1
|
Chai X, Lin J, Xu C, Sun D, Liu HH. Engineering Triphasic Nanocomposite Coatings on Pretreated Mg Substrates for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54716-54730. [PMID: 39344064 PMCID: PMC11472260 DOI: 10.1021/acsami.4c13811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Biodegradable polymer-based nanocomposite coatings provide multiple advantages to modulate the corrosion resistance and cytocompatibility of magnesium (Mg) alloys for biomedical applications. Biodegradable poly(glycerol sebacate) (PGS) is a promising candidate used for medical implant applications. In this study, we synthesized a new PGS nanocomposite system consisting of hydroxyapatite (HA) and magnesium oxide (MgO) nanoparticles and developed a spray coating process to produce the PGS nanocomposite layer on pretreated Mg substrates, which improved the coating adhesion at the interface and their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). Prior to the spray coating process of polymer-based nanocomposites, the Mg substrates were pretreated in alkaline solutions to enhance the interfacial adhesion strength of the polymer-based nanocomposite coatings. The addition of HA and MgO nanoparticles (nHA and nMgO) to the PGS matrix, as well as the alkaline pretreatment of the Mg substrates, significantly enhanced the interfacial adhesion strength when compared with the PGS coating on the nontreated Mg control. The average BMSC adhesion densities were higher on the PGS/nHA/nMgO coated Mg than the noncoated Mg controls under direct contact conditions. Moreover, the addition of nHA and nMgO to the PGS matrix and coating the nanocomposite onto Mg substrates increased the average BMSC adhesion density when compared with the PGS/nHA/nMgO coated titanium (Ti) and PGS coated Mg controls under direct contact. Therefore, the spray coating process of PGS/nHA/nMgO nanocomposites on Mg substrates or other biodegradable metal substrates could provide a promising surface treatment strategy for biodegradable implant applications.
Collapse
Affiliation(s)
- Xijuan Chai
- Department
of Bioengineering, University of California,
Riverside, Riverside, California 92521, United States
- Department
of Material Science and Technology, Southwest
Forestry University, 300 Bailong Road, Kunming 650224, P.R. China
| | - Jiajia Lin
- Materials
Science & Engineering Program, University
of California, Riverside, Riverside, California 92521, United States
| | - Changlu Xu
- Materials
Science & Engineering Program, University
of California, Riverside, Riverside, California 92521, United States
| | - Dongwei Sun
- Department
of Bioengineering, University of California,
Riverside, Riverside, California 92521, United States
- Materials
Science & Engineering Program, University
of California, Riverside, Riverside, California 92521, United States
| | - Huinan Hannah Liu
- Department
of Bioengineering, University of California,
Riverside, Riverside, California 92521, United States
- Materials
Science & Engineering Program, University
of California, Riverside, Riverside, California 92521, United States
- Stem
Cell Center, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
2
|
Tran DT, Chen FH, Wu GL, Ching PCO, Yeh ML. Influence of Spin Coating and Dip Coating with Gelatin/Hydroxyapatite for Bioresorbable Mg Alloy Orthopedic Implants: In Vitro and In Vivo Studies. ACS Biomater Sci Eng 2023; 9:705-718. [PMID: 36695051 DOI: 10.1021/acsbiomaterials.2c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Suitable biomechanical properties, good biocompatibility, and osteoconductivity of a degradable magnesium (Mg) alloy make it a potential material for orthopedic implants. The main limitation of Mg is its high corrosion rate in the human body. Surface modification is necessary to improve the Mg corrosion resistance. In this work, a polymeric layer of gelatin/nanohydroxyapatite (Gel/nHA) was coated on a ZK60 Mg alloy by dip coating and spin coating to test the corrosion resistance and biocompatibility in vitro and in vivo. The results from the in vitro test revealed that the coated groups reduced the corrosion rate with the corrosion current density by 59 and 81%, from 31.22 to 12.83 μA/cm2 and 5.83 μA/cm2 in the spin coating and dip coating groups, respectively. The dip coating group showed better corrosion resistance than the spin coating group with the lowest released hydrogen content (17.5 mL) and lowest pH value (8.23) and reducing the current density by 45%. In vitro, the relative growth rate was over 75% in all groups tested with MG63, demonstrating that the Mg substrate and coating materials were within the safety range. The dip coating and spin coating groups enhanced the cell proliferation with significantly higher OD values (3.3, 3.0, and 2.5, respectively) and had better antihemolysis and antiplatelet adhesion abilities than the uncoated group. The two coating methods showed no difference in the cellular response, cell migration, hemolysis, and platelet adhesion test. In in vivo tests in rats, the dip coating group also showed a higher corrosion resistance with a lower corrosion rate and mass loss than the spin coating group. In addition, the blood biochemistry and histopathology results indicated that all materials used in this study were biocompatible with living subjects. The present research confirmed that the two methods have no noticeable difference in cell and organ response but the corrosion resistance of dip coating was higher than that of spin coating either in vitro or in vivo.
Collapse
Affiliation(s)
- Duong-Thuy Tran
- Department of Biomedical Engineering, National Cheng Kung University, No. 1, Daxue Road, East District, Tainan701, Taiwan
| | - Fang-Hsu Chen
- Department of Biomedical Engineering, National Cheng Kung University, No. 1, Daxue Road, East District, Tainan701, Taiwan
| | - Guan-Lin Wu
- Department of Biomedical Engineering, National Cheng Kung University, No. 1, Daxue Road, East District, Tainan701, Taiwan
| | - Paula Carmela O Ching
- Department of Biomedical Engineering, National Cheng Kung University, No. 1, Daxue Road, East District, Tainan701, Taiwan
| | - Ming-Long Yeh
- Department of Biomedical Engineering, National Cheng Kung University, No. 1, Daxue Road, East District, Tainan701, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, No. 1, Daxue Road, East District, Tainan701, Taiwan
| |
Collapse
|
3
|
Composite Coatings for Osteoblast Growth Attachment Fabricated by Matrix-Assisted Pulsed Laser Evaporation. Polymers (Basel) 2022; 14:polym14142934. [PMID: 35890714 PMCID: PMC9322700 DOI: 10.3390/polym14142934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
The bioactive and biocompatible properties of hydroxyapatite (HAp) promote the osseointegration process. HAp is widely used in biomedical applications, especially in orthopedics, as well as a coating material for metallic implants. We obtained composite coatings based on HAp, chitosan (CS), and FGF2 by a matrix-assisted pulsed laser evaporation (MAPLE) technique. The coatings were physico-chemically investigated by means of X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Infrared Microscopy (IRM), and Scanning Electron Microscopy (SEM). Further, biological investigations were performed. The MAPLE-composite coatings were tested in vitro on the MC3T3-E1 cell line in order to endorse cell attachment and growth without toxic effects and to promote pre-osteoblast differentiation towards the osteogenic lineage. These coatings can be considered suitable for bone tissue engineering applications that lack toxicity and promotes cell adhesion and proliferation while also sustaining the differentiation of pre-osteoblasts towards mature bone cells.
