1
|
M. Hizam SM, Al-Dhahebi AM, Mohamed Saheed MS. Recent Advances in Graphene-Based Nanocomposites for Ammonia Detection. Polymers (Basel) 2022; 14:5125. [PMID: 36501520 PMCID: PMC9739373 DOI: 10.3390/polym14235125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
The increasing demand to mitigate the alarming effects of the emission of ammonia (NH3) on human health and the environment has highlighted the growing attention to the design of reliable and effective sensing technologies using novel materials and unique nanocomposites with tunable functionalities. Among the state-of-the-art ammonia detection materials, graphene-based polymeric nanocomposites have gained significant attention. Despite the ever-increasing number of publications on graphene-based polymeric nanocomposites for ammonia detection, various understandings and information regarding the process, mechanisms, and new material components have not been fully explored. Therefore, this review summarises the recent progress of graphene-based polymeric nanocomposites for ammonia detection. A comprehensive discussion is provided on the various gas sensor designs, including chemiresistive, Quartz Crystal Microbalance (QCM), and Field-Effect Transistor (FET), as well as gas sensors utilising the graphene-based polymer nanocomposites, in addition to highlighting the pros and cons of graphene to enhance the performance of gas sensors. Moreover, the various techniques used to fabricate graphene-based nanocomposites and the numerous polymer electrolytes (e.g., conductive polymeric electrolytes), the ion transport models, and the fabrication and detection mechanisms of ammonia are critically addressed. Finally, a brief outlook on the significant progress, future opportunities, and challenges of graphene-based polymer nanocomposites for the application of ammonia detection are presented.
Collapse
Affiliation(s)
- Sara Maira M. Hizam
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Adel Mohammed Al-Dhahebi
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Mohamed Shuaib Mohamed Saheed
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| |
Collapse
|
2
|
A Novel SERS Substrate Based on Discarded Oyster Shells for Rapid Detection of Organophosphorus Pesticide. COATINGS 2022. [DOI: 10.3390/coatings12040506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Over the past few years, the concern for green chemistry and sustainable development has risen dramatically. Researchers make an effort to find solutions to difficult challenges using green chemical processes. In this study, we use oyster shells as a green chemical source to prepare calcium oxide nanoparticles (CaO-NPs). Transmission electron microscopy (TEM) results showed the CaO-NPs morphology, which was spherical in shape, 40 ± 5 nm in diameter, with uniform dispersion. We further prepared silver/polydopamine/calcium-oxide (Ag/PDA/CaO) nanocomposites as the surface-enhanced Raman scattering (SERS) substrates and evaluated their enhancement effect using the methyl parathion pesticide. The effective SERS detection limit of this method is 0.9 nM methyl parathion, which is much lower than the safety limits set by the Collaborative International Pesticides Analytical Council for insecticide in fruits. This novel green material is an excellent SERS substrate for future applications and meets the goal of green chemistry and sustainable development.
Collapse
|
3
|
Hang Y, Boryczka J, Wu N. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: a review. Chem Soc Rev 2022; 51:329-375. [PMID: 34897302 PMCID: PMC9135580 DOI: 10.1039/c9cs00621d] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review article deals with the concepts, principles and applications of visible-light and near-infrared (NIR) fluorescence and surface-enhanced Raman scattering (SERS) in in vitro point-of-care testing (POCT) and in vivo bio-imaging. It has discussed how to utilize the biological transparency windows to improve the penetration depth and signal-to-noise ratio, and how to use surface plasmon resonance (SPR) to amplify fluorescence and SERS signals. This article has highlighted some plasmonic fluorescence and SERS probes. It has also reviewed the design strategies of fluorescent and SERS sensors in the detection of metal ions, small molecules, proteins and nucleic acids. Particularly, it has provided perspectives on the integration of fluorescent and SERS sensors into microfluidic chips as lab-on-chips to realize point-of-care testing. It has also discussed the design of active microfluidic devices and non-paper- or paper-based lateral flow assays for in vitro diagnostics. In addition, this article has discussed the strategies to design in vivo NIR fluorescence and SERS bio-imaging platforms for monitoring physiological processes and disease progression in live cells and tissues. Moreover, it has highlighted the applications of POCT and bio-imaging in testing toxins, heavy metals, illicit drugs, cancers, traumatic brain injuries, and infectious diseases such as COVID-19, influenza, HIV and sepsis.
