1
|
Oh H, Lee JS, Son P, Sim J, Park MH, Bang YE, Sung D, Lim JM, Choi WI. Highly Water-Dispersed Natural Fullerenes Coated with Pluronic Polymers as Novel Nanoantioxidants for Enhanced Antioxidant Activity. Antioxidants (Basel) 2024; 13:1240. [PMID: 39456493 PMCID: PMC11505577 DOI: 10.3390/antiox13101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Fullerene is a cosmic material with a buckyball-like structure comprising 60 carbon atoms. It has attracted significant interest because of its outstanding antioxidant, antiviral, and antibacterial properties. Natural fullerene (NC60) in shungite meets the demand of biomedical fields to scavenge reactive oxygen species in many diseases. However, its hydrophobicity and poor solubility in water hinder its use as an antioxidant. In this study, highly water-dispersed and stable Pluronic-coated natural fullerene nanoaggregates (NC60/Plu) were prepared from various Pluronic polymers. The water dispersity and stability of NC60 were compared and optimized based on the characteristics of Pluronic polymers including F68, F127, L35, P123, and L81. In particular, NC60 coated with Pluronic F127 at a weight ratio of 1 to 5 showed excellent antioxidant effects both in situ and in vitro. This suggests that the high solubilization of NC60 in Pluronic polymers increases its chance of interacting with reactive oxygen radicals and improves radical scavenging activity. Thus, the optimized NC60/PF127 may be a novel biocompatible antioxidant for treating various diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Hyeryeon Oh
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea; (H.O.); (J.S.L.); (P.S.); (J.S.); (M.H.P.); (D.S.)
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123, Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jin Sil Lee
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea; (H.O.); (J.S.L.); (P.S.); (J.S.); (M.H.P.); (D.S.)
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123, Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Panmo Son
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea; (H.O.); (J.S.L.); (P.S.); (J.S.); (M.H.P.); (D.S.)
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jooyoung Sim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea; (H.O.); (J.S.L.); (P.S.); (J.S.); (M.H.P.); (D.S.)
| | - Min Hee Park
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea; (H.O.); (J.S.L.); (P.S.); (J.S.); (M.H.P.); (D.S.)
| | - Young Eun Bang
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si 31538, Republic of Korea;
| | - Daekyung Sung
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea; (H.O.); (J.S.L.); (P.S.); (J.S.); (M.H.P.); (D.S.)
| | - Jong-Min Lim
- Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si 31538, Republic of Korea;
- Department of Chemical Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si 31538, Republic of Korea
| | - Won Il Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea; (H.O.); (J.S.L.); (P.S.); (J.S.); (M.H.P.); (D.S.)
| |
Collapse
|
2
|
Shershakova NN, Andreev SM, Tomchuk AA, Makarova EA, Nikonova AA, Turetskiy EA, Petukhova OA, Kamyshnikov OY, Ivankov OI, Kyzyma OA, Tomchuk OV, Avdeev MV, Dvornikov AS, Kudlay DA, Khaitov MR. Wound healing activity of aqueous dispersion of fullerene C 60 produced by "green technology". NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102619. [PMID: 36272619 DOI: 10.1016/j.nano.2022.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/13/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
In addition to exhibited antioxidant and anti-inflammatory activity, fullerene C60 is a promising wound healing agent. An important stage in the production of fullerene-based ointments is the stability of the aqueous fullerene dispersion (AFD) with minimum size of colloidal fullerene aggregates and sufficiently high concentration. To achieve these parameters tangential flow filtration of fullerene C60 was used ("green technology"). As estimated by small-angle neutron scattering and dynamic light scattering purified AFDs with narrow-size distribution nanoclusters have a size of 6 nm and are assembled into agglomerates which reach a size of 150 nm. The ability of the AFD to exhibit regenerative activity was studied using the animal wound model. This study shows for the first time that the fullerene-based composition stimulates the healing of wounds of various origins. We assume that the mechanism of the AFD wound-healing activity is associated with the aryl hydrocarbon receptor and macrophages activity.
