1
|
Lee K, Lee J, Kwak M, Cho YL, Hwang B, Cho MJ, Lee NG, Park J, Lee SH, Park JG, Kim YG, Kim JS, Han TS, Cho HS, Park YJ, Lee SJ, Lee HG, Kim WK, Jeung IC, Song NW, Bae KH, Min JK. Two distinct cellular pathways leading to endothelial cell cytotoxicity by silica nanoparticle size. J Nanobiotechnology 2019; 17:24. [PMID: 30722792 PMCID: PMC6362579 DOI: 10.1186/s12951-019-0456-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/11/2019] [Indexed: 12/18/2022] Open
Abstract
Background Silica nanoparticles (SiNPs) are widely used for biosensing and diagnostics, and for the targeted delivery of therapeutic agents. Safety concerns about the biomedical and clinical applications of SiNPs have been raised, necessitating analysis of the effects of their intrinsic properties, such as sizes, shapes, and surface physicochemical characteristics, on human health to minimize risk in biomedical applications. In particular, SiNP size-associated toxicological effects, and the underlying molecular mechanisms in the vascular endothelium remain unclear. This study aimed to elucidate the detailed mechanisms underlying the cellular response to exposure to trace amounts of SiNPs and to determine applicable size criteria for biomedical application. Methods To clarify whether these SiNP-mediated cytotoxicity due to induction of apoptosis or necrosis, human ECs were treated with SiNPs of four different non-overlapping sizes under low serum-containing condition, stained with annexin V and propidium iodide (PI), and subjected to flow cytometric analysis (FACS). Two types of cell death mechanisms were assessed in terms of production of reactive oxygen species (ROS), endoplasmic reticulum (ER) stress induction, and autophagy activity. Results Spherical SiNPs had a diameter of 21.8 nm; this was further increased to 31.4, 42.9, and 56.7 nm. Hence, we investigated these effects in human endothelial cells (ECs) treated with these nanoparticles under overlap- or agglomerate-free conditions. The 20-nm SiNPs, but not SiNPs of other sizes, significantly induced apoptosis and necrosis. Surprisingly, the two types of cell death occurred independently and through different mechanisms. Apoptotic cell death resulted from ROS-mediated ER stress. Furthermore, autophagy-mediated necrotic cell death was induced through the PI3K/AKT/eNOS signaling axis. Together, the present results indicate that SiNPs within a diameter of < 20-nm pose greater risks to cells in terms of cytotoxic effects. Conclusion These data provide novel insights into the size-dependence of the cytotoxic effects of silica nanoparticles and the underlying molecular mechanisms. The findings are expected to inform the applicable size range of SiNPs to ensure their safety in biomedical and clinical applications. Electronic supplementary material The online version of this article (10.1186/s12951-019-0456-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyungmin Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jangwook Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Minjeong Kwak
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Young-Lai Cho
- Research Center for Metabolic Regulation, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Byungtae Hwang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Min Ji Cho
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Na Geum Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Jongjin Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Sang-Hyun Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeon-Gu Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jang-Seong Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Tae-Su Han
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun-Soo Cho
- Stem Cell Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Young-Jun Park
- Research Center for Metabolic Regulation, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seon-Jin Lee
- Immunotherapy Convergence Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Convergence Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Won Kon Kim
- Research Center for Metabolic Regulation, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - In Cheul Jeung
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero Seocho-gu, Seoul, 06591, Republic of Korea
| | - Nam Woong Song
- Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Kwang-Hee Bae
- Research Center for Metabolic Regulation, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
2
|
Yue L, Zhao W, Wang D, Meng M, Zheng Y, Li Y, Qiu J, Yu J, Yan Y, Lu P, Sun Y, Fu J, Wang J, Zhang Q, Xu L, Ma X. Silver nanoparticles inhibit beige fat function and promote adiposity. Mol Metab 2019; 22:1-11. [PMID: 30737105 PMCID: PMC6437600 DOI: 10.1016/j.molmet.2019.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/09/2019] [Accepted: 01/19/2019] [Indexed: 12/15/2022] Open
Abstract