Collapse
|
4
|
Interfacial Compatibilization into PLA/Mg Composites for Improved In Vitro Bioactivity and Stem Cell Adhesion. Molecules 2021; 26:molecules26195944. [PMID: 34641488 PMCID: PMC8512483 DOI: 10.3390/molecules26195944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 01/22/2023] Open
Abstract
The present work highlights the crucial role of the interfacial compatibilization on the design of polylactic acid (PLA)/Magnesium (Mg) composites for bone regeneration applications. In this regard, an amphiphilic poly(ethylene oxide-b-L,L-lactide) diblock copolymer with predefined composition was synthesised and used as a new interface to provide physical interactions between the metallic filler and the biopolymer matrix. This strategy allowed (i) overcoming the PLA/Mg interfacial adhesion weakness and (ii) modulating the composite hydrophilicity, bioactivity and biological behaviour. First, a full study of the influence of the copolymer incorporation on the morphological, wettability, thermal, thermo-mechanical and mechanical properties of PLA/Mg was investigated. Subsequently, the bioactivity was assessed during an in vitro degradation in simulated body fluid (SBF). Finally, biological studies with stem cells were carried out. The results showed an increase of the interfacial adhesion by the formation of a new interphase between the hydrophobic PLA matrix and the hydrophilic Mg filler. This interface stabilization was confirmed by a decrease in the damping factor (tanδ) following the copolymer addition. The latter also proves the beneficial effect of the composite hydrophilicity by selective surface localization of the hydrophilic PEO leading to a significant increase in the protein adsorption. Furthermore, hydroxyapatite was formed in bulk after 8 weeks of immersion in the SBF, suggesting that the bioactivity will be noticeably improved by the addition of the diblock copolymer. This ceramic could react as a natural bonding junction between the designed implant and the fractured bone during osteoregeneration. On the other hand, a slight decrease of the composite mechanical performances was noted.
Collapse
|
5
|
Rykowska I, Nowak I, Nowak R. Drug-Eluting Stents and Balloons-Materials, Structure Designs, and Coating Techniques: A Review. Molecules 2020; 25:E4624. [PMID: 33050663 PMCID: PMC7594099 DOI: 10.3390/molecules25204624] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022] Open
Abstract
Controlled drug delivery is a matter of interest to numerous scientists from various domains, as well as an essential issue for society as a whole. In the treatment of many diseases, it is crucial to control the dosing of a drug for a long time and thus maintain its optimal concentration in the tissue. Heart diseases are particularly important in this aspect. One such disease is an obstructive arterial disease affecting millions of people around the world. In recent years, stents and balloon catheters have reached a significant position in the treatment of this condition. Balloon catheters are also successfully used to manage tear ducts, paranasal sinuses, or salivary glands disorders. Modern technology is continually striving to improve the results of previous generations of stents and balloon catheters by refining their design, structure, and constituent materials. These advances result in the development of both successive models of drug-eluting stents (DES) and drug-eluting balloons (DEB). This paper presents milestones in the development of DES and DEB, which are a significant option in the treatment of coronary artery diseases. This report reviews the works related to achievements in construction designs and materials, as well as preparation technologies, of DES and DEB. Special attention was paid to the polymeric biodegradable materials used in the production of the above-mentioned devices. Information was also collected on the various methods of producing drug release coatings and their effectiveness in releasing the active substance.
Collapse
Affiliation(s)
- I. Rykowska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - I. Nowak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - R. Nowak
- Eye Department, J. Strus City Hospital, Szwajcarska 3, 61-285 Poznań, Poland;
| |
Collapse
|
6
|
Jiang W, Zhang C, Tran L, Wang SG, Hakim AD, Liu H. Engineering Nano-to-Micron-Patterned Polymer Coatings on Bioresorbable Magnesium for Controlling Human Endothelial Cell Adhesion and Morphology. ACS Biomater Sci Eng 2020; 6:3878-3898. [DOI: 10.1021/acsbiomaterials.0c00642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wensen Jiang
- Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Chaoxing Zhang
- Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Larry Tran
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
- Department of Chemical Engineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Sebo Gene Wang
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
- Department of Chemistry, College of Natural and Agricultural Sciences, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Ammar Dilshad Hakim
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Huinan Liu
- Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
7
|
Cortez Alcaraz MC, Cipriano AF, Lin J, Soria P, Tian Q, Liu H. Electrophoretic Deposition of Magnesium Oxide Nanoparticles on Magnesium: Processing Parameters, Microstructures, Degradation, and Cytocompatibility. ACS APPLIED BIO MATERIALS 2019; 2:5634-5652. [PMID: 35021558 DOI: 10.1021/acsabm.9b00714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Magnesium (Mg) and its alloys are a class of promising materials for biodegradable orthopedic and craniomaxillofacial implants; however, rapid release of hydrogen gas remains a key challenge for clinical translation. This study reported the optimal parameters of electrophoretic deposition (EPD), at which magnesium oxide nanoparticles (nMgO) could be deposited onto Mg substrates with homogeneous surface morphology and elemental distribution. The results showed that the distribution and uniformity of the nMgO coatings on Mg improved when the nMgO concentration in ethanol increased and the time of applied voltage decreased. The nMgO-coated Mg showed a homogeneous surface and distinct degradation mode during the 9-day immersion studies in revised simulated body fluid (r-SBF) and Dulbecco's modified Eagle's medium (DMEM), when compared with the noncoated Mg controls. The nMgO coating initially mitigated hydrogen gas formation. The degradation layer on nMgO-coated Mg was thicker than the noncoated Mg and enriched with Ca and P that are favorable for skeletal implant applications. In the direct culture study with bone marrow derived mesenchymal stem cells (BMSCs) in vitro, the cell adhesion density and morphology were not affected by the solubilized degradation products released by the nMgO-coated Mg under indirect contact. However, at the cell-biomaterial interface, the cell spreading decreased under direct contact, possibly because of the continuous dynamic degradation of the samples. The electrophoretically deposited nMgO coatings on Mg-based medical implants should be further studied to improve the coating-substrate and cell-material interfaces for clinical applications.
Collapse
Affiliation(s)
| | | | | | - Pedro Soria
- Department of Biology, California State University, San Bernardino, California 92407, United States
| | | | | |
Collapse
|
8
|
Wetteland CL, Liu H. Optical and biological properties of polymer-based nanocomposites with improved dispersion of ceramic nanoparticles. J Biomed Mater Res A 2019; 106:2692-2707. [PMID: 29901266 DOI: 10.1002/jbm.a.36466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/09/2018] [Accepted: 05/22/2018] [Indexed: 11/08/2022]
Abstract
This article reports a new process for creating polymer-based nanocomposites with enhanced dispersion of ceramic nanoparticles without using any surfactants, and the resulted changes in their optical and biological properties. Specifically, dispersion of two different ceramic nanoparticles, that is, hydroxyapatite (nHA) and magnesium oxide (nMgO) nanoparticles, in a model biodegradable polymer, namely poly(lactic-co-glycolic acid) (PLGA), was studied. High-power sonication was integrated with dual asymmetric centrifugal (DAC) mixing to improve dispersion of nanoparticles during solvent casting. The polymer/solvent ratio was optimized to improve nanoparticle dispersion in the multistep processing, including enhancing the efficacy of sonication and DAC mixing and reducing nanoparticle sedimentation during solvent-casting. Microstructural characterization confirmed that this new process improved nanoparticle dispersion in nMgO/PLGA and nHA/PLGA nanocomposites. Improved nanoparticle dispersion increased the optical transparency visually and optical transmission quantitatively for both nHA/PLGA and nMgO/PLGA nanocomposites. Improved dispersion of nanoparticles improved the adhesion of bone marrow derived mesenchymal stem cells (BMSCs) on nHA/PLGA but decreased BMSC viability on nMgO/PLGA. This difference is likely because the chemistry of nHA and nMgO had different effects on BMSCs. This study provided a new process for enhancing dispersion of ceramic nanoparticles in a polymer matrix and revealed the effects of dispersion on optical properties and cell responses, which are valuable for engineering optimal ceramic/polymer nanocomposites for different biomedical applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2692-2707, 2018.
