viral RNA result in eccentric, non-infectious virions without affecting nucleocapsid-RNA interactions. Likewise, ALLINIs impair IN binding to viral RNA in virions of wild-type, but not escape mutant, virus. These results reveal an unexpected biological role of IN binding to the viral RNA genome during virion morphogenesis and elucidate the mode of action of ALLINIs.
Collapse
Affiliation(s)
- Jacques J Kessl
- Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Ohio State University, Columbus, OH 43210, USA
| | - Sebla B Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Laboratory of Retrovirology, Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY 10016, USA
| | - Dana Townsend
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephanie Rebensburg
- Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Ohio State University, Columbus, OH 43210, USA
| | - Alison Slaughter
- Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Ohio State University, Columbus, OH 43210, USA
| | - Ross C Larue
- Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Ohio State University, Columbus, OH 43210, USA
| | - Nikoloz Shkriabai
- Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Ohio State University, Columbus, OH 43210, USA
| | - Nordine Bakouche
- Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Ohio State University, Columbus, OH 43210, USA
| | - James R Fuchs
- College of Pharmacy, Ohio State University, Columbus, OH 43210, USA
| | - Paul D Bieniasz
- Laboratory of Retrovirology, Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY 10016, USA; Howard Hughes Medical Institute, Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY 10016, USA
| | - Mamuka Kvaratskhelia
- Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
15
|
Blissett AR, Ollander B, Penn B, McTigue DM, Agarwal G. Magnetic mapping of iron in rodent spleen. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:977-986. [PMID: 27890658 DOI: 10.1016/j.nano.2016.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/25/2016] [Accepted: 11/17/2016] [Indexed: 01/12/2023]
Abstract
Evaluation of iron distribution and density in biological tissues is important to understand the pathogenesis of a variety of diseases and the fate of exogenously administered iron-based carriers and contrast agents. Iron distribution in tissues is typically characterized via histochemical (Perl's) stains or immunohistochemistry for ferritin, the major iron storage protein. A more accurate mapping of iron can be achieved via ultrastructural transmission electron microscopy (TEM) based techniques, which involve stringent sample preparation conditions. In this study, we elucidate the capability of magnetic force microscopy (MFM) as a label-free technique to map iron at the nanoscale level in rodent spleen tissue. We complemented and compared our MFM results with those obtained using Perl's staining and TEM. Our results show how MFM mapping corresponded to sizes of iron-rich lysosomes at a resolution comparable to that of TEM. In addition MFM is compatible with tissue sections commonly prepared for routine histology.
Collapse
Affiliation(s)
- Angela R Blissett
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
| | - Brooke Ollander
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
| | - Brittany Penn
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
| | - Dana M McTigue
- The Center for Brain and Spinal Cord Repair and the Department of Neuroscience, The Ohio State University, Columbus, OH
| | - Gunjan Agarwal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH.
| |
Collapse
|
16
|
Ares P, Jaafar M, Gil A, Gómez-Herrero J, Asenjo A. Magnetic Force Microscopy in Liquids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4731-6. [PMID: 26150330 DOI: 10.1002/smll.201500874] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/14/2015] [Indexed: 05/03/2023]
Abstract
In this work, the use of magnetic force microscopy (MFM) to acquire images of magnetic nanostructures in liquid environments is presented. Optimization of the MFM signal acquisition in liquid media is performed and it is applied to characterize the magnetic signal of magnetite nanoparticles. The ability for detecting magnetic nanostructures along with the well-known capabilities of atomic force microscopy in liquids suggests potential applications in fields such as nanomedicine, nanobiotechnology, or nanocatalysis.