Collapse
Affiliation(s)
- N N Shershakova
- NRC Institute of Immunology FMBA of Russia, Kashirskoe shosse, 24, Moscow 115522, Russian Federation.
| | - S M Andreev
- NRC Institute of Immunology FMBA of Russia, Kashirskoe shosse, 24, Moscow 115522, Russian Federation
| | - A A Tomchuk
- International intergovernmental organization Joint Institute for Nuclear Research, st. Joliot-Curie, 6, Dubna, Moscow Region 141980, Russian Federation
| | - E A Makarova
- NRC Institute of Immunology FMBA of Russia, Kashirskoe shosse, 24, Moscow 115522, Russian Federation
| | - A A Nikonova
- NRC Institute of Immunology FMBA of Russia, Kashirskoe shosse, 24, Moscow 115522, Russian Federation
| | - E A Turetskiy
- NRC Institute of Immunology FMBA of Russia, Kashirskoe shosse, 24, Moscow 115522, Russian Federation
| | - O A Petukhova
- NRC Institute of Immunology FMBA of Russia, Kashirskoe shosse, 24, Moscow 115522, Russian Federation
| | - O Y Kamyshnikov
- NRC Institute of Immunology FMBA of Russia, Kashirskoe shosse, 24, Moscow 115522, Russian Federation
| | - O I Ivankov
- International intergovernmental organization Joint Institute for Nuclear Research, st. Joliot-Curie, 6, Dubna, Moscow Region 141980, Russian Federation; Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russian Federation
| | - O A Kyzyma
- Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv 0160, Ukraine
| | - O V Tomchuk
- International intergovernmental organization Joint Institute for Nuclear Research, st. Joliot-Curie, 6, Dubna, Moscow Region 141980, Russian Federation; Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv 0160, Ukraine
| | - M V Avdeev
- International intergovernmental organization Joint Institute for Nuclear Research, st. Joliot-Curie, 6, Dubna, Moscow Region 141980, Russian Federation
| | - A S Dvornikov
- Pirogov Russian National Research Medical University, 1 Ostrovityanov St., Moscow 119997, Russian Federation
| | - D A Kudlay
- NRC Institute of Immunology FMBA of Russia, Kashirskoe shosse, 24, Moscow 115522, Russian Federation; I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russian Federation
| | - M R Khaitov
- NRC Institute of Immunology FMBA of Russia, Kashirskoe shosse, 24, Moscow 115522, Russian Federation; Pirogov Russian National Research Medical University, 1 Ostrovityanov St., Moscow 119997, Russian Federation
| |
Collapse
|
3
|
Kop TJ, Bjelaković MS, Živković L, Žekić A, Milić DR. Stable colloidal dispersions of fullerene C60, curcumin and C60-curcumin in water as potential antioxidants. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Cohen N, Levi-Kalisman Y, Yerushalmi – Rozen R. Concentration dependent response to pH modification and salt addition of polymeric dispersions of C60 fullerenes. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.08.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Kawamoto M, He P, Ito Y. Green Processing of Carbon Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1602423. [PMID: 27859655 DOI: 10.1002/adma.201602423] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/11/2016] [Indexed: 05/19/2023]
Abstract
Carbon nanomaterials (CNMs) from fullerenes, carbon nanotubes, and graphene are promising carbon allotropes for various applications such as energy-conversion devices and biosensors. Because pristine CNMs show substantial van der Waals interactions and a hydrophobic nature, precipitation is observed immediately in most organic solvents and water. This inevitable aggregation leads to poor processability and diminishes the intrinsic properties of the CNMs. Highly toxic and hazardous chemicals are used for chemical and physical modification of CNMs, even though efficient dispersed solutions are obtained. The development of an environmentally friendly dispersion method for both safe and practical processing is a great challenge. Recent green processing approaches for the manipulation of CNMs using chemical and physical modification are highlighted. A summary of the current research progress on: i) energy-efficient and less-toxic chemical modification of CNMs using covalent-bonding functionality and ii) non-covalent-bonding methodologies through physical modification using green solvents and dispersants, and chemical-free mechanical stimuli is provided. Based on these experimental studies, recent advances and challenges for the potential application of green-processable energy-conversion and biological devices are provided. Finally, a conclusion section is provided summarizing the insights from the present studies as well as some future perspectives.