Collapse
Affiliation(s)
| | - Huinan Liu
- Department of Bioengineering, University of California, Riverside, California 92521.,Materials Science and Engineering Program, University of California, Riverside, California 92521.,Stem Cell Center, University of California, Riverside, California 92521
| |
Collapse
|
9
|
Yang Y, Zhou J, Chen Q, Detsch R, Cui X, Jin G, Virtanen S, Boccaccini AR. In Vitro Osteocompatibility and Enhanced Biocorrosion Resistance of Diammonium Hydrogen Phosphate-Pretreated/Poly(ether imide) Coatings on Magnesium for Orthopedic Application. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29667-29680. [PMID: 31335111 DOI: 10.1021/acsami.9b11073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Magnesium, as a biodegradable metal, is a promising candidate for biomedical applications. To modify the degradation behavior of magnesium and improve its osteocompatibility, chemical conversion and spin coating methods were combined to develop a diammonium hydrogen phosphate-pretreated/poly(ether imide) (DAHP/PEI) co-coating system. The diammonium hydrogen phosphate pretreatment was employed to enhance the attachment between PEI coatings and the magnesium substrate; meanwhile, it could serve as another bioactive and anticorrosion layer when PEI coatings break down. Surface characterization, electrochemical tests, and short-term immersion tests in DMEM were performed to evaluate DAHP/PEI coatings. Electrochemical measurements showed that DAHP/PEI coatings significantly improved the corrosion resistance of pure magnesium. No obvious changes of the chemical compositions of DAHP/PEI coatings occurred after 72 h of immersion in DMEM. An in vitro cytocompatibility study confirmed that viability and LDH activity of human osteoblast-like cells on DAHP/PEI coatings showed higher values than those on the DAHP-pretreated layer and pure magnesium. The DAHP-pretreated layer could still enhance the ALP activity of MG-63 cells after the degradation of PEI in DAHP/PEI coatings. Besides that, the in vitro cellular response to the treated magnesium was investigated to gain knowledge on the differentiation and proliferation of human adipose-derived stem cells (hADSCs). Cell distribution and morphology were observed by fluorescence and SEM images, which demonstrated that DAHP/PEI coatings facilitated cell differentiation and proliferation. The high level of C-terminals of collagen type I production of hADSCs on DAHP/PEI coatings indicated the potential of the coating for promoting osteogenic differentiation. Positive results from long-term cytocompatibility and proliferation tests indicate that DAHP/PEI coatings can offer an excellent surface for hADSCs.
Collapse
Affiliation(s)
- Yuyun Yang
- Institute of Surface/Interface Science and Technology, Department of Material Science and Chemical Engineering , Harbin Engineering University , 150001 Harbin , China
| | | | - Qiang Chen
- State Key Laboratory of Solidification Processing , Northwestern Polytechnical University , Xi'an , 710072 Shaanxi , China
| | | | - Xiufang Cui
- Institute of Surface/Interface Science and Technology, Department of Material Science and Chemical Engineering , Harbin Engineering University , 150001 Harbin , China
| | - Guo Jin
- Institute of Surface/Interface Science and Technology, Department of Material Science and Chemical Engineering , Harbin Engineering University , 150001 Harbin , China
| | | | | |
Collapse
|
10
|
Narita K, Tian Q, Johnson I, Zhang C, Kobayashi E, Liu H. Degradation behaviors and cytocompatibility of Mg/β-tricalcium phosphate composites produced by spark plasma sintering. J Biomed Mater Res B Appl Biomater 2019; 107:2238-2253. [PMID: 30707487 DOI: 10.1002/jbm.b.34316] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/07/2018] [Accepted: 12/23/2018] [Indexed: 11/08/2022]
Abstract
Magnesium (Mg)-based materials have shown great potentials for bioresorbable implant applications. Previous studies showed that Mg with 10 and 20 vol % β-tricalcium phosphate (β-TCP) composites produced by spark plasma sintering, improved mechanical properties when compared with pure Mg. The objectives of this study were to evaluate the degradation behaviors of Mg/10% β-TCP and Mg/20% β-TCP composites in revised stimulated body fluid (rSBF), and to determine their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs) using the direct culture method. During the 11 days of immersion in rSBF, Mg/β-TCP composites showed different degradation behaviors at different immersion periods, that is, the initial stage (0-1 hr), the mid-term stage (1 hr to 2 days), and the long-term stage (2-11 days). The counter effects of mass loss due to microgalvanic corrosion and mass gain due to deposition of Ca-P containing layers resulted in slower Mg2+ ion release for Mg/20% β-TCP than Mg/10% β-TCP in the mid-term, but eventually 16% mass loss for Mg/20% β-TCP and 10% mass loss for Mg/10% β-TCP after 11 days of immersion. The in vitro studies with BMSCs showed the highest cell adhesion density (i.e., 68% of seeding density) on the plate surrounding the Mg/10% β-TCP sample, that is, under the indirect contact condition of direct culture. The β-TCP showed a positive effect on direct adhesion of BMSCs on the surface of Mg/β-TCP composites. This study elucidated the degradation behaviors and the cytocompatibility of Mg/β-TCP composites in vitro; and, further studies on Mg/ceramic composites are needed to determine their potential for clinical applications. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2238-2253, 2019.
Collapse
Affiliation(s)
- Kai Narita
- Department of Metallurgy & Ceramics Science, Graduate School of Science & Engineering, Tokyo Institute of Technology, Tokyo, Japan.,Department of Bioengineering, University of California at Riverside, Riverside, California 92521
| | - Qiaomu Tian
- Department of Bioengineering, University of California at Riverside, Riverside, California 92521.,Materials Science and Engineering Program, University of California at Riverside, Riverside, California 92521
| | - Ian Johnson
- Department of Bioengineering, University of California at Riverside, Riverside, California 92521
| | - Chaoxing Zhang
- Materials Science and Engineering Program, University of California at Riverside, Riverside, California 92521
| | - Equo Kobayashi
- Department of Metallurgy & Ceramics Science, Graduate School of Science & Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Huinan Liu
- Department of Bioengineering, University of California at Riverside, Riverside, California 92521.,Materials Science and Engineering Program, University of California at Riverside, Riverside, California 92521.,Cell, Molecular, and Developmental Biology (CMDB) Program, University of California at Riverside, Riverside, California 92521.,Stem Cell Center, University of California at Riverside, Riverside, California 92521
| |
Collapse
|
11
|
Kang MH, Lee H, Jang TS, Seong YJ, Kim HE, Koh YH, Song J, Jung HD. Biomimetic porous Mg with tunable mechanical properties and biodegradation rates for bone regeneration. Acta Biomater 2019; 84:453-467. [PMID: 30500444 DOI: 10.1016/j.actbio.2018.11.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/02/2018] [Accepted: 11/26/2018] [Indexed: 11/19/2022]
Abstract
The medical applications of porous Mg scaffolds are limited owing to its rapid corrosion, which dramatically decreases the mechanical strength of the scaffold. Mimicking the bone structure and composition can improve the mechanical and biological properties of porous Mg scaffolds. The Mg structure can also be coated with HA by an aqueous precipitation coating method to enhance both the corrosion resistance and the biocompatibility. However, due to the brittleness of HA coating layer, cracks tend to form in the HA coating layer, which may influence the corrosion and biological functionality of the scaffold. Consequently, in this study, hybrid poly(ether imide) (PEI)-SiO2 layers were applied to the HA-coated biomimetic porous Mg to impart the structure with the high corrosion resistance associated with PEI and excellent bioactivity with SiO2. The porosity of the Mg was controlled by adjusting the concentration of the sodium chloride (NaCl) particles used in the fabrication via the space-holder method. The mechanical measurements showed that the compressive strength and stiffness of the biomimetic porous Mg increased as the portion of the dense region increased. In addition, following results show that HA/(PEI-SiO2) hybrid-coated biomimetic Mg is a promising biodegradable scaffold for orthopedic applications. In-vitro testing revealed that the proposed hybrid coating reduced the degradation rate and facilitated osteoblast spreading compared to HA- and HA/PEI-coating scaffolds. Moreover, in-vivo testing with a rabbit femoropatellar groove model showed improved tissue formation, reduced corrosion and degradation, and improved bone formation on the scaffold. STATEMENT OF SIGNIFICANCE: Porous Mg is a promising biodegradable scaffold for orthopedic applications. However, there are limitations in applying porous Mg for an orthopedic biomaterial due to its poor mechanical properties and susceptibility to rapid corrosion. Here, we strategically designed the structure and coating layer of porous Mg to overcome these limitations. First, porous Mg was fabricated by mimicking the bone structure which has a combined structure of dense and porous regions, thus resulting in an enhancement of mechanical properties. Furthermore, the biomimetic porous Mg was coated with HA/(PEI-SiO2) hybrid layer to improve both corrosion resistance and biocompatibility. As the final outcome, with tunable mechanical and biodegradable properties, HA/(PEI-SiO2)-coated biomimetic porous Mg could be a promising candidate material for load-bearing orthopedic applications.