Collapse
Affiliation(s)
- Pablo Ares
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Miriam Jaafar
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049, Madrid, Spain
| | - Adriana Gil
- Nanotec Electrónica S.L, E-28760, Tres Cantos, Madrid, Spain
| | - Julio Gómez-Herrero
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
- INC and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Agustina Asenjo
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049, Madrid, Spain
| |
Collapse
|
17
|
Cowger TA, Tang W, Zhen Z, Hu K, Rink DE, Todd TJ, Wang GD, Zhang W, Chen H, Xie J. Casein-Coated Fe5C2 Nanoparticles with Superior r2 Relaxivity for Liver-Specific Magnetic Resonance Imaging. Am J Cancer Res 2015; 5:1225-32. [PMID: 26379788 PMCID: PMC4568450 DOI: 10.7150/thno.12570] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 07/10/2015] [Indexed: 11/05/2022] Open
Abstract
Iron oxide nanoparticles have been extensively used as T2 contrast agents for liver-specific magnetic resonance imaging (MRI). The applications, however, have been limited by their mediocre magnetism and r2 relaxivity. Recent studies show that Fe5C2 nanoparticles can be prepared by high temperature thermal decomposition. The resulting nanoparticles possess strong and air stable magnetism, suggesting their potential as a novel type of T2 contrast agent. To this end, we improve the synthetic and surface modification methods of Fe5C2 nanoparticles, and investigated the impact of size and coating on their performances for liver MRI. Specifically, we prepared 5, 14, and 22 nm Fe5C2 nanoparticles and engineered their surface by: 1) ligand addition with phospholipids, 2) ligand exchange with zwitterion-dopamine-sulfonate (ZDS), and 3) protein adsorption with casein. It was found that the size and surface coating have varied levels of impact on the particles' hydrodynamic size, viability, uptake by macrophages, and r2 relaxivity. Interestingly, while phospholipid- and ZDS-coated Fe5C2 nanoparticles showed comparable r2, the casein coating led to an r2 enhancement by more than 2 fold. In particular, casein coated 22 nm Fe5C2 nanoparticle show a striking r2 of 973 mM(-1)s(-1), which is one of the highest among all of the T2 contrast agents reported to date. Small animal studies confirmed the advantage of Fe5C2 nanoparticles over iron oxide nanoparticles in inducing hypointensities on T2-weighted MR images, and the particles caused little toxicity to the host. The improvements are important for transforming Fe5C2 nanoparticles into a new class of MRI contrast agents. The observations also shed light on protein-based surface modification as a means to modulate contrast ability of magnetic nanoparticles.
Collapse
|
18
|
Nocera TM, Zeng Y, Agarwal G. Distinguishing ferritin from apoferritin using magnetic force microscopy. NANOTECHNOLOGY 2014; 25:461001. [PMID: 25355655 DOI: 10.1088/0957-4484/25/46/461001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Estimating the amount of iron-replete ferritin versus iron-deficient apoferritin proteins is important in biomedical and nanotechnology applications. This work introduces a simple and novel approach to quantify ferritin by using magnetic force microscopy (MFM). We demonstrate how high magnetic moment probes enhance the magnitude of MFM signal, thus enabling accurate quantitative estimation of ferritin content in ferritin/apoferritin mixtures in vitro. We envisage MFM could be adapted to accurately determine ferritin content in protein mixtures or in small aliquots of clinical samples.
Collapse
Affiliation(s)
- Tanya M Nocera
- Department of Biomedical Engineering, The Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
19
|
Physical justification for negative remanent magnetization in homogeneous nanoparticles. Sci Rep 2014; 4:6267. [PMID: 25183061 PMCID: PMC4152749 DOI: 10.1038/srep06267] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 07/22/2014] [Indexed: 11/23/2022] Open
Abstract
The phenomenon of negative remanent magnetization (NRM) has been observed experimentally in a number of heterogeneous magnetic systems and has been considered anomalous. The existence of NRM in homogenous magnetic materials is still in debate, mainly due to the lack of compelling support from experimental data and a convincing theoretical explanation for its thermodynamic validation. Here we resolve the long-existing controversy by presenting experimental evidence and physical justification that NRM is real in a prototype homogeneous ferromagnetic nanoparticle, an europium sulfide nanoparticle. We provide novel insights into major and minor hysteresis behavior that illuminate the true nature of the observed inverted hysteresis and validate its thermodynamic permissibility and, for the first time, present counterintuitive magnetic aftereffect behavior that is consistent with the mechanism of magnetization reversal, possessing unique capability to identify NRM. The origin and conditions of NRM are explained quantitatively via a wasp-waist model, in combination of energy calculations.
