1
|
He Q, Tang L. Sub-5 nm nanogap electrodes towards single-molecular biosensing. Biosens Bioelectron 2022; 213:114486. [PMID: 35749816 DOI: 10.1016/j.bios.2022.114486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
Nanogap electrodes (NGEs) with sub-5 nm gap has been widely used in single-molecule sensing and sequencing, with the characteristics of label-free, high sensitivity, rapid detection and low-cost. However, the fabrication of sub-5 nm gap electrodes with high controllability and reproducibility still remains a great challenge that impedes the experimental research and the commercialization of the nanogap device. Here, we review the common currently used fabrication methods of nanogap electrodes, such as gap narrowing deposition, mechanical controllable break junctions and the fabrication methods combined with nanopore or nanochannel. We then highlight the typical applications of nanogap electrodes in biological/chemical sensing fields, including single molecule recognition, single molecule sequencing and chemical kinetics analysis. Finally, the challenges of nanogap electrodes in single molecule sensing/sequencing are outlined and the future directions for sensing perspectives are suggested.
Collapse
Affiliation(s)
- Qiuxiang He
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Longhua Tang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
2
|
Unver Y, Sensoy Gun B, Acar M, Yildiz S. Heterologous expression of azurin from Pseudomonas aeruginosa in the yeast Pichia pastoris. Prep Biochem Biotechnol 2020; 51:723-730. [PMID: 33346686 DOI: 10.1080/10826068.2020.1855444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Azurin, which is a bacterial secondary metabolite has been attracted as a potential anticancer agent in recent years because induced death of cancer cells and inhibited their growth. In this study, the production of azurin under the control of the alcohol oxidase promoter which is frequently used in the Pichia pastoris expression system was performed. The azurin gene amplified from Pseudomonas aeruginosa genomic DNA and inserted into the pPICZαA was cloned in Escherichia coli cells. Then, a linearized recombinant vector was transferred to the P. pastoris X-33 cells. Antibiotic resistance test and colony PCR were performed for the selection of multicopy transformants. Protein expression capacities of selected transformants were compared at the end of 48 h incubation. Both extracellular and intracellular protein expressions were observed in all of them by Western blot analysis. The relative expression levels of both intracellular and extracellular protein that belongs to the first clone were higher than the others. On the other hand, it was seen that the 4th clone had the highest protein secretion ability. The molecular mass of the extracellular azurin protein which is produced by recombinant clones was found to be about 20 kDa. This is the first report on azurin expression in P. pastoris.
Collapse
Affiliation(s)
- Yagmur Unver
- Faculty of Science, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, Turkey
| | - Busra Sensoy Gun
- Faculty of Science, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, Turkey
| | - Melek Acar
- Faculty of Science, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, Turkey
| | - Seyda Yildiz
- Faculty of Science, Department of Molecular Biology and Genetics, Ataturk University, Erzurum, Turkey
| |
Collapse
|
3
|
Lee T, Kim TH, Yoon J, Chung YH, Lee JY, Choi JW. Investigation of Hemoglobin/Gold Nanoparticle Heterolayer on Micro-Gap for Electrochemical Biosensor Application. SENSORS 2016; 16:s16050660. [PMID: 27171089 PMCID: PMC4883351 DOI: 10.3390/s16050660] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/28/2016] [Accepted: 05/05/2016] [Indexed: 11/25/2022]
Abstract
In the present study, we fabricated a hemoglobin/gold nanoparticle (Hb/GNP) heterolayer immobilized on the Au micro-gap to confirm H2O2 detection with a signal-enhancement effect. The hemoglobin which contained the heme group catalyzed the reduction of H2O2. To facilitate the electron transfer between hemoglobin and Au micro-gap electrode, a gold nanoparticle was introduced. The Au micro-gap electrode that has gap size of 5 µm was fabricated by conventional photolithographic technique to locate working and counter electrodes oppositely in a single chip for the signal sensitivity and reliability. The hemoglobin was self-assembled onto the Au surface via chemical linker 6-mercaptohexanoic acid (6-MHA). Then, the gold nanoparticles were adsorbed onto hemoglobin/6-MHA heterolayers by the layer-by-layer (LbL) method. The fabrication of the Hb/GNP heterolayer was confirmed by atomic force microscopy (AFM) and surface-enhanced Raman spectroscopy (SERS). The redox property and H2O2 detection of Hb/GNP on the micro-gap electrode was investigated by a cyclic voltammetry (CV) experiment. Taken together, the present results show that the electrochemical signal-enhancement effect of a hemoglobin/nanoparticle heterolayer was well confirmed on the micro-scale electrode for biosensor applications.