Collapse
Affiliation(s)
- Min-Ho Kang
- Department of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea; Center of Nanoparticle Research, Institute for Basic Science (IBS), Republic of Korea
| | - Hyun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae-Sik Jang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore, Singapore; Research Institute of Advanced Manufacturing Technology, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea
| | - Yun-Jeong Seong
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyoun-Ee Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Hag Koh
- School of Biomedical Engineering, Korea University, Seoul 136-703, Republic of Korea
| | - Juha Song
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore, Singapore
| | - Hyun-Do Jung
- Research Institute of Advanced Manufacturing Technology, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea.
| |
Collapse
|
12
|
Borhani S, Hassanajili S, Ahmadi Tafti SH, Rabbani S. Cardiovascular stents: overview, evolution, and next generation. Prog Biomater 2018; 7:175-205. [PMID: 30203125 PMCID: PMC6173682 DOI: 10.1007/s40204-018-0097-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/25/2018] [Indexed: 12/01/2022] Open
Abstract
Compared to bare-metal stents (BMSs), drug-eluting stents (DESs) have been regarded as a revolutionary change in coronary artery diseases (CADs). Releasing pharmaceutical agents from the stent surface was a promising progress in the realm of cardiovascular stents. Despite supreme advantages over BMSs, in-stent restenosis (ISR) and long-term safety of DESs are still deemed ongoing concerns over clinically application of DESs. The failure of DESs for long-term clinical use is associated with following factors including permanent polymeric coating materials, metallic stent platforms, non-optimal drug releasing condition, and factors that have recently been supposed as contributory factors such as degradation products of polymers, metal ions due to erosion and degradation of metals and their alloys utilizing in some stents as metal frameworks. Discovering the direct relation between stent materials and associating adverse effects is a complicated process, and yet it has not been resolved. For clinical success it is of significant importance to optimize DES design and explore novel strategies to overcome all problems including inflammatory response, delay endothelialization, and sub-acute stent thrombosis (ST) simultaneously. In this work, scientific reports are reviewed particularly focusing on recent advancements in DES design which covers both potential improvements of existing and recently novel prototype stent fabrications. Covering a wide range of information from the BMSs to recent advancement, this study mostly sheds light on DES's concepts, namely stent composition, drug release mechanism, and coating techniques. This review further reports different forms of DES including fully biodegradable DESs, shape-memory ones, and polymer-free DESs.
Collapse
Affiliation(s)
- Setareh Borhani
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Shadi Hassanajili
- Department of Nanochemical Engineering, School of New Science and Technology, Shiraz University, Shiraz, Iran.
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, North Kargar, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, North Kargar, Tehran, Iran
| |
Collapse
|
13
|
Zhang C, Lin J, Liu H. Magnesium-based Biodegradable Materials for Biomedical Applications. ACTA ACUST UNITED AC 2018. [DOI: 10.1557/adv.2018.488] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Jiang W, Cipriano AF, Tian Q, Zhang C, Lopez M, Sallee A, Lin A, Cortez Alcaraz MC, Wu Y, Zheng Y, Liu H. In vitro evaluation of MgSr and MgCaSr alloys via direct culture with bone marrow derived mesenchymal stem cells. Acta Biomater 2018; 72:407-423. [PMID: 29626698 DOI: 10.1016/j.actbio.2018.03.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/10/2018] [Accepted: 03/28/2018] [Indexed: 12/19/2022]
Abstract
Magnesium (Mg) and its alloys have been widely investigated as the most promising biodegradable metals to replace conventional non-degradable metals for temporary medical implant applications. New Mg alloys have been developed for medical applications in recent years; and the concept of alloying Mg with less-toxic elements have aroused tremendous interests due to the promise to address the problems associated with rapid degradation of Mg without compromising its cytocompatibility and biocompatibility. Of particular interests for orthopedic/spinal implant applications are the additions of calcium (Ca) and strontium (Sr) into Mg matrix because of their beneficial properties for bone regeneration. In this study, degradation and cytocompatibility of four binary MgSr alloys (Mg-xSr, x = 0.2, 0.5, 1 and 2 wt%) and four ternary MgCaSr alloys (Mg-1Ca-xSr, x = 0.2, 0.5, 1 and 2 wt%) were investigated and compared via direct culture with bone marrow-derived mesenchymal stem cells (BMSCs). The influence of the alloy composition on the degradation rates were studied and compared. Moreover, the cellular responses to the binary MgSr alloys and the ternary MgCaSr alloys were comparatively evaluated; and the critical factors influencing BMSC behaviors were discussed. This study screened the degradability and in vitro cytocompatibility of the binary MgSr alloys and the ternary MgCaSr alloys. Mg-1Sr, Mg-1Ca-0.5Sr and Mg-1Ca-1Sr alloys are recommended for further in vivo studies toward clinical translation due to their best overall performances in terms of degradation and cytocompatibility among all the alloys studied in the present work. STATEMENT OF SIGNIFICANCE Traditional Mg alloys with slower degradation often contain aluminum or rare earth elements as alloying components, which raised safety and regulatory concerns. To circumvent unsafe elements, nutrient elements such as calcium (Ca) and strontium (Sr) were selected to create Mg-Sr binary alloys and Mg-Ca-Sr ternary alloys to improve the safety and biocompatibility of bioresorbable Mg alloys for medical implant applications. In this study, in vitro degradation and cellular responses to four binary Mg-xSr alloys and four ternary Mg-1Ca-xSr alloys with increasing Sr content (up to 2 wt%) were evaluated in direct culture with bone marrow derived mesenchymal stem cells (BMSCs). The roles of Sr and Ca in tuning the alloy microstructure, degradation behaviors, and BMSC responses were collectively compared in the BMSC direct culture system for the first time. The most promising alloys were identified and recommended for further in vivo studies toward clinical translation.
Collapse
Affiliation(s)
- Wensen Jiang
- Materials Science and Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Aaron F Cipriano
- Materials Science and Engineering, University of California, Riverside, Riverside, CA 92521, USA; Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Qiaomu Tian
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Chaoxing Zhang
- Materials Science and Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Marisa Lopez
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Amy Sallee
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Alan Lin
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA
| | | | - Yuanhao Wu
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China; Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Huinan Liu
- Materials Science and Engineering, University of California, Riverside, Riverside, CA 92521, USA; Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
15
|
Zhang C, Driver N, Tian Q, Jiang W, Liu H. Electrochemical deposition of conductive polymers onto magnesium microwires for neural electrode applications. J Biomed Mater Res A 2018. [PMID: 29520971 DOI: 10.1002/jbm.a.36385] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metals are widely used in electrode design for recording neural activities because of their excellent electrical conductivity and mechanical strength. However, there are still serious problems related to these currently used metallic electrodes, including tissue damage due to the mechanical mismatch between metals and neural tissues, fibrosis, and electrode fouling and encapsulation that lead to the loss of signal and eventual failure. In this study, a biocompatible, biodegradable, and conductive electrode was created. Specifically, pure magnesium (Mg) microwire with a diameter of 127 µm was used as the electrode substrate and the conductive polymer, that is, poly(3,4-ethylenedioxythiophene) (PEDOT), was electrochemically deposited onto Mg microwires to decrease corrosion rate and improve biocompatibility of the electrodes for potential neural electrode applications. Both chronopotentiometry and cyclic voltammetry (CV) methods and the associated parameters for electrochemical deposition of PEDOT onto Mg microwires were investigated, such as deposition current, deposition temperature, voltage, sweep rate, cycle number, and duration. The CV method from -2.0 to 1.25 V for 1 cycle at a cycle duration of 600 s with a sweep rate of 5 mV/s at 65°C led to a consistent, uniform, and complete PEDOT coating on Mg microwires. The surface conditions of Mg microwires also affected the quality of PEDOT coating. The corrosion rate of PEDOT-coated Mg microwire was 0.75 mm/year, much slower than the noncoated Mg microwire that showed a corrosion rate of 1.78 mm/year. The optimal Mg microwires with PEDOT coating could potentially serve as biodegradable electrodes for neural recording and stimulation applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1887-1895, 2018.
