1
|
Deblock L, Goossens E, Pokratath R, De Buysser K, De Roo J. Mapping out the Aqueous Surface Chemistry of Metal Oxide Nanocrystals: Carboxylate, Phosphonate, and Catecholate Ligands. JACS AU 2022; 2:711-722. [PMID: 35373200 PMCID: PMC8969999 DOI: 10.1021/jacsau.1c00565] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 05/24/2023]
Abstract
Iron oxide and hafnium oxide nanocrystals are two of the few successful examples of inorganic nanocrystals used in a clinical setting. Although crucial to their application, their aqueous surface chemistry is not fully understood. The literature contains conflicting reports regarding the optimum binding group. To alleviate these inconsistencies, we set out to systematically investigate the interaction of carboxylic acids, phosphonic acids, and catechols to metal oxide nanocrystals in polar media. Using nuclear magnetic resonance spectroscopy and dynamic light scattering, we map out the pH-dependent binding affinity of the ligands toward hafnium oxide nanocrystals (an NMR-compatible model system). Carboxylic acids easily desorb in water from the surface and only provide limited colloidal stability from pH 2 to pH 6. Phosphonic acids, on the other hand, provide colloidal stability over a broader pH range but also feature a pH-dependent desorption from the surface. They are most suited for acidic to neutral environments (pH <8). Finally, nitrocatechol derivatives provide a tightly bound ligand shell and colloidal stability at physiological and basic pH (6-10). Whereas dynamically bound ligands (carboxylates and phosphonates) do not provide colloidal stability in phosphate-buffered saline, the tightly bound nitrocatechols provide long-term stability. We thus shed light on the complex ligand binding dynamics on metal oxide nanocrystals in aqueous environments. Finally, we provide a practical colloidal stability map, guiding researchers to rationally design ligands for their desired application.
Collapse
Affiliation(s)
- Loren Deblock
- Department
of Chemistry, Ghent University, 9000 Ghent, Belgium
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
| | - Eline Goossens
- Department
of Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Rohan Pokratath
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
| | | | - Jonathan De Roo
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
| |
Collapse
|
2
|
Hou Z, Liu Y, Xu J, Zhu J. Surface engineering of magnetic iron oxide nanoparticles by polymer grafting: synthesis progress and biomedical applications. NANOSCALE 2020; 12:14957-14975. [PMID: 32648868 DOI: 10.1039/d0nr03346d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic iron oxide nanoparticles (IONPs) have wide applications in magnetic resonance imaging (MRI), biomedicine, drug delivery, hyperthermia therapy, catalysis, magnetic separation, and others. However, these applications are usually limited by irreversible agglomeration of IONPs in aqueous media because of their dipole-dipole interactions, and their poor stability. A protecting polymeric shell provides IONPs with not only enhanced long-term stability, but also the functionality of polymer shells. Therefore, polymer-grafted IONPs have recently attracted much attention of scientists. In this tutorial review, we will present the current strategies for grafting polymers onto the surface of IONPs, basically including "grafting from" and "grafting to" methods. Available functional groups and chemical reactions, which could be employed to bind polymers onto the IONP surface, are comprehensively summarized. Moreover, the applications of polymer-grafted IONPs will be briefly discussed. Finally, future challenges and perspectives in the synthesis and application of polymer-grafted IONPs will also be discussed.
Collapse
Affiliation(s)
- Zaiyan Hou
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Yijing Liu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jiangping Xu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| |
Collapse
|
3
|
Yazdani H, Kaul E, Bazgir A, Maysinger D, Kakkar A. Telodendrimer-Based Macromolecular Drug Design using 1,3-Dipolar Cycloaddition for Applications in Biology. Molecules 2020; 25:E857. [PMID: 32075239 PMCID: PMC7071137 DOI: 10.3390/molecules25040857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
Abstract
An architectural polymer containing hydrophobic isoxazole-based dendron and hydrophilic polyethylene glycol linear tail is prepared by a combination of the robust ZnCl2 catalyzed alkyne-nitrile oxide 1,3-dipolar cycloaddition and esterification chemistry. This water soluble amphiphilic telodendrimer acts as a macromolecular biologically active agent and shows concentration dependent reduction of glioblastoma (U251) cell survival.