Collapse
Affiliation(s)
- Yingjie Hang
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Jennifer Boryczka
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Nianqiang Wu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| |
Collapse
|
4
|
Jin M, Shan J, Wang X, Ren T, Li X. Determination of Florfenicol in Antibiotic Mixtures by Solid-Phase Extraction (SPE) and Surface-Enhanced Raman Scattering (SERS). ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1946075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mengke Jin
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, China
| | - Jiajia Shan
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, China
| | - Xue Wang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, China
| | - Tao Ren
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, China
| | - Xinjing Li
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, China
| |
Collapse
|
5
|
Xie J, Li L, Khan IM, Wang Z, Ma X. Flexible paper-based SERS substrate strategy for rapid detection of methyl parathion on the surface of fruit. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 231:118104. [PMID: 32006913 DOI: 10.1016/j.saa.2020.118104] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/15/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Herein, we reported a simple, flexible and sensitive surface-enhanced Raman scattering (SERS) substrate to detect methyl parathion residues in real life. The substrate was fabricated by filter paper and gold nanoparticles (Au NPs) with excellent reproducibility and stability. First, Au NPs were synthesized by the seed mediated growth method and assembled to the filter paper through immersion. The Raman probe molecule 4-MBA was used to evaluate performance of the substrate for an optimized signal using a portable Raman spectrometer coupled with 785 nm laser. Then, the paper-based substrate was applied to detect methyl parathion standard solution whose detection limit was down to 0.011 μg/cm2, and the linear range was between 0.018 μg/cm2 and 0.354 μg/cm2. Afterwards, actual sample (apple) spiked with methyl parathion was taken to verify the practicality of the substrate by a simple way of "press-peel off". The recovery rate was ranged from 94.09% to 98.72%, indicating that this method is reliable in actual sample detection without complicated pretreatment steps. This work demonstrates that the flexible paper-based substrate combined with portable Raman instruments can be potentially applied to on-site detection of hazardous substances in the field of food safety.
Collapse
Affiliation(s)
- Jie Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, PR China
| | - Liangyu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, PR China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, PR China
| | - Xiaoyuan Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
6
|
Wang J, Liu K, Jin S, Jiang L, Liang P. A Review of Chinese Raman Spectroscopy Research Over the Past Twenty Years. APPLIED SPECTROSCOPY 2020; 74:130-159. [PMID: 30646745 DOI: 10.1177/0003702819828360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper introduces the major Chinese research groups in the fields of biomedicine, food safety, environmental testing, material research, archaeological and cultural relics, gem identification, forensic science, and other research areas of Raman spectroscopy and combined methods spanning the two decades from 1997 to 2017. Briefly summarized are the research directions and contents of the major Chinese Raman spectroscopy research groups, giving researchers engaged in Raman spectroscopy research a more comprehensive understanding of the state of Chinese Raman spectroscopy research and future development trends to further develop Raman spectroscopy and its applications.
Collapse
Affiliation(s)
- Jie Wang
- Department of Optical and Electronic Technology, China Jiliang University, China
| | - Kaiyuan Liu
- Department of Optical and Electronic Technology, China Jiliang University, China
| | - Shangzhong Jin
- Department of Optical and Electronic Technology, China Jiliang University, China
| | - Li Jiang
- Department of Optical and Electronic Technology, China Jiliang University, China
| | - Pei Liang
- Department of Optical and Electronic Technology, China Jiliang University, China
| |
Collapse
|
7
|
Zou B, Niu C, Ma M, Zhao L, Wang Y. Magnetic Assembly Route to Construct Reproducible and Recyclable SERS Substrate. NANOSCALE RESEARCH LETTERS 2019; 14:369. [PMID: 31807938 PMCID: PMC6895331 DOI: 10.1186/s11671-019-3184-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The fabrication of a uniform array film through assembly of colloidal building blocks is of practical interest for the integrated individual and collective functions. Here, a magnetic assembly route was put forward to organize monodisperse noble metal microspheres into a uniform array film for surface-enhanced Raman scattering (SERS) application, which demonstrated the integrated signal sensitivity of single noble metal microspheres and reproducibility of their assembled uniform array film. For this purpose, monodisperse multifunctional Fe3O4@SiO2@TiO2@Ag (FOSTA) colloidal microspheres as building blocks were successfully synthesized through a homemade ultrasonic-assisted reaction system. When used in SERS test, these multifunctional microspheres could firstly bind the analyte (R6G) from solution and then assembled into a uniform film under an external magnetic field, which exhibited high SERS detection sensitivity with good reproducibility. In addition, due to the TiO2 interlayer in FOSTA colloidal microspheres, the building blocks could be recycled and self cleaned through photocatalytic degradation of the adsorbed analyte for recycling SERS application.