Collapse
Affiliation(s)
- Chaoxing Zhang
- Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, California, 92521
| | - Nathan Driver
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California, 92521
| | - Qiaomu Tian
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California, 92521
| | - Wensen Jiang
- Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, California, 92521
| | - Huinan Liu
- Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, California, 92521.,Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, California, 92521.,Biomedical Sciences Program, School of Medicine, University of California at Riverside, 900 University Avenue, Riverside, California, 92521.,Stem Cell Center, University of California at Riverside, 900 University Avenue, Riverside, California, 92521
| |
Collapse
|
16
|
Biodegradable Metallic Wires in Dental and Orthopedic Applications: A Review. METALS 2018. [DOI: 10.3390/met8040212] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Jiang W, Rutherford D, Vuong T, Liu H. Nanomaterials for treating cardiovascular diseases: A review. Bioact Mater 2017; 2:185-198. [PMID: 29744429 PMCID: PMC5935516 DOI: 10.1016/j.bioactmat.2017.11.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 01/29/2023] Open
Abstract
Nanomaterials such as nanostructured surfaces, nanoparticles, and nanocomposites represent new viable sources for future therapeutics for cardiovascular diseases. The special properties of nanomaterials such as their intrinsic physiochemical properties, surface energy and surface topographies could actively enhance desirable cellular responses within the cardiovascular system, projecting a growing potential for clinical translation. Recent progress on nanomaterials opened up new opportunities for treating cardiovascular diseases. Successful translation of nanomaterials into cardiovascular applications requires a comprehensive understanding of both nanomaterials and biomedicine, and, thus, it is critical to stress current advancements on both sides. In this review, the authors introduced crucial fabrication techniques for promising nanomaterials for cardiovascular applications. This review highlighted the key elements to consider for their fabrication, properties and applications. The important concerns relevant to cardiovascular nanomaterials, such as cellular responses to nanomaterials and the toxicity of nanomaterials, are also discussed. This review provided an overview of necessary knowledge and key concerns on nanomaterials specific for treating cardiovascular diseases, from the perspectives of both material science and biomedicine. Reviewed current progress of nanomaterials and their cardiovascular applications. Mainly focused on nanostructured surfaces, nanoparticles and nanocomposites. Discussed important topics of nanomaterials for cardiovascular applications. Comparatively reviewed the fabrication of nanomaterials. Informative to researchers in the field of biomaterials and nanomaterials.
Collapse
Affiliation(s)
- Wensen Jiang
- Materials Science and Engineering, University of California, Riverside, Riverside, CA, 92521, USA
| | - Dana Rutherford
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521, USA
| | - Tiffany Vuong
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521, USA
| | - Huinan Liu
- Materials Science and Engineering, University of California, Riverside, Riverside, CA, 92521, USA.,Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
18
|
Xu Y, Meng H, Yin H, Sun Z, Peng J, Xu X, Guo Q, Xu W, Yu X, Yuan Z, Xiao B, Wang C, Wang Y, Liu S, Lu S, Wang Z, Wang A. Quantifying the degradation of degradable implants and bone formation in the femoral condyle using micro-CT 3D reconstruction. Exp Ther Med 2017; 15:93-102. [PMID: 29375677 PMCID: PMC5766073 DOI: 10.3892/etm.2017.5389] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 08/31/2017] [Indexed: 11/28/2022] Open
Abstract
Degradation limits the application of magnesium alloys, and evaluation methods for non-traumatic in vivo quantification of implant degradation and bone formation are imperfect. In the present study, a micro-arc-oxidized AZ31 magnesium alloy was used to evaluate the degradation of implants and new bone formation in 60 male New Zealand white rabbits. Degradation was monitored by weighing the implants prior to and following implantation, and by performing micro-computed tomography (CT) scans and histological analysis after 1, 4, 12, 24, 36, and 48 weeks of implantation. The results indicated that the implants underwent slow degradation in the first 4 weeks, with negligible degradation in the first week, followed by significantly increased degradation during weeks 12–24 (P<0.05), and continued degradation until the end of the 48-week experimental period. The magnesium content decreased as the implant degraded (P<0.05); however, the density of the material exhibited almost no change. Micro-CT results also demonstrated that pin volume, pin mineral density, mean ‘pin thickness’, bone surface/bone volume and trabecular separation decreased over time (P<0.05), and that the pin surface area/pin volume, bone volume fraction, trabecular thickness, trabecular number and tissue mineral density increased over time (P<0.05), indicating that the number of bones and density of new bone increased as magnesium degraded. These results support the positive effect of magnesium on osteogenesis. However, from the maximum inner diameter of the new bone loop and diameter of the pin in the same position, the magnesium alloy was not capable of creating sufficient bridges between the bones and biomaterials when there were preexisting gaps. Histological analyses indicated that there were no inflammatory responses around the implants. The results of the present study indicate that a micro-arc-oxidized AZ31 magnesium alloy is safe in vivo and efficiently degraded. Furthermore, the novel bone formation increased as the implant degraded. The findings concluded that micro-CT, which is useful for providing non-traumatic, in vivo, quantitative and precise data, has great value for exploring the degradation of implants and novel bone formation.
Collapse
Affiliation(s)
- Yichi Xu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Haoye Meng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China.,School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Heyong Yin
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Zhen Sun
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiaolong Xu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Wenjing Xu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiaoming Yu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Zhiguo Yuan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Bo Xiao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Cheng Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Shuyun Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Shibi Lu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Zhaoxu Wang
- Testing Department of Biomaterials and Tissue Engineering Products, Chinese National Institutes for Food and Drug Control, Beijing 100050, P.R. China
| | - Aiyuan Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China.,Key Laboratory of Musculoskeletal Trauma and War Injuries, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
19
|
Jiang W, Tian Q, Vuong T, Shashaty M, Gopez C, Sanders T, Liu H. Comparison Study on Four Biodegradable Polymer Coatings for Controlling Magnesium Degradation and Human Endothelial Cell Adhesion and Spreading. ACS Biomater Sci Eng 2017; 3:936-950. [DOI: 10.1021/acsbiomaterials.7b00215] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | | | | | | | - Chris Gopez
- Narco College, 2001 Third Street, Norco, California 92860, United States
| | | | | |
Collapse
|
20
|
Kang MH, Jang TS, Jung HD, Kim SM, Kim HE, Koh YH, Song J. Poly(ether imide)-silica hybrid coatings for tunable corrosion behavior and improved biocompatibility of magnesium implants. ACTA ACUST UNITED AC 2016; 11:035003. [PMID: 27147643 DOI: 10.1088/1748-6041/11/3/035003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Magnesium (Mg) and its alloys have gained considerable attention as a promising biomaterial for bioresorbable orthopedic implants, but the corrosion behavior of Mg-based implants is still the major issue for clinical use. In order to improve the corrosion stability and implant-tissue interfaces of these implants, methods for coating Mg have been actively investigated. In this study, poly(ether imide) (PEI)-silica hybrid material was coated on Mg, for the tunable degradation and enhanced biological behavior. Homogeneous PEI-silica hybrid materials with various silica contents were coated on Mg substrates without any cracks, where silica nanoparticles were well dispersed in the PEI matrix without significant particle agglomeration up the 30 vol% silica. The hybrid coatings maintained good adhesion strength of PEI to Mg. The corrosion rate of hybrid-coated Mg was increased along with the increment of the silica content, due to improved hydrophilicity of the hybrid coating layers. Moreover, the biocompatibility of the hybrid-coated Mg specimens was significantly improved, mainly due to the higher Mg ion concentrations associated with faster corrosion, compared to PEI-coated Mg. Therefore, PEI-silica hybrid systems have significant potential as a coating material of Mg for load-bearing orthopedic applications by providing tunable corrosion behavior and enhanced biological performance.