Collapse
|
20
|
Duong B, Khurshid H, Gangopadhyay P, Devkota J, Stojak K, Srikanth H, Tetard L, Norwood RA, Peyghambarian N, Phan MH, Thomas J. Enhanced magnetism in highly ordered magnetite nanoparticle-filled nanohole arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:2840-2848. [PMID: 24706405 DOI: 10.1002/smll.201303809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Indexed: 06/03/2023]
Abstract
A new approach to develop highly ordered magnetite (Fe3O4) nanoparticle-patterned nanohole arrays with desirable magnetic properties for a variety of technological applications is presented. In this work, the sub-100 nm nanohole arrays are successfully fabricated from a pre-ceramic polymer mold using spin-on nanoprinting (SNAP). These nanoholes a then filled with monodispersed, spherical Fe3O4 nanoparticles of about 10 nm diameter using a novel magnetic drag and drop procedure. The nanohole arrays filled with magnetic nanoparticles a imaged using magnetic force microscopy (MFM). Magnetometry and MFM measurements reveal room temperature ferromagnetism in the Fe3O4-filled nanohole arrays, while the as-synthesized Fe3O4 nanoparticles exhibit superparamagnetic behavior. As revealed by MFM measurements, the enhanced magnetism in the Fe3O4-filled nanohole arrays originates mainly from the enhanced magnetic dipole interactions of Fe3 O4 nanoparticles within the nanoholes and between adjacent nanoholes. Nanoparticle filled nanohole arrays can be highly beneficial in magnetic data storage and other applications such as microwave devices and biosensor arrays that require tunable and anisotropic magnetic properties.
Collapse
Affiliation(s)
- Binh Duong
- NanoScience Technology Center, University of Central Florida, FL, 32826, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tabasum MR, Zighem F, De La Torre Medina J, Encinas A, Piraux L, Nysten B. Magnetic force microscopy investigation of arrays of nickel nanowires and nanotubes. NANOTECHNOLOGY 2014; 25:245707. [PMID: 24870297 DOI: 10.1088/0957-4484/25/24/245707] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The magnetic properties of arrays of nanowires (NWs) and nanotubes (NTs), 150 nm in diameter, electrodeposited inside nanoporous polycarbonate membranes are investigated. The comparison of the nanoscopic magnetic force microscopy (MFM) imaging and the macroscopic behavior as measured by alternating gradient force magnetometry (AGFM) is made. It is shown that MFM is a complementary technique that provides an understanding of the magnetization reversal characteristics at the microscopic scale of individual nanostructures. The local hysteresis loops have been extracted by MFM measurements. The influence of the shape of such elongated nanostructures on the dipolar coupling and consequently on the squareness of the hysteresis curves is demonstrated. It is shown that the nanowires exhibit stronger magnetic interactions than nanotubes. The non-uniformity of the magnetization states is also revealed by combining the MFM and AGFM measurements.
Collapse
Affiliation(s)
- M R Tabasum
- Institute of Condensed Matter and Nanosciences-Bio and Soft Matter, Université catholique de Louvain, Belgium
| | | | | | | | | | | |
Collapse
|
22
|
Thickness measurement of soft thin films on periodically patterned magnetic substrates by phase difference magnetic force microscopy. Ultramicroscopy 2013; 136:96-106. [PMID: 24056281 DOI: 10.1016/j.ultramic.2013.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 08/02/2013] [Accepted: 08/04/2013] [Indexed: 10/26/2022]
Abstract
The need for accurate measurement of the thickness of soft thin films is continuously encouraging the development of techniques suitable for this purpose. We propose a method through which the thickness of the film is deduced from the quantitative measurement of the contrast in the phase images of the sample surface acquired by magnetic force microscopy, provided that the film is deposited on a periodically patterned magnetic substrate. The technique is demonstrated by means of magnetic substrates obtained from standard floppy disks. Colonies of Staphylococcus aureus adherent to such substrates were used to obtain soft layers with limited lateral (a few microns) and vertical (hundreds of nanometers) size. The technique is described and its specific merits, limitations and potentialities in terms of accuracy and measurable thickness range are discussed. These parameters depend on the characteristics of the sensing tip/cantilever as well as of the substrates, the latter in terms of spatial period and homogeneity of the magnetic domains. In particular, with the substrates used in this work we evaluated an uncertainty of about 10%, a limit of detection of 50-100 nm and an upper detection limit (maximum measurable thickness) of 1 μm, all obtained with standard lift height values (50-100 nm). Nonetheless, these parameters can be easily optimized by selecting/realizing substrates with suitable spacing and homogeneity of the magnetic domains. For example, the upper detection limit can be increased up to 25-50 μm while the limit of detection can be reduced to a few tens of nanometers or a few nanometers.
Collapse
|