Collapse
Affiliation(s)
- Hossein Yazdani
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada;
- Department of Chemistry, Shahid Beheshti University G.C., Tehran 1983963113, Iran;
| | - Esha Kaul
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada;
| | - Ayoob Bazgir
- Department of Chemistry, Shahid Beheshti University G.C., Tehran 1983963113, Iran;
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada;
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, QC H3A 0B8, Canada;
| |
Collapse
|
4
|
Moquin A, Sturn J, Zhang I, Ji J, von Celsing R, Vali H, Maysinger D, Kakkar A. Unraveling Aqueous Self-Assembly of Telodendrimers to Shed Light on Their Efficacy in Drug Encapsulation. ACS APPLIED BIO MATERIALS 2019; 2:4515-4526. [DOI: 10.1021/acsabm.9b00643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alexandre Moquin
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Jessica Sturn
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Jeff Ji
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Richard von Celsing
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec H3A 0C7, Canada
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
5
|
Marins JA, Montagnon T, Ezzaier H, Hurel C, Sandre O, Baltrunas D, Mazeika K, Petrov A, Kuzhir P. Colloidal Stability of Aqueous Suspensions of Polymer-Coated Iron Oxide Nanorods: Implications for Biomedical Applications. ACS APPLIED NANO MATERIALS 2018; 1:6760-6772. [DOI: 10.1021/acsanm.8b01558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- J. A. Marins
- CNRS UMR 7010, Institute of Physics of Nice, University Côte d’Azur (UCA), Parc Valrose, 06108 Nice, France
| | - T. Montagnon
- CNRS UMR 7010, Institute of Physics of Nice, University Côte d’Azur (UCA), Parc Valrose, 06108 Nice, France
| | - H. Ezzaier
- CNRS UMR 7010, Institute of Physics of Nice, University Côte d’Azur (UCA), Parc Valrose, 06108 Nice, France
| | - Ch. Hurel
- CNRS UMR 7010, Institute of Physics of Nice, University Côte d’Azur (UCA), Parc Valrose, 06108 Nice, France
| | - O. Sandre
- CNRS UMR 5629, Laboratoire de Chimie des Polymères Organiques, University of Bordeaux, ENSCBP 16 avenue Pey Berland, 33607 Pessac, France
| | - D. Baltrunas
- Nuclear Gamma Resonance Laboratory, State Research Institute Center for Physical Sciences and Technology, Savanorių avenue 231, LT-02300 Vilnius, Lithuania
| | - K. Mazeika
- Nuclear Gamma Resonance Laboratory, State Research Institute Center for Physical Sciences and Technology, Savanorių avenue 231, LT-02300 Vilnius, Lithuania
| | - A. Petrov
- Cryogenic Research Division, Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus, P. Brovka Street 19, 220072 Minsk, Belarus
| | - P. Kuzhir
- CNRS UMR 7010, Institute of Physics of Nice, University Côte d’Azur (UCA), Parc Valrose, 06108 Nice, France
| |
Collapse
|
6
|
Mertz D, Sandre O, Bégin-Colin S. Drug releasing nanoplatforms activated by alternating magnetic fields. Biochim Biophys Acta Gen Subj 2017; 1861:1617-1641. [PMID: 28238734 DOI: 10.1016/j.bbagen.2017.02.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 02/05/2023]
Abstract
The use of an alternating magnetic field (AMF) to generate non-invasively and spatially a localized heating from a magnetic nano-mediator has become very popular these last years to develop magnetic hyperthermia (MH) as a promising therapeutic modality already used in the clinics. AMF has become highly attractive this last decade over others radiations, as AMF allows a deeper penetration in the body and a less harmful ionizing effect. In addition to pure MH which induces tumor cell death through local T elevation, this AMF-generated magneto-thermal effect can also be exploited as a relevant external stimulus to trigger a drug release from drug-loaded magnetic nanocarriers, temporally and spatially. This review article is focused especially on this concept of AMF induced drug release, possibly combined with MH. The design of such magnetically responsive drug delivery nanoplatforms requires two key and complementary components: a magnetic mediator which collects and turns the magnetic energy into local heat, and a thermoresponsive carrier ensuring thermo-induced drug release, as a consequence of magnetic stimulus. A wide panel of magnetic nanomaterials/chemistries and processes are currently developed to achieve such nanoplatforms. This review article presents a broad overview about the fundamental concepts of drug releasing nanoplatforms activated by AMF, their formulations, and their efficiency in vitro and in vivo. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editors: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.
Collapse
Affiliation(s)
- Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23, rue du Loess, 67034 Strasbourg, France.
| | - Olivier Sandre
- Laboratoire de Chimie des Polymères Organiques (LCPO), CNRS UMR 5629, Université de Bordeaux, Bordeaux-INP, Pessac 33607, Cedex, France
| | - Sylvie Bégin-Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23, rue du Loess, 67034 Strasbourg, France
| |
Collapse
|