Collapse
Affiliation(s)
- Min-Ho Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Johnson I, Wang SM, Silken C, Liu H. A systemic study on key parameters affecting nanocomposite coatings on magnesium substrates. Acta Biomater 2016; 36:332-49. [PMID: 27006335 DOI: 10.1016/j.actbio.2016.03.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/19/2016] [Accepted: 03/15/2016] [Indexed: 11/19/2022]
Abstract
UNLABELLED Nanocomposite coatings offer multiple functions simultaneously to improve the interfacial properties of magnesium (Mg) alloys for skeletal implant applications, e.g., controlling the degradation rate of Mg substrates, improving bone cell functions, and providing drug delivery capability. However, the effective service time of nanocomposite coatings may be limited due to their early delamination from the Mg-based substrates. Therefore, the objective of this study was to address the delamination issue of nanocomposite coatings, improve the coating properties for reducing the degradation of Mg-based substrates, and thus improve their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The surface conditions of the substrates, polymer component type of the nanocomposite coatings, and post-deposition processing are the key parameters that contribute to the efficacy of the nanocomposite coatings in regulating substrate degradation and bone cell responses. Specifically, the effects of metallic surface versus alkaline heat-treated hydroxide surface of the substrates on coating quality were investigated. For the nanocomposite coatings, nanophase hydroxyapatite (nHA) was dispersed in three types of biodegradable polymers, i.e., poly(lactic-co-glycolic acid) (PLGA), poly(l-lactic acid) (PLLA), or poly(caprolactone) (PCL) to determine which polymer component could provide integrated properties for slowest Mg degradation. The nanocomposite coatings with or without post-deposition processing, i.e., melting, annealing, were compared to determine which processing route improved the properties of the nanocomposite coatings most significantly. The results showed that optimizing the coating processes addressed the delamination issue. The melted then annealed nHA/PCL coating on the metallic Mg substrates showed the slowest degradation and the best coating adhesion, among all the combinations of conditions studied; and, it improved the adhesion density of BMSCs. This study elucidated the key parameters for optimizing nanocomposite coatings on Mg-based substrates for skeletal implant applications, and provided rational design guidelines for the nanocomposite coatings on Mg alloys for potential clinical translation of biodegradable Mg-based implants. STATEMENT OF SIGNIFICANCE This manuscript describes the systemic optimization of nanocomposite coatings to control the degradation and bioactivity of magnesium for skeletal implant applications. The key parameters influencing the integrity and functions of the nanocomposite coatings on magnesium were identified, guidelines for the optimization of the coatings were established, and the benefits of coating optimization were demonstrated through reduced magnesium degradation and increased bone marrow derived mesenchymal stem cell (BMSC) adhesion in vitro. The guidelines developed in this manuscript are valuable for the biometal field to improve the design of bioresorbable implants and devices, which will advance the clinical translation of magnesium-based implants.
Collapse
Affiliation(s)
- Ian Johnson
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Sebo Michelle Wang
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Christine Silken
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Huinan Liu
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, CA 92521, United States; Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, CA 92521, United States; The Stem Cell Center, University of California at Riverside, 900 University Avenue, Riverside, CA 92521, United States; Cellular, Molecular, and Developmental Biology (CMDB) Program, University of California at Riverside, 900 University Avenue, Riverside, CA 92521, United States.
| |
Collapse
|
22
|
Tian Q, Liu H. Electrophoretic deposition and characterization of nanocomposites and nanoparticles on magnesium substrates. NANOTECHNOLOGY 2015; 26:175102. [PMID: 25854275 DOI: 10.1088/0957-4484/26/17/175102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This study introduces a triphasic design of biodegradable materials composed of nanophase hydroxyapatite (nHA), poly(lactic-co-glycolic acid) (PLGA), and magnesium (Mg) substrates for musculoskeletal implant applications. Specifically, nHA_PLGA composites and nHA nanoparticles were synthesized, deposited on three-dimensional Mg substrates using electrophoretic deposition (EPD), and characterized. The three components involved, that is, nHA, PLGA, and Mg are all biodegradable in the human body, thus promising for biodegradable implant and device applications. Mg and its alloys are attractive for musculoskeletal implant applications due to their comparable modulus and strength to cortical bone. Controlling the interface of Mg with the biological environment, however, is the key challenge that currently limits this biodegradable metal for broad applications in medical implants. This article particularly focuses on creating nanostructured interface between the biodegradable Mg and surrounding tissue for the dual purposes of (1) mediating the degradation of the Mg-based substrates and (2) potentially enhancing osteointegration. Nanophase hydroxyapatite (nHA) is an excellent candidate as a coating material due to its osteoconductivity, while the polymer phase promotes interfacial adhesion between the nHA and Mg. Moreover, the degradation products of PLGA and Mg neutralize each other. Surface characterization showed successful deposition of nHA_PLGA composite microspheres and nHA nanoparticles on Mg substrates using EPD. Mg substrates coated with nHA_PLGA composites showed greater adhesion strength when compared with nHA coating, and slower corrosion rate than nHA coated Mg and non-coated Mg. The triphasic composites of nHA, PLGA and Mg are promising as the next-generation biodegradable materials for medical applications.
Collapse
Affiliation(s)
- Qiaomu Tian
- Department of Bioengineering, University of California, Riverside, CA 92521, USA. Material Science and Engineering Program, University of California, Riverside, CA 92521, USA
| | | |
Collapse
|
23
|
Iskandar ME, Aslani A, Tian Q, Liu H. Nanostructured calcium phosphate coatings on magnesium alloys: characterization and cytocompatibility with mesenchymal stem cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:189. [PMID: 25917827 PMCID: PMC5057181 DOI: 10.1007/s10856-015-5512-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 03/30/2015] [Indexed: 06/04/2023]
Abstract
This article reports the deposition and characterization of nanostructured calcium phosphate (nCaP) on magnesium-yttrium alloy substrates and their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The nCaP coatings were deposited on magnesium and magnesium-yttrium alloy substrates using proprietary transonic particle acceleration process for the dual purposes of modulating substrate degradation and BMSC adhesion. Surface morphology and feature size were analyzed using scanning electron microscopy and quantitative image analysis tools. Surface elemental compositions and phases were analyzed using energy dispersive X-ray spectroscopy and X-ray diffraction, respectively. The deposited nCaP coatings showed a homogeneous particulate surface with the dominant feature size of 200-500 nm in the long axis and 100-300 nm in the short axis, and a Ca/P atomic ratio of 1.5-1.6. Hydroxyapatite was the major phase identified in the nCaP coatings. The modulatory effects of nCaP coatings on the sample degradation and BMSC behaviors were dependent on the substrate composition and surface conditions. The direct culture of BMSCs in vitro indicated that multiple factors, including surface composition and topography, and the degradation-induced changes in media composition, influenced cell adhesion directly on the sample surface, and indirect adhesion surrounding the sample in the same culture. The alkaline pH, the indicator of Mg degradation, played a role in BMSC adhesion and morphology, but not the sole factor. Additional studies are necessary to elucidate BMSC responses to each contributing factor.