Objective Obesity is a complex chronic disease of high prevalence worldwide. Multiple factors play integral roles in obesity development, with rising interest focusing on the contribution of environmental pollutants frequent in modern society. Silver nanoparticles (AgNPs) are widely used for bactericidal purpose in various applications in daily life. However, their potential toxicity and contribution to the obesity epidemic are not clear. Methods Beige adipocytes are newly discovered adipocytes characterized by high thermogenic and energy dissipating capacity upon activation and the “browning” process. In the present study, we assess the impact of AgNPs exposure on beige adipocytes differentiation and functionality both in vitro and in vivo. We also systematically investigate the influence of AgNPs on adiposity and metabolic performance in mice, as well as the possible underlying molecular mechanism. Results The results showed that, independent of particle size, AgNPs inhibit the adipogenic, mitochondrial, and thermogenic gene programs of beige adipocytes, thus suppressing their differentiation ability, mitochondrial activity, and thermogenic response. Importantly, exposure to AgNPs in mice suppresses browning gene programs in subcutaneous fat, leading to decreased energy expenditure and increased adiposity in mice. Mechanistically, we found that AgNPs increase reactive oxidative species (ROS) levels and specifically activate MAPK-ERK signaling in beige adipocytes. The negative impacts of AgNPs on beige adipocytes can be ameliorated by antioxidant or ERK inhibitor FR180204 treatment. Conclusions Taken together, these results revealed an unexpected role of AgNPs in promoting adiposity through the inhibition of beige adipocyte differentiation and functionality, possibly by disrupting ROS homeostasis and ERK phosphorylation. Future assessments on the health risk of AgNPs applications and their safe dosages are warranted. The environmental pollutant AgNPs promote adiposity and metabolic disorders in mice. AgNPs suppress beige adipocytes differentiation and functionality both in vitro and in vivo. AgNPs increase ROS levels and specifically activate ERK signaling in beige adipocytes. The negative impacts of AgNPs can be ameliorated by antioxidant or ERK inhibitor.
Collapse
Affiliation(s)
- Lishu Yue
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wenjun Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ying Zheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yu Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jian Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yang Yan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Peng Lu
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Youmin Sun
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Jie Fu
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiang Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
3
|
Yang X, Li Y, Huang Q, Liu X, Zhang R, Feng Q. The effect of hydroxyapatite nanoparticles on adipogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res A 2018; 106:1822-1831. [DOI: 10.1002/jbm.a.36378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/26/2017] [Accepted: 02/15/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Xing Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
| | - Yuanyuan Li
- Department of Stomatology; Shengli Oilfield Central Hospital; Dongying 257034 China
| | - Qianli Huang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
| | - Xujie Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
- Graduate School at Shenzhen, Tsinghua University; Shenzhen 518055 China
| | - Ranran Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
| | - Qingling Feng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
- Key Laboratory of Advanced Materials of Ministry of Education of China; School of Materials Science and Engineering, Tsinghua University; Beijing 100084 China
| |
Collapse
|
4
|
Yang X, Liu X, Li Y, Huang Q, He W, Zhang R, Feng Q, Benayahu D. The negative effect of silica nanoparticles on adipogenic differentiation of human mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:341-348. [PMID: 28887982 DOI: 10.1016/j.msec.2017.07.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/23/2017] [Accepted: 07/27/2017] [Indexed: 02/06/2023]
Abstract
Nanoparticles have drawn much attention for a wide variety of applications in biomedical and bioengineering fields. The combined use of nanoparticles and human mesenchymal stem cells (hMSCs) in tissue engineering and regenerative medicine requires more knowledge of the influence of nanoparticles on cell viability and differentiation potential of hMSCs. The objective of this study is to investigate the in vitro uptake of silica nanoparticles (silica NPs) and their effect on adipogenic differentiation of hMSCs. After exposure of hMSCs to silica NPs, the uptake and localization of silica NPs were assessed using transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). The adipogenic differentiation potential of hMSCs was examined by analyzing the formation and accumulation of lipids droplets, triglyceride (TG) content and the expression of adipogenic marker genes/proteins. The results showed that silica NPs did not affect the cell viability but significantly decreased the differentiation of hMSCs to adipocytes. These findings improve the understanding of the influence of silica NPs on adipogenic differentiation of hMSCs and will provide a reference for the applications of silica NPs in biomedical and bioengineering fields.