Collapse
Affiliation(s)
- Masuki Kawamoto
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Pan He
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
6
|
Gigault J, Budzinski H. Selection of an appropriate aqueous nano-fullerene (nC60) preparation protocol for studying its environmental fate and behavior. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Aich N, Boateng LK, Sabaraya IV, Das D, Flora JRV, Saleh NB. Aggregation Kinetics of Higher-Order Fullerene Clusters in Aquatic Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3562-3571. [PMID: 26928084 DOI: 10.1021/acs.est.5b05447] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The aggregation kinetics of nC60 and higher-order fullerene (HOF) clusters, i.e., nC70, nC76, and nC84, was systematically studied under a wide range of mono- (NaCl) and divalent (CaCl2) electrolytes and using time-resolved dynamic light scattering. Suwanee River Humic Acid (SRHA) was also used to determine the effect of natural macromolecules on nHOF aggregation. An increase in electrolyte concentration resulted in electrical double-layer compression of the negatively charged fullerene clusters, and the nC60s and nHOFs alike displayed classical Derjaguin-Landau-Verwey-Overbeek (DLVO) type interaction. The critical coagulation concentration (CCC) displayed a strong negative correlation with the carbon number in fullerenes and was estimated as 220, 150, 100, and 70 mM NaCl and 10, 12, 6, and 7.5 mM CaCl2 for nC60, nC70, nC76, and nC84, respectively. The aggregation mechanism (i.e., van der Waals interaction domination) was enumerated via molecular dynamics simulation and modified DLVO model. The presence of SRHA (2.5 mg TOC/L) profoundly influenced the aggregation behavior by stabilizing all fullerene clusters, even at a 100 mM NaCl concentration. The results from this study can be utilized to predict aggregation kinetics of nHOF clusters other than the ones studied here. The scaling factor for van der Waals interaction can also be used to model nHOF cluster interaction.
Collapse
Affiliation(s)
- Nirupam Aich
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - Linkel K Boateng
- Department of Civil and Environmental Engineering, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Indu Venu Sabaraya
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - Dipesh Das
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - Joseph R V Flora
- Department of Civil and Environmental Engineering, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Navid B Saleh
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
8
|
Competitive photometric enzyme immunoassay for fullerene C60 and its derivatives using a fullerene conjugated to horseradish peroxidase. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1621-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
9
|
Ou Z, Liu G, Gao Y, Li S, Li H, Li Y, Wang X, Yang G, Wang X. The effect of amphiphilic polymers on the association, morphology and photophysical properties of hypocrellin coordination polymer/fullerene assemblies. Photochem Photobiol Sci 2014; 13:1529-40. [DOI: 10.1039/c4pp00027g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Y3+–PyrHA/fullerene can form nanoparticles in the size range of 10–60 nm and exhibits a higher singlet oxygen quantum yield than Y3+–PyrHA and the corresponding fullerene in 1% P123 solution.
Collapse
Affiliation(s)
- Zhize Ou
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
| | - Guixia Liu
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
| | - Yunyan Gao
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
| | - Shayu Li
- CAS Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190, People's Republic of China
| | - Huizhen Li
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
| | - Yi Li
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing, People's Republic of China
| | - Xuesong Wang
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing, People's Republic of China
| | - Guoqiang Yang
- CAS Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190, People's Republic of China
| | - Xin Wang
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
| |
Collapse
|