Collapse
Affiliation(s)
- Maria Emil Iskandar
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, MSE 227, Riverside, CA 92521, USA
| | - Arash Aslani
- N2 Biomedical LLC, One Patriots Park, Bedford, MA 01730, USA
| | - Qiaomu Tian
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, MSE 227, Riverside, CA 92521, USA
| | - Huinan Liu
- Department of Bioengineering, University of California at Riverside, 900 University Avenue, MSE 227, Riverside, CA 92521, USA
- Materials Science and Engineering, University of California at Riverside, 900 University Avenue, MSE 227, Riverside, CA 92521, USA
- Stem Cell Center, University of California at Riverside, 900 University Avenue, MSE 227, Riverside, CA 92521, USA
| |
Collapse
|
24
|
Design and characterization of a conductive nanostructured polypyrrole-polycaprolactone coated magnesium/PLGA composite for tissue engineering scaffolds. J Biomed Mater Res A 2015; 103:2966-73. [DOI: 10.1002/jbm.a.35428] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/05/2015] [Accepted: 02/05/2015] [Indexed: 11/07/2022]
|
25
|
Hickey DJ, Ercan B, Sun L, Webster TJ. Adding MgO nanoparticles to hydroxyapatite-PLLA nanocomposites for improved bone tissue engineering applications. Acta Biomater 2015; 14:175-84. [PMID: 25523875 DOI: 10.1016/j.actbio.2014.12.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/08/2014] [Accepted: 12/08/2014] [Indexed: 11/27/2022]
Abstract
Magnesium plays an important role in the body, mediating cell-extracellular matrix interactions and bone apatite structure and density. This study investigated, for the first time, the effects of adding magnesium oxide (MgO) nanoparticles to poly (l-lactic acid) (PLLA) and to hydroxyapatite (HA) nanoparticle-PLLA composites for orthopedic tissue engineering applications. Results showed that MgO nanoparticles significantly enhanced osteoblast adhesion and proliferation on HA-PLLA nanocomposites while maintaining mechanical properties (Young's modulus ∼1,000 MPa) suitable for cancellous bone applications. Additionally, osteoblasts (or bone-forming cells) cultured in the supernatant of degrading nanocomposites showed improved proliferation in the presence of magnesium, indicating that the increased alkalinity of solutions containing MgO nanocomposites had no toxic effects towards cells. These results together indicated the promise of further studying MgO nanoparticles as additive materials to polymers to enhance the integration of implanted biomaterials with bone.
Collapse
Affiliation(s)
- Daniel J Hickey
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Batur Ercan
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Linlin Sun
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
26
|
Cipriano AF, Sallee A, Guan RG, Zhao ZY, Tayoba M, Sanchez J, Liu H. Investigation of magnesium-zinc-calcium alloys and bone marrow derived mesenchymal stem cell response in direct culture. Acta Biomater 2015; 12:298-321. [PMID: 25449917 DOI: 10.1016/j.actbio.2014.10.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/23/2014] [Accepted: 10/15/2014] [Indexed: 11/17/2022]
Abstract
Crystalline Mg-Zn-Ca ternary alloys have recently attracted significant interest for biomedical implant applications due to their promising biocompatibility, bioactivity, biodegradability and mechanical properties. The objective of this study was to characterize as-cast Mg-xZn-0.5Ca (x=0.5, 1.0, 2.0, 4.0wt.%) alloys, and determine the adhesion and morphology of bone marrow derived mesenchymal stem cells (BMSCs) at the interface with the Mg-xZn-0.5Ca alloys. The direct culture method (i.e. seeding cells directly onto the surface of the sample) was established in this study to probe the highly dynamic cell-substrate interface and thus to elucidate the mechanisms of BMSC responses to dynamic alloy degradation. The results showed that the BMSC adhesion density on these alloys was similar to the cell-only positive control and the BMSC morphology appeared more anisotropic on the rapidly degrading alloy surfaces in comparison with the cell-only positive control. Importantly, neither culture media supplemented with up to 27.6mM Mg(2+) ions nor media intentionally adjusted up to alkaline pH 9 induced any detectable adverse effects on BMSC responses. We speculated that degradation-induced dynamic surface topography played an important role in modulating cell morphology at the interface. This study presents a clinically relevant in vitro model for screening bioresorbable alloys, and provides useful design guidelines for determining the degradation rate of implants made of Mg-Zn-Ca alloys.
Collapse
Affiliation(s)
- Aaron F Cipriano
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; Materials Science & Engineering Program, University of California, Riverside, CA 92521, USA
| | - Amy Sallee
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Ren-Guo Guan
- School of Materials and Metallurgy, Northeastern University, Shenyang 110004, People's Republic of China
| | - Zhan-Yong Zhao
- School of Materials and Metallurgy, Northeastern University, Shenyang 110004, People's Republic of China
| | - Myla Tayoba
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Jorge Sanchez
- Department of Chemical Engineering, University of California, Riverside, CA 92521, USA
| | - Huinan Liu
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; Materials Science & Engineering Program, University of California, Riverside, CA 92521, USA; Stem Cell Center, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
27
|
Kleinhans C, Vacun G, Surmenev R, Surmeneva M, Kluger PJ. Testing the in vitro performance of hydroxyapatite coated magnesium (AZ91D) and titanium concerning cell adhesion and osteogenic differentiation. ACTA ACUST UNITED AC 2015. [DOI: 10.1515/bnm-2015-0002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AbstractIn the current study the in vitro outcome of a degradable magnesium alloy (AZ91D) and standard titanium modified by nanostructured-hydroxyapatite (n-HA) coatings concerning cell adhesion and osteogenic differentiation was investigated by direct cell culture. The n-HA modification was prepared via radio-frequency magnetron sputtering deposition and proven by field emission scanning electron microscopy and X-ray powder diffraction patterns revealing a homogenous surface coating. Human mesenchymal stem cell (hMSCs) adhesion was examined after one and 14 days displaying an enhanced initial cell adhesion on the n-HA modified samples. The osteogenic lineage commitment of the cells was determined by alkaline phosphatase (ALP) quantification. On day one n-HA coated AZ91D exhibited a comparable ALP expression to standard tissue culture polystyrene samples. However, after 14 days solely little DNA and ALP amounts were measurable on n-HA coated AZ91D due to the lack of adherent cells. Titanium displayed excellent cell adhesion properties and ALP was detectable after 14 days. An increased pH of the culture was measured for AZ91D as well as for n-HA coated AZ91D. We conclude that n-HA modification improves initial cell attachment on AZ91D within the first 24 h. However, the effect does not persist for 14 days in in vitro conditions.
Collapse
|
28
|
Shi XH, Wang SL, Zhang YM, Wang YC, Yang Z, Zhou X, Lei ZY, Fan DL. Hydroxyapatite-coated sillicone rubber enhanced cell adhesion and it may be through the interaction of EF1β and γ-actin. PLoS One 2014; 9:e111503. [PMID: 25386892 PMCID: PMC4227678 DOI: 10.1371/journal.pone.0111503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 10/01/2014] [Indexed: 01/09/2023] Open
Abstract
Silicone rubber (SR) is a common soft tissue filler material used in plastic surgery. However, it presents a poor surface for cellular adhesion and suffers from poor biocompatibility. In contrast, hydroxyapatite (HA), a prominent component of animal bone and teeth, can promote improved cell compatibility, but HA is an unsuitable filler material because of the brittleness in mechanism. In this study, using a simple and economical method, two sizes of HA was applied to coat on SR to counteract the poor biocompatibility of SR. Surface and mechanical properties of SR and HA/SRs confirmed that coating with HA changes the surface topology and material properties. Analysis of cell proliferation and adhesion as well as measurement of the expression levels of adhesion related molecules indicated that HA-coated SR significantly increased cell compatibility. Furthermore, mass spectrometry proved that the biocompatibility improvement may be related to elongation factor 1-beta (EF1β)/γ-actin adjusted cytoskeletal rearrangement.