Collapse
Affiliation(s)
- Xing Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xujie Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Yuanyuan Li
- Department of Stomatology, Shengli Oilfield Central Hospital, Dongying 257034, China
| | - Qianli Huang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Wei He
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ranran Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Qingling Feng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Dafna Benayahu
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
5
|
Xu Y, Hadjiargyrou M, Rafailovich M, Mironava T. Cell-based cytotoxicity assays for engineered nanomaterials safety screening: exposure of adipose derived stromal cells to titanium dioxide nanoparticles. J Nanobiotechnology 2017; 15:50. [PMID: 28693576 PMCID: PMC5504822 DOI: 10.1186/s12951-017-0285-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/03/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Increasing production of nanomaterials requires fast and proper assessment of its potential toxicity. Therefore, there is a need to develop new assays that can be performed in vitro, be cost effective, and allow faster screening of engineered nanomaterials (ENMs). RESULTS Herein, we report that titanium dioxide (TiO2) nanoparticles (NPs) can induce damage to adipose derived stromal cells (ADSCs) at concentrations which are rated as safe by standard assays such as measuring proliferation, reactive oxygen species (ROS), and lactate dehydrogenase (LDH) levels. Specifically, we demonstrated that low concentrations of TiO2 NPs, at which cellular LDH, ROS, or proliferation profiles were not affected, induced changes in the ADSCs secretory function and differentiation capability. These two functions are essential for ADSCs in wound healing, energy expenditure, and metabolism with serious health implications in vivo. CONCLUSIONS We demonstrated that cytotoxicity assays based on specialized cell functions exhibit greater sensitivity and reveal damage induced by ENMs that was not otherwise detected by traditional ROS, LDH, and proliferation assays. For proper toxicological assessment of ENMs standard ROS, LDH, and proliferation assays should be combined with assays that investigate cellular functions relevant to the specific cell type.
Collapse
Affiliation(s)
- Yan Xu
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY USA
| | - M. Hadjiargyrou
- Department of Life Sciences, New York Institute of Technology, Old Westbury, NY USA
| | - Miriam Rafailovich
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY USA
| | - Tatsiana Mironava
- Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY USA
| |
Collapse
|
6
|
Son MJ, Kim WK, Park A, Oh KJ, Kim JH, Han BS, Kim IC, Chi SW, Park SG, Lee SC, Bae KH. Set7/9, a methyltransferase, regulates the thermogenic program during brown adipocyte differentiation through the modulation of p53 acetylation. Mol Cell Endocrinol 2016; 431:46-53. [PMID: 27132805 DOI: 10.1016/j.mce.2016.04.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 01/03/2023]
Abstract
Brown adipose tissue, which is mainly composed of brown adipocytes, plays a key role in the regulation of energy balance via dissipation of extra energy as heat, and consequently counteracts obesity and its associated-disorders. Therefore, brown adipocyte differentiation should be tightly controlled at the multiple regulation steps. Among these, the regulation at the level of post-translational modifications (PTMs) is largely unknown. Here, we investigated the changes in the expression level of the enzymes involved in protein lysine methylation during brown adipocyte differentiation by using quantitative real-time PCR (qPCR) array analysis. Several enzymes showing differential expression patterns were identified. In particular, the expression level of methyltransferase Set7/9 was dramatically repressed during brown adipocyte differentiation. Although there was no significant change in lipid accumulation, ectopic expression of Set7/9 led to enhanced expression of several key thermogenic genes, such as uncoupling protein-1 (UCP-1), Cidea, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), and PR domain containing 16 (PRDM16). In contrast, knockdown of endogenous Set7/9 led to significantly reduced expression of these thermogenic genes. Furthermore, suppressed mitochondrial DNA content and decreased oxygen consumption rate were also detected upon Set7/9 knockdown. We found that p53 acetylation was regulated by Set7/9-dependent interaction with Sirt1. Based on these results, we suggest that Set7/9 acts as a fine regulator of the thermogenic program during brown adipocyte differentiation by regulation of p53 acetylation. Thus, Set7/9 could be used as a valuable target for regulating thermogenic capacity and consequently to overcome obesity and its related metabolic diseases.