Collapse
Affiliation(s)
- Bingfang Zou
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng, People's Republic of China
- School of Physics and Electronics, Henan University, Kaifeng, People's Republic of China
| | - Chunyu Niu
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng, People's Republic of China
| | - Ming Ma
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng, People's Republic of China
| | - Lu Zhao
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng, People's Republic of China
| | - Yongqiang Wang
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng, People's Republic of China.
| |
Collapse
|
8
|
Xu S, Lei Y. Template-Assisted Fabrication of Nanostructured Arrays for Sensing Applications. Chempluschem 2018; 83:741-755. [DOI: 10.1002/cplu.201800127] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/08/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Shipu Xu
- Institute of Physics & IMN MacroNano (ZIK); Ilmenau University of Technology; Unterpoerlitzer Strasse 38 98693 Ilmenau Germany
| | - Yong Lei
- Institute of Physics & IMN MacroNano (ZIK); Ilmenau University of Technology; Unterpoerlitzer Strasse 38 98693 Ilmenau Germany
| |
Collapse
|
9
|
Xu ML, Gao Y, Han XX, Zhao B. Detection of Pesticide Residues in Food Using Surface-Enhanced Raman Spectroscopy: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6719-6726. [PMID: 28726388 DOI: 10.1021/acs.jafc.7b02504] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Pesticides directly pollute the environment and contaminate foods ultimately being absorbed by the human body. Their residues contain highly toxic substances that have been found to cause serious problems to human health even at very low concentrations. The gold standard method, gas/liquid chromatography combined with mass spectroscopy, has been widely used for the detection of pesticide residues. However, these methods have some drawbacks such as complicated pretreatment and cleanup steps. Recent technological advancements of surface-enhanced Raman spectroscopy (SERS) have promoted the creation of alternative detection techniques. SERS is a useful detection tool with ultrasensitivity and simpler protocols. Present SERS-based pesticide residue detection often uses standard solutions of target analytes in conjunction with theoretical Raman spectra calculated by density functional theory (DFT) and actual Raman spectra detected by SERS. SERS is quite a promising technique for the direct detection of pesticides at trace levels in liquid samples or on the surface of solid samples following simple extraction to increase the concentration of analytes. In this review, we highlight recent studies on SERS-based pesticide detection, including SERS for pesticide standard solution detection and for pesticides in/on food samples. Moreover, in-depth analysis of pesticide chemical structures, structural alteration during food processing, interaction with SERS substrates, and selection of SERS-active substrates is involved.
Collapse
Affiliation(s)
- Meng-Lei Xu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University , Changchun 130012, PR China
| | - Yu Gao
- College of Agriculture, Jilin Agricultural University , Changchun 130118, PR China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University , Changchun 130012, PR China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University , Changchun 130012, PR China
| |
Collapse
|
10
|
Abstract
We mimic unique honeycomb structure as well as its functions of storing honey and pollen to assemble Au nanoparticle pattern on honeycomb-like Al nanobowl array by utilizing solid state dewetting process. Patterned Au nanoarrays of ‘one particle per bowl’ with tunable plasmonic bands ranging from the visible to the near-infrared region are fabricated by finely selecting the initial thickness of Au film, the geometry of Al nanobowl array and the thermal treatment parameters. This work presents a powerful approach to assemble Au nanoparticles into high density nanoarrays with superior spatial resolution, offering highly concentrated electromagnetic fields for plasmonic sensor applications.
Collapse
|
11
|
Xu L, Xu Q, Guo X, Ying Y, Wu Y, Wen Y, Yang H. Facile synthesis of Au/Al 2O 3nanocomposites for improving the detection sensitivity of adenosine triphosphate. RSC Adv 2017. [DOI: 10.1039/c7ra03683c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alumina is widely recognized as chemically inert, and resistant to oxidation and high temperature.
Collapse
Affiliation(s)
- Li Xu
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Municipal Education Committee
- Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
| | - Qin Xu
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Municipal Education Committee
- Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
| | - Xiaoyu Guo
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Municipal Education Committee
- Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
| | - Ye Ying
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Municipal Education Committee
- Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
| | - Yiping Wu
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Municipal Education Committee
- Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
| | - Ying Wen
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Municipal Education Committee
- Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Municipal Education Committee
- Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
| |
Collapse
|