Collapse
Affiliation(s)
- Taek Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742, Korea.
- Research Center for Integrated Biotechnology, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742, Korea.
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 156-756, Korea.
| | - Jinho Yoon
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742, Korea.
| | - Yong-Ho Chung
- Department of Chemical Engineering, Hoseo University, 20, Hoseo-ro 79beon-gil, Baebang-Eup, Asan City, Chungnam 336-795, Korea.
| | - Ji Young Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742, Korea.
- Research Center for Integrated Biotechnology, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742, Korea.
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742, Korea.
- Research Center for Integrated Biotechnology, Sogang University, 35 Baekbeom-ro (Sinsu-dong), Mapo-gu, Seoul 121-742, Korea.
| |
Collapse
|
4
|
Yoon J, Chung YH, Lee T, Kim JH, Kim J, Choi JW. A biomemory chip composed of a myoglobin/CNT heterolayer fabricated by the protein-adsorption-precipitation-crosslinking (PAPC) technique. Colloids Surf B Biointerfaces 2015; 136:853-8. [PMID: 26539811 DOI: 10.1016/j.colsurfb.2015.10.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/15/2015] [Accepted: 10/20/2015] [Indexed: 11/19/2022]
Abstract
In this study, a biomemory chip consisting of a myoglobin/carbon nanotube (CNT) heterolayer is fabricated via the protein-adsorption-precipitation-crosslinking (PAPC) technique for electrochemical signal enhancement, long-term stability, and improved memory function. The PAPC technique is used to fabricate a myoglobin/CNT heterolayer with a CNT core and a high-density myoglobin-shell structure to achieve efficient heterolayer formation and improved performance of the heterolayer. The fabricated myoglobin/CNT heterolayer is immobilized onto a Au substrate through a chemical linker. The surface morphology of the deposited heterolayer is investigated via transmission electron microscopy and atomic force microscopy. The redox properties of the myoglobin/CNT heterolayer are investigated by cyclic voltammetry, and the memory function of the heterolayer, including the "write step" and "erase step," is measured by chronoamperometry. Compared with the myoglobin monolayer without CNT, the myoglobin/CNT heterolayer fabricated by the PAPC technique exhibits greater electrochemical signal enhancement, long-term stability at room temperature, and improved memory function. The results suggest that the proposed myoglobin/CNT heterolayer produced via the PAPC technique can be applied as a platform for bioelectronic devices to achieve improved signal intensity and durability.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 121-742, Republic of Korea
| | - Yong-Ho Chung
- Department of Chemical Engineering, Hoseo University, 20, Hoseo-ro 79 Beon-gil, Baebang-eup, Asan City, Chungnam 336-795, Republic of Korea
| | - Taek Lee
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 121-742, Republic of Korea
| | - Jae Hyun Kim
- Department of Chemical and Biological Engineering, Korea University, Anam 5-ga, Seoungbuk-gu, Seoul 136-701, Republic of Korea
| | - Jungbae Kim
- Department of Chemical and Biological Engineering, Korea University, Anam 5-ga, Seoungbuk-gu, Seoul 136-701, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 121-742, Republic of Korea.
| |
Collapse
|
5
|
Redox state control of a metalloprotein to generate multi-level signals for applications to bioelectronic devices. BIOCHIP JOURNAL 2015. [DOI: 10.1007/s13206-015-9307-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|