Collapse
Affiliation(s)
- Min Jeong Son
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon 305-806, Republic of Korea
| | - Anna Park
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea
| | - Jeong-Hoon Kim
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon 305-806, Republic of Korea
| | - Baek Soo Han
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon 305-806, Republic of Korea
| | - Il Chul Kim
- Department of Biological Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Seung-Wook Chi
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea
| | - Sung Goo Park
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon 305-806, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon 305-806, Republic of Korea.
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Division of BioMedical Sciences, KRIBB, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon 305-806, Republic of Korea.
| |
Collapse
|
7
|
Rodríguez-Carballo E, Gámez B, Ventura F. p38 MAPK Signaling in Osteoblast Differentiation. Front Cell Dev Biol 2016; 4:40. [PMID: 27200351 PMCID: PMC4858538 DOI: 10.3389/fcell.2016.00040] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/21/2016] [Indexed: 12/14/2022] Open
Abstract
The skeleton is a highly dynamic tissue whose structure relies on the balance between bone deposition and resorption. This equilibrium, which depends on osteoblast and osteoclast functions, is controlled by multiple factors that can be modulated post-translationally. Some of the modulators are Mitogen-activated kinases (MAPKs), whose role has been studied in vivo and in vitro. p38-MAPK modifies the transactivation ability of some key transcription factors in chondrocytes, osteoblasts and osteoclasts, which affects their differentiation and function. Several commercially available inhibitors have helped to determine p38 action on these processes. Although it is frequently mentioned in the literature, this chemical approach is not always as accurate as it should be. Conditional knockouts are a useful genetic tool that could unravel the role of p38 in shaping the skeleton. In this review, we will summarize the state of the art on p38 activity during osteoblast differentiation and function, and emphasize the triggers of this MAPK.
Collapse
Affiliation(s)
| | - Beatriz Gámez
- Departament de Ciències Fisiològiques II, Universitat de Barcelona and IDIBELL, L'Hospitalet de Llobregat Barcelona, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques II, Universitat de Barcelona and IDIBELL, L'Hospitalet de Llobregat Barcelona, Spain
| |
Collapse
|
8
|
Lee DS, Choi H, Han BS, Kim WK, Lee SC, Oh KJ, Bae KH. c-Jun regulates adipocyte differentiation via the KLF15-mediated mode. Biochem Biophys Res Commun 2015; 469:552-8. [PMID: 26692489 DOI: 10.1016/j.bbrc.2015.12.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/10/2015] [Indexed: 12/22/2022]
Abstract
Abnormal adipocyte differentiation is implicated in the development of metabolic disorders such as obesity and type II diabetes. Thus, an in-depth understanding of the molecular mechanisms associated with adipocyte differentiation is the first step in overcoming obesity and its related metabolic diseases. Here, we examined the role of c-Jun as a transcription factor in adipocyte differentiation. c-Jun overexpression in murine 3T3-L1 preadipocytes significantly inhibited adipocyte differentiation. In addition, the expression level of KLF15, an upstream effector of the key adipogenic factors C/EBPα and PPARγ, was decreased upon the ectopic expression of c-Jun. We found that c-Jun inhibited basal and glucocorticoid receptor (GR)-induced promoter activities of KLF15. c-Jun directly bound near the glucocorticoid response element (GRE) sites in the KLF15 promoter and inhibited adjacent promoter occupancies of GR. Furthermore, the restoration of KLF15 expression in 3T3-L1 cells with the stable ectopic expression of c-Jun partially rescued adipocyte differentiation. Our results demonstrate that c-Jun can suppress adipocyte differentiation through the down-regulation of KLF15 at the transcriptional level. This study proposes a novel mechanism by which c-Jun regulates adipocyte differentiation.
Collapse
Affiliation(s)
- Da Som Lee
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Republic of Korea
| | - Hyeonjin Choi
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Republic of Korea
| | - Baek Soo Han
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon 305-806, Republic of Korea
| | - Won Kon Kim
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon 305-806, Republic of Korea
| | - Sang Chul Lee
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon 305-806, Republic of Korea
| | - Kyoung-Jin Oh
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Republic of Korea.
| | - Kwang-Hee Bae
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon 305-806, Republic of Korea.
| |
Collapse
|