Collapse
Affiliation(s)
- Xiao-hua Shi
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, the Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Shao-liang Wang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, the Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Yi-ming Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, the Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Yi-cheng Wang
- Department of Plastic and Cosmetic Surgery, Chongqing Armed Police Corps Hospital, Chongqing, 400061, People's Republic of China
| | - Zhi Yang
- Department of War Trauma care, Hainan branch of PLA General Hospital, Sanya, Hainan, 572013, People's Republic of China
| | - Xin Zhou
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, the Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Ze-yuan Lei
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, the Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Dong-li Fan
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, the Third Military Medical University, Chongqing, 400037, People's Republic of China
- * E-mail:
| |
Collapse
|
29
|
Dorozhkin SV. Calcium orthophosphate coatings on magnesium and its biodegradable alloys. Acta Biomater 2014; 10:2919-34. [PMID: 24607420 DOI: 10.1016/j.actbio.2014.02.026] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/07/2014] [Accepted: 02/12/2014] [Indexed: 12/01/2022]
Abstract
Biodegradable metals have been suggested as revolutionary biomaterials for bone-grafting therapies. Of these metals, magnesium (Mg) and its biodegradable alloys appear to be particularly attractive candidates due to their non-toxicity and as their mechanical properties match those of bones better than other metals do. Being light, biocompatible and biodegradable, Mg-based metallic implants have several advantages over other implantable metals currently in use, such as eliminating both the effects of stress shielding and the requirement of a second surgery for implant removal. Unfortunately, the fast degradation rates of Mg and its biodegradable alloys in the aggressive physiological environment impose limitations on their clinical applications. This necessitates development of implants with controlled degradation rates to match the kinetics of bone healing. Application of protective but biocompatible and biodegradable coatings able to delay the onset of Mg corrosion appears to be a reasonable solution. Since calcium orthophosphates are well tolerated by living organisms, they appear to be the excellent candidates for such coatings. Nevertheless, both the high chemical reactivity and the low melting point of Mg require specific parameters for successful deposition of calcium orthophosphate coatings. This review provides an overview of current coating techniques used for deposition of calcium orthophosphates on Mg and its biodegradable alloys. The literature analysis revealed that in all cases the calcium orthophosphate protective coatings both increased the corrosion resistance of Mg-based metallic biomaterials and improved their surface biocompatibility.
Collapse
|
30
|
Willumeit R, Möhring A, Feyerabend F. Optimization of cell adhesion on mg based implant materials by pre-incubation under cell culture conditions. Int J Mol Sci 2014; 15:7639-50. [PMID: 24857908 PMCID: PMC4057696 DOI: 10.3390/ijms15057639] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/20/2014] [Accepted: 04/16/2014] [Indexed: 01/05/2023] Open
Abstract
Magnesium based implants could revolutionize applications where orthopedic implants such as nails, screws or bone plates are used because they are load bearing and degrade over time. This prevents a second surgery to remove conventional implants. To improve the biocompatibility we studied here if and for how long a pre-incubation of the material under cell culture conditions is favorable for cell attachment and proliferation. For two materials, Mg and Mg10Gd1Nd, we could show that 6 h pre-incubation are already enough to form a natural protective layer suitable for cell culture.
Collapse
Affiliation(s)
- Regine Willumeit
- Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Max-Planck-Str. 1, Geesthacht 21502, Germany.
| | - Anneke Möhring
- Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Max-Planck-Str. 1, Geesthacht 21502, Germany.
| | - Frank Feyerabend
- Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Max-Planck-Str. 1, Geesthacht 21502, Germany.
| |
Collapse
|
31
|
Johnson I, Tian Q, Liu H. Nanostructured Ceramic and Ceramic-Polymer Composites as Dual Functional Interface for Bioresorbable Metallic Implants. ACTA ACUST UNITED AC 2014. [DOI: 10.1557/opl.2014.344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
ABSTRACTMillions of medical implants and devices (e.g., screws, plates, and pins) are used each year worldwide in surgery, and traditionally the components have been limited to permanent metals (e.g., stainless steel, titanium alloys) and polyester-based absorbable polymers. Because of clinical problems associated with these traditional materials, a novel class of biodegradable metallic materials, i.e., magnesium-based alloys, attracted great attention and clinical interests. Magnesium (Mg) is particularly attractive for load-bearing orthopedic applications because it has comparable modulus and strength to cortical bone. Controlling the interface of Mg with the biological environment, however, is the key challenge that currently limits this biodegradable metal for broad applications in medical devices and implants. This paper will particularly focus on creating nanostructured interface between the biodegradable metallic implant and surrounding tissue for the dual purposes of (1) mediating the degradation of the metallic implants and (2) simultaneously enhancing bone tissue regeneration and integration. Nanophase hydroxyapatite (nHA) is an excellent candidate as a coating material due to its osteoconductivity that has been widely reported. Applying nHA coatings or nHA containing composite coatings on Mg alloys is therefore promising in serving the needed dual functions. The composite of nHA and poly(lactic-co-glycolic acid) (PLGA) as a dual functional interface provides additional benefits for medical implant applications. Specifically, the polymer phase promotes interfacial adhesion between the nHA and Mg, and the degradation products of PLGA and Mg neutralize each other. Our results indicate that nHA and nHA/PLGA coatings slow down Mg degradation rate and enhance adhesion of bone marrow stromal cells, thus promising as the next-generation multifunctional implant materials. Further optimization of the coatings and their interfacial properties are still needed to bring them into clinical applications.
Collapse
|
32
|
Sebaa M, Nguyen TY, Dhillon S, Garcia S, Liu H. The effects of poly(3,4-ethylenedioxythiophene) coating on magnesium degradation and cytocompatibility with human embryonic stem cells for potential neural applications. J Biomed Mater Res A 2014; 103:25-37. [PMID: 24677580 DOI: 10.1002/jbm.a.35142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/29/2014] [Accepted: 02/18/2014] [Indexed: 11/07/2022]
Abstract
Magnesium (Mg) is a promising conductive metallic biomaterial due to its desirable mechanical properties for load bearing and biodegradability in human body. Controlling the rapid degradation of Mg in physiological environment continues to be the key challenge toward clinical translation. In this study, we investigated the effects of conductive poly(3,4-ethylenedioxythiophene) (PEDOT) coating on the degradation behavior of Mg substrates and their cytocompatibility. Human embryonic stem cells (hESCs) were used as the in vitro model system to study cellular responses to Mg degradation because they are sensitive and can potentially differentiate into many cell types of interest (e.g., neurons) for regenerative medicine. The PEDOT was deposited on Mg substrates using electrochemical deposition. The greater number of cyclic voltammetry (CV) cycles yielded thicker PEDOT coatings on Mg substrates. Specifically, the coatings produced by 2, 5, and 10 CV cycles (denoted as 2×-PEDOT-Mg, 5×-PEDOT-Mg, and 10×-PEDOT-Mg) had an average thickness of 31, 63, and 78 µm, respectively. Compared with non-coated Mg samples, all PEDOT coated Mg samples showed slower degradation rates, as indicated by Tafel test results and Mg ion concentrations in the post-culture media. The 5×-PEDOT-Mg showed the best coating adhesion and slowest Mg degradation among the tested samples. Moreover, hESCs survived for the longest period when cultured with the 5×-PEDOT-Mg samples compared with the non-coated Mg and 2×-PEDOT-Mg. Overall, the results of this study showed promise in using PEDOT coating on biodegradable Mg-based implants for potential neural recording, stimulation and tissue engineering applications, thus encouraging further research.
Collapse
Affiliation(s)
- Meriam Sebaa
- Department of Bioengineering, University of California, Riverside, California, 92521
| | | | | | | | | |
